Evaluating Multi-Item Scales

Health Services Research Design (HS 225A)

November 15, 2013, 10:00-11:45 am 51-279 (Public Health)

Listed below are a few statements about your relationships with others. How much is each statement TRUE or FALSE for you

		Definitely	Mostly	Don't	Mostly	
[Definitely	·	·		·	
	1. I am always courteous even	True	True	Know	False	False
	to people who are disagreeable.	1	2	3	4	5
	2. There have been occasions whe I took advantage of someone.	n 1	2	3	4	5
	3. I sometimes try to get even rath than forgive and forget.	er 1	2	3	4	5
	4. I sometimes feel resentful when don't get my way.	I 1	2	3	4	5
	5. No matter who I' m talking to, I always a good listener.	'm 1	2	3	4	5

Scoring Multi-Item Scales

- Average or sum all items in the same scale.
- Transform average or sum to
 - 0 (worse) to 100 (best) possible range
 - z-score (mean = 0, SD = 1)
 - T-score (mean = 50, SD = 10)

Linear Transformations

Y = target mean + (target SD * Zx)

Listed below are a few statements about your relationships with others. How much is each statement TRUE or FALSE for you

	Definitely	Mostly	Don't	Mostly	
Definitely	,	•		•	
1. I am always courteous even	True	True	Know	False	False
to people who are disagreeable.	100	75	50	25	0
2. There have been occasions wh I took advantage of someone.	ien 0	25	50	75	100
3. I sometimes try to get even rat than forgive and forget.	her 0	25	50	75	100
4. I sometimes feel resentful whe don't get my way.	en I 0	25	50	75	100
5. No matter who I' m talking to, always a good listener.	, I' m 100	75	50	25	0

Create T-score

$$z$$
-score = (score - 36)/31
T-score = (10 * z-score) + 50

$$z$$
-score = (100- 36)/31 = 2.06
T-score = 71

Validity

- Content validity
 - Patients and/or experts judge the items to be representing the intended concept adequately
- Construct validity
 - Extent to which associations with other variables are consistent with prior hypotheses

Self-Reports of Physical Health Predict Five-Year Mortality

Evaluating Construct Validity

Scale	Age	Obesity	ESRD	Nursing Home Resident
Physical Functioning	Medium (-).	Small (-)	Large (-)	Large (-)
Depressive Symptoms	?	Small (+)	?	Small (+)

Cohen effect size rules of thumb (d = 0.2, 0.5, and 0.8): Small correlation = 0.100 Medium correlation = 0.243 Large correlation = 0.371 $\underline{r} = \underline{d} / [(\underline{d}^2 + 4)^{.5}] = \underline{0.8} / [(0.8^2 + 4)^{.5}] = 0.8 / [(0.64 + 4)^{.5}] = 0.8 / [(4.64)^{.5}] = 0.8 / 2.154 = \underline{0.371}$

Beware: r's of 0.10, 0.30 and 0.50 are often cited as small, medium, and large.

Responsiveness to Change

 Valid measures should be responsive to interventions that change the thing being measured.

• Compare change on measure to change indicated on external indicator (anchor)

Self-Reported Change Anchor

We would like to know about any changes in how you are feeling now compared with how you were feeling 6 months ago. Has your ability to carry out your everyday physical activities such as walking, climbing stairs, carrying groceries, or moving a chair ...

got a <u>lot better</u>? got a <u>little better</u>? stayed the same? got a <u>little worse</u>? got a <u>lot worse</u>?'

Change on PROMIS® Physical Functioning Scale (T-score) by Change on Anchor

	Lot Better	Little Better	Same	Little Worse	Lot Worse
	(n = 21)	(n = 35)	(n = 252)	(n = 113)	(n = 30)
Wave 3 – Wave 1	1.94 ^a	<u>1.63</u> ^{a,b}	0.27 ^b	<u>-1.68</u> c	-3.20 ^d
Wave 3 – Wave 2	3.26 ^a	<u>1.96</u> ^{a,b}	0.43 ^{b,c}	<u>-0.82</u> ^c	-3.16 ^d

Wave 3 is 12 months after wave 1. Wave 2 is 6 months after wave 1.

Reliability

- Extent to which measure yields similar result when the thing being measured hasn't changed
- Ranges from 0-1

 Standard is 0.70 or above for research or other group comparisons

Two Raters' Ratings of GOP Debate Performance on *Excellent* to *Poor* Scale

[1 = Poor; 2 = Fair; 3 = Good; 4 = Very good; 5 = Excellent]

1=Bachman Turner Overdrive (Good, Very Good)
2=Ging Rich (Very Good, Excellent)
3=Rue Paul (Good, Good)
4=Gaylord Perry (Fair, Poor)
5=Romulus Aurelius (Excellent, Very Good)
6=Sanatorium (Fair, Fair)

(Target = 6 candidates; assessed by 2 raters)

Calculating KAPPA

$$\mathbf{P_{C}} = \frac{(0 \times 1) + (2 \times 1) + (2 \times 1) + (1 \times 2) + (1 \times 1)}{(6 \times 6)} = 0.19$$

$$\mathbf{P}_{obs.} = \frac{2}{6} = 0.33$$

Kappa = $\frac{0.33 - 0.19}{1 - 0.19} = 0.17$

Weighted Kappa Linear (Quadratic)

	Ρ	F	G	VG	E		
Р	1	.75 (.937)	.50 (.750)	.25 (.437)	0		
F	.75 (.937)	1	.75 (.937)	.50 (.750)	.25 (.437)		
G	.50 (.750)	.75 (.937)	1	.75 (.937)	.50 (.750)		
VG	.25 (.437)	.50 (.750)	.75 (.937)	1	.75 (.937)		
E	0	.25 (.437)	.5 (.750)	.75 (.937)	1		
$W_1 = 1 - (i/(k - 1))$							

 $W_q = 1 - (i^2 / (k - 1)^2)$

i = number of categories ratings differ byk = n of categories

All Kappas

$$\mathbf{P_{c}} = \frac{(0 \times 1) + (2 \times 1) + (2 \times 1) + (1 \times 2) + (1 \times 1)}{(6 \times 6)} = 0.19$$

$$P_{obs.} = \frac{2}{6} = 0.33$$

Kappa =
$$\frac{0.33 - 0.19}{1 - 0.19} = 0.17$$

Linear weighted kappa = 0.52Quadratic weighted kappa = 0.77

Reliability and Intraclass Correlation

Model	Reliability	Intraclass Correlation			
One- way	$\frac{MS_{BMS} - MS_{WMS}}{MS_{BMS}}$	$\frac{MS_{BMS} - MS_{WMS}}{MS_{BMS} + (k-1)MS_{WMS}}$			
Two- way fixed	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS}}$	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS} + (k-1)MS_{EMS}}$			
Two- way random	$\frac{N(MS_{BMS} - MS_{EMS})}{NMS_{BMS} + MS_{JMS} - MS_{EMS}}$	$\frac{MS_{BMS} - MS_{EMS}}{MS_{BMS} + (k-1)MS_{EMS} + k(MS_{JMS} - MS_{EMS})/N}$			
BMS = Between Ratee Mean Square N = n of ratees WMS = Within Mean Square $k = n$ of items or raters JMS = Item or Rater Mean Square 19 EMS = Ratee x Item (Rater) Mean Square					

01 34 02 45 03 33 04 21 05 54 06 22	Perf	ormance Rating	JS
Source	df	SS	MS
Candidates (BMS) Raters (JMS) Cand. x Raters (EMS)	5 1 5	15.67 0.00 2.00	3.13 0.00 0.40
Total	11	17.67	
2-way R = <u>6 (3.13 - 0.4</u> 6 (3.13) + 0.0	<u>0)</u>)0 - 0.	= 0.89	ICC = 0.80

GOP Presidential Candidates Responses to Two Questions about Their Health

- 1. Bachman Turner Overdrive (Good, Very Good)
- 2. Ging Rich (Very Good, Excellent)
- 3. Rue Paul (Good, Good)
- 4. Gaylord Perry (Fair, Poor)
- 5. Romulus Aurelius (Excellent, Very Good)
- 6. Sanatorium (Fair, Fair)

(Target = 6 candidates; assessed by 2 items)

01 34 02 45 03 33 04 21 05 54 06 22	d Eff	ects (Cronbo	ich's Alpha)
Source	df	SS	MS
Respondents (BMS) Items (JMS) Resp. x Items (EMS)	5 1 5	15.67 0.00 2.00	3.13 0.00 0.40
Total	11	17.67	
Alpha = <u>3.13 - 0.40</u> 3.13	= <u>2.9</u> 3.13	$\frac{3}{3} = 0.87$	ICC = 0.77

Overall Satisfaction of 12 Patients with 6 Doctors (2 patients per doctor)

- 1. Dr. Overdrive (p1: Good, p2: Very Good)
- 2. Dr. Rich (p3: Very Good, p4: Excellent)
- 3. Dr. Paul (p5: Good, p6: Good)
- 4. Dr. Perry (p7: Fair, p8: Poor)
- 5. Dr. Aurelius (p9: Excellent, p10: Very Good)
- 6. Dr. Sanatorium (p11: Fair, p12: Fair)

(Target = 6 doctors; assessed by 2 patients each)

01 34 02 45 03 33 04 21 05 54 06 22	of Rati	ings of Doctor	
Source	df	SS	MS
Respondents (BMS) Within (WMS)	5 6	15.67 2.00	3.13 0.33
Total	11	17.67	
1-way = <u>3.13 - 0.33</u> 3.13	= <u>2.80</u> 3.13	= 0.89	

Item-scale correlation matrix

	<u>Depress</u>	<u>Anxiety</u>	<u>Anger</u>
ltem #1	0.80*	0.20	0.20
Item #2	0.80*	0.20	0.20
Item #3	0.80*	0.20	0.20
Item #4	0.20	0.80*	0.20
Item #5	0.20	0.80*	0.20
Item #6	0.20	0.80*	0.20
Item #7	0.20	0.20	0.80*
Item #8	0.20	0.20	0.80*
Item #9	0.20	0.20	0.80*

*Item-scale correlation, corrected for overlap.

Item-scale correlation matrix

	<u>Depress</u>	<u>Anxiety</u>	<u>Anger</u>
ltem #1	0.50*	0.50	0.50
Item #2	0.50*	0.50	0.50
Item #3	0.50*	0.50	0.50
Item #4	0.50	0.50*	0.50
Item #5	0.50	0.50*	0.50
Item #6	0.50	0.50*	0.50
Item #7	0.50	0.50	0.50*
Item #8	0.50	0.50	0.50*
Item #9	0.50	0.50	0.50*

*Item-scale correlation, corrected for overlap.

Confirmatory Factor Analysis

	<u>Depress</u>	<u>Anxiety</u>	<u>Anger</u>
ltem #1	0.80*	0.00	0.00
Item #2	0.80*	0.00	0.00
Item #3	0.80*	0.00	0.00
Item #4	0.00	0.80*	0.00
Item #5	0.00	0.80*	0.00
Item #6	0.00	0.80*	0.00
Item #7	0.00	0.00	0.80*
Item #8	0.00	0.00	0.80*
Item #9	0.00	0.00	0.80*

*Factor loading.

Item Response Theory (IRT)

IRT models the relationship between a person's response Y_i to the question (i) and his or her level of the latent construct θ being measured by positing

$$\Pr(Y_i \ge k) = \frac{1}{1 + \exp(-a_i\theta + b_{ik})}$$

b_{ik} estimates how difficult it is to get a score of k or more on item (i).

a; is an estimate of the discriminatory power of the item.

Item Responses and Trait Levels

www.nihpromis.org

Computer Adaptive Testing (CAT)

Reliability Target for Use of Measures with Individuals

- Reliability ranges from 0-1
 - 0.90 or above is goal
 SEM = SD (1- reliability)^{1/2}
 - ➢ 95% CI = true score +/- 1.96 x SEM
 - > if true z-score = 0, then CI: -.62 to +.62
 > Width of CI is 1.24 z-score units
- Reliability = 0.90 when <u>SE = 3.2</u>
 - T-scores (mean = 50, SD = 10) T = 50 + (z * 10)
 - Reliability = $1 (SE/10)^2$

I was grouchy [1st question]

- Never	[39]
- Rarely	[48]
- Sometimes	[56]
- Often	[64]
- Always	[72]

Estimated Anger = 56.1 SE = 5.7 (rel. = 0.68)

I felt like I was ready to explode

[2nd question]

- Never
- Rarely
- Sometimes
- Often
- Always

Estimated Anger = 51.9 SE = 4.8 (rel. = 0.77)

- I felt angry [3rd question]
 - Never
 - Rarely
 - Sometimes
 - Often
 - Always

Estimated Anger = 50.5 SE = 3.9 (rel. = 0.85)

I felt angrier than I thought I should [4th question]

- Never
- Rarely
- Sometimes
- Often
- Always

Estimated Anger = 48.8 SE = 3.6 (rel. = 0.87)

- I felt annoyed [5th question]
 - Never
 - Rarely
 - Sometimes
 - Often
 - Always

Estimated Anger = 50.1 SE = 3.2 (rel. = 0.90)

I made myself angry about something just by thinking about it. [6th question]

- Never
- Rarely
- Sometimes
- Often
- Always

Estimated Anger = 50.2SE = 2.8 (rel = 0.92)

PROMIS Physical Functioning vs. "Legacy" Measures

Defining a Responder: Reliable Change Index (RCI)

RCI >= 1.96 is statistically significant individual change..

Thank you. Powerpoint file is freely available at: <u>http://gim.med.ucla.edu/FacultyPages/Hays/</u>

Contact information: <u>drhays@ucla.edu</u> 310-794-2294 For a good time: <u>http://twitter.com/RonDHays</u>

Appendices ANOVA Computations

- Candidate/Respondents SS
 (7²+9²+6²+3²+9²+4²)/2 38²/12 = <u>15.67</u>
- Rater/Item SS (19²+19²)/6 – 38²/12 = 0.00
- Total SS $(3^2+4^2+4^2+5^2+3^2+3^2+2^2+1^2+5^2+4^2+2^2+2^2) - 38^2/10$ $= \underline{17.67}$
- Res. x Item SS= Tot. SS (Res. SS+Item SS)

```
options ls=130 ps=52 nocenter; options nofmterr;
```

data one;

proc freq; tables rater rating;

run;

proc means;

var rater rating;

run;

,

,

,

proc anova;

class id rater; model rating=id rater id*rater; **run**; data one; input id 1-2 rater 4 rating 5; CARDS; 01 13 01 24 02 14 02 25 03 13 03 23 04 12 04 21 05 15 05 24 06 12 06 22 , run: , %GRIP(indata=one,targetv=id,repeatv=rater,dv=rating, type=1,t1=test of GRIP macro,t2=);

GRIP macro is available at: http://gim.med.ucla.edu/FacultyPages/Hays/util.htm

data one; input id 1-2 rater1 4 rater2 5; control=1; CARDS; 01 34 02 45 03 33 04 21 05 54 06 22 ; run; ************* , **DATA** DUMMY; INPUT id 1-2 rater1 4 rater2 5; CARDS; 01 11 02 22 03 33 04 44 05 55 RUN;

DATA NEW; SET ONE DUMMY; PROC FREQ; TABLES CONTROL*RATER1*RATER2 /NOCOL NOROW NOPERCENT AGREE;

,

,

,

data one;

set one;

proc means;

```
var rater1 rater2;
```

run;

proc corr alpha; var rater1 rater2;

run;