

Evaluating Self-Report Data Using Psychometric Methods

Ron D. Hays, PhD (hays@rand.org) February 6, 2008 (3:30-6:30pm) HS 249F

Individual Change

- Interest in
 - Knowing how many patients benefit from group intervention, or
 - Tracking progress on individual patients
- Sample
 - 54 patients
 - Average age = 56; 84% white; 58% female
- Method
 - Self-administered SF-36 version 2 at baseline and at end of therapy (about 6 weeks later).

Physical Functioning and Emotional Well-Being at Baseline for 54 Patients at UCLA-Center for East West Medicine

RAND Hays et al. (2000), American Journal of Medicine

Change in SF-36 Scores Over Time

t-test for within group change

 $\cdot X_{\rm D}/(SD_{\rm d}/n^{1/2})$

 X_D = is mean difference, SD_d = standard deviation of difference

Significance of Group Change (T-scores)

	Change	t-test	prob.
PF-10	1.7	2.38	.0208
RP-4	4.1	3.81	.0004
BP-2	3.6	2.59	.0125
GH-5	2.4	2.86	.0061
EN-4	5.1	4.33	.0001
SF-2	4.7	3.51	.0009
RE-3	1.5	0.96	.3400 <-
EWB-5	4.3	3.20	.0023
PCS	2.8	3.23	.0021
MCS	3.9	2.82	.0067

Reliable Change Index

$(X_2 - X_1)/(SEM * SQRT [2])$

SEM = $SD_b * (1 - reliability)^{1/2}$

Amount of Change in Observed Score Needed for Significant Individual Change

	RCI	Effect size
PF-10	8.4	0.67
RP-4	8.4	0.72
BP-2	10.4	1.01
GH-5	13.0	1.13
EN-4	12.8	1.33
SF-2	13.8	1.07
RE-3	9.7	0.71
EWB-5	13.4	1.26
PCS	7.1	0.62
MCS	9.7	0.73

RANDHEAL

Significant Change for 54 Cases

	%	%	Difference
	Improving	Declining	
PF-10	13%	2%	+ 11%
RP-4	31%	2%	+ 29%
BP-2	22%	7%	+ 15%
GH-5	7%	0%	+ 7%
EN-4	9%	2%	+ 7%
SF-2	17%	4%	+ 13%
RE-3	15%	15%	0%
EWB-5	19%	4%	+ 15%
PCS	24%	7%	+ 17%
MCS	22%	11%	+ 11%

Multiple Steps in Developing Good Survey

- Review literature
- Expert input (patients and clinicians)
- Define constructs you are interested in
- Draft items (item generation)
- Pretest
 - Cognitive interviews
 - Field and pilot testing
- Revise and test again
- Translate/harmonize across languages

What's a Good Measure?

- Same person gets same score (reliability)
- Different people get different scores (validity)
- People get scores you expect (validity)
- It is practical to use (feasibility)

Scales of Measurement and Their Properties

Property of Numbers

Type of Scale	Rank Order	Equal Interval	Absolute 0
Nominal Ordinal	+		
Interval Ratio	+	+	+

Measurement Range for Health Outcome Measures

Indicators of Acceptability

- Unit non-response
- Item non-response
- Administration time

Variability

- · All scale levels are represented
- Distribution approximates bell-shaped "normal"

Measurement Error

observed = true + systematic + random score error error

(bias)

Four Types of Data Collection Errors

- Coverage Error
 Does each person in population have an equal chance of selection?
- Sampling Error Are only some members of the population sampled?
- Nonresponse Error Do people in the sample who respond differ from those who do not?
- Measurement Error

Are inaccurate answers given to survey questions?

Flavors of Reliability

- Test-retest (administrations)
- Intra-rater (raters)
- Internal consistency (items)

Test-retest Reliability of MMPI 317-362 r = 0.75

I am more sensitive than most other people.

Kappa Coefficient of Agreement (Corrects for Chance)

Example of Computing KAPPA

Example of Computing KAPPA (Continued)

20

$$P_{c} = \frac{(1 \times 2) + (3 \times 2) + (2 \times 2) + (2 \times 2) + (2 \times 2)}{(10 \times 10)} = 0.2$$

$$P_{obs.} = \frac{9}{10} = 0.90$$

$$Kappa = \frac{0.90 - 0.20}{1 - 0.20} = 0.87$$

Guidelines for Interpreting Kappa

<u>Conclusion</u>	Kappa	<u>Conclusion</u> Poor	<u>Kappa</u> < 0.0
		Slight	.0020
Poor	< .40	Fair	.2140
Fair 60	.4059	Moderate	.41 -
Good	.6074	Substantial	.6180
Excellent	>.74	Almost perfect	.81 - 1.00

RANDHE Fileiss (1981)

Landis and Koch (1977)

Intraclass Correlation and Reliability

Model	odel Reliability Intraclass Correlation	
One-Way	MS BMS - MS WMS	MS _{BMS} - MS _{WMS}
	MS BMS	MS _{BMS} + (K-1)MS _{WMS}
Two-Way	MS BMS - MS EMS	MS BMS - MS EMS
Fixed	MS BMS	MS _{EMS} + (K-1)MS _{EMS}
Two-Way	N (MSBMS - MS _{EMS})	MS BMS - MS EMS
Random	NMS _{BMS} +MS _{JMS} - MS _{EMS}	$MS_{BMS} + (K-1)MS_{EMS} + K (MS_{JMS} - MS_{EMS})/N$

Summary of Reliability of Plant Ratings

	Basel	ine	Follow-u	р
One-Way Anova Two-Way Random Effects Two-Way Fixed Effects	R _{TT} 0.97 0.97 0.98	R _{II} 0.95 0.95 0.96	R _{TT} 0.97 0.97 0.98	R _{II} 0.94 0.94 0.97
Source	Label	Baseli	ne MS	
Plants	BMS	628.	.667	
Within	WMS	17.700		
Raters	JMS	57.	.800	
Raters X Plants	EMS	13	.244	

Raw Data for Ratings of Height (1/16 inch) of Houseplants (A1, A2, etc.) by Two Raters (R1, R2)

Plant	Baseline Height	Follow-up Height	Experimental Condition
A1			
R1	120	121	1
Ra	2 118	120	
A2			
R	084	085	2
R	2 096	088	
B1			
R	107	108	2
R	2 105	104	
B2			
R	094	100	1
Rź	2 097	104	
C 1			
R	085	088	2
Ra	091	096	

Ratings of Height of Houseplants (Cont.)

Plan	t	Baseline Height	Follow-up Height	Experimental Condition
C2				
	R1 R2	079 078	086 092	1
D1				
	R1 R2	070 072	076 080	1
D2				
	R1 R2	054 056	056 060	2
E1				
	R1 R2	085 097	101 108	1
E2				
	R1 R2	090 092	084 096	2

Reliability of Baseline Houseplant Ratings

Ratings of Height of Plants: 10 plants, 2 raters Baseline Results

Source	DF	SS	MS	F
Plants	9	5658	628.667	35.52
Within	10	177	17.700	
Raters	1	57.8	57.800	
Raters x Plants	9	119.2	13.244	
otal	19	5835		

Sources of Variance in Baseline Houseplant Height

Source	dfs	MS	
Plants (N)	9	628.67	(BMS)
Within	10	17.70	(WMS)
Raters (K)	1	57.80	(JMS)
Raters x Plants	9	13.24	(EMS)

Total

19

Cronbach's Alpha

Source	df	SS	MS
Respondents (BMS) Items (JMS) Resp. x Items (EMS)	4 1 4	11.6 0.1 4.4	2.9 0.1 1.1
Total	9	16.1	
Alpha = <u>2.9 - 1.1</u> = 2.9	= <u>1.8</u> = 2.9	0.62	

Alpha for Different Numbers of Items and Homogeneity

Average Inter-item Correlation (\overline{r})

Number of Items (<) .0	.2	.4	.6	.8	1.0
2	.000	.333	.572	.750	.889	1.000
4	.000	.500	.727	.857	.941	1.000
6	.000	.600	.800	.900	.960	1.000
8	.000	.666	.842	.924	.970	1.000

Alpha_{st}=
$$\frac{k * \overline{r}}{1 + (k - 1) * \overline{r}}$$

Spearman-Brown Prophecy Formula

alpha y =
$$\left(\frac{N \cdot alpha}{1 + (N - 1) * alpha_{X}} \right)$$

N = how much longer scale y is than scale x

Example Spearman-Brown Calculations

MHI-18

18/32 (0.98) (1+(18/32 -1)*0.98

= 0.55125/0.57125 = 0.96

Number of Items and Reliability for Three Versions of the Mental Health Inventory (MHI)

Reliability Minimum Standards

- 0.70 or above (for group comparisons)
- 0.90 or higher (for individual assessment)
 - > SEM = SD (1- reliability)^{1/2}

Reliability of a Composite Score

$$Mosier = 1 - \frac{\Sigma(w_j^2)(S_j^2) - \Sigma(w_j^2)(S_j^2)(\alpha_j)}{\Sigma(w_j^2)(S_j^2) + 2\Sigma(w_j)(w_{\kappa})(S_j)(S_{\kappa})(r_{j\kappa})}$$

- w_j = weight given to component J
- \mathbf{w}_{κ} = weight given to component K
- **S**_j = standard deviation of **J**
- α_j = reliability of J
- $\mathbf{r}_{j\kappa}$ = correlation between J and K

Hypothetical Multitrait/Multi-Item Correlation Matrix

Multitrait/Multi-Item Correlation Matrix for Patient Satisfaction Ratings

	Technical	Interpersonal	Communication	Financial
Technical				
1	0.66*	0.63†	0.67†	0.28
2	0.55*	0.54†	0.50†	0.25
3	0.48*	0.41	0.44†	0.26
4	0.59*	0.53	0.56†	0.26
5	0.55*	0.60†	0.56†	0.16
6	0.59*	0.58†	0.57†	0.23
Interpersonal				
1	0.58	0.68*	0.63†	0.24
2	0.59†	0.58*	0.61†	0.18
3	0.62†	0.65*	0.67†	0.19
4	0.53†	0.57*	0.60†	0.32
5	0.54	0.62*	0.58†	0.18
6	0.48†	0.48*	0.46†	0.24

Note - Standard error of correlation is 0.03. Technical = satisfaction with technical quality. Interpersonal = satisfaction with the interpersonal aspects. Communication = satisfaction with communication. Financial = satisfaction with financial arrangements. *Item-scale correlations for hypothesized scales (corrected for item overlap). †Correlation within two standard errors of the Correlation of the item with its hypothesized scale.

- Does measure relate to other measures in ways consistent with hypotheses?
- Responsiveness to change including minimally important difference

<u>File Edit View Insert Format Tools Table Window H</u> elp Ado <u>b</u> e PDF Acrobat <u>C</u> omments	Type a question for help 👻
: 🗅 😂 🛃 💪 🚳 💁 🖏 🐇 🐚 🛍 🛷 🔊 - 🗠 - 🧶 🥪 🎟 📷 🎫 🛷 🖓 🗣 100% 🕒 🕢 💷 Read 💂	
: 44 Plain Text 🔹 Courier New 🔹 10 🔹 🖪 🖌 💆 📑 🚍 🚍 葦 🏣 🏣 🏣 🏣 🏣 🐺 👾 🔺 🗸 🗸	
■ •••••• ₹•••• ↓••• ↓••• ₹••• ↓••• ₹••• ↓••• ₹••• ↓••• ₹••• ↓••• ₹••• ↓••• €••• ↓ △•	1.7.1.1.1
. MTMM.EXE (2.3): Multitrait-Multimethod Program	
Hayashi, T., & Hays, R. D. (1987). A microcomputer program	
for analyzing multitrait-multimethod matrices. Behavior Research Methods, Instruments, & Computers, 19 (3), 345-348.	
A compactor inconduct, inconducto, a compactor, is (c), etc. etc.	
Correlation Matrix Input Is As Follows:	
Kobayashi PEDSql 2007	
N = 790; DFS = 787	
. METHOD 1 2	
- TRAIT 1 2 3 4 1 2 3 4	
1. 1. PHYSICAL 1.00	
- 3.SOCIAL F .43 .52 1.00	
4.SCHOOL F .46 .42 .39 1.00	
2. I.FINISICKE [.15] .13 .17 1.00 2.EMOTIONA .27 [.32] .20 .24 .44 1.00	
▼ 3.SOCIAL F .22 .26 [.34] .21 .45 .57 1.00	
4.SCHOOL F .18 .21 .22 [.41] .39 .52 .57 1.00	
- (Total Z = 1.31 Mean Z = .33)	
Average convergent validity correlation is .317	
Average off-diagonal correlation is .345	
)>
i Draw • 🖗 AutoShapes • 🔨 🔪 🖸 🔿 🔠 🐗 🔅 🗕 🖓 • 🗳 • 🚣 • 🚍 🚃 🥰 🗐 🥊	
Page 1 Sec 1 1/4 At 4.4" Ln 23 Col 42 REC TRK EXT OVR English (U.S 🗾	

Construct Validity for Scales Measuring Physical Functioning

	Severity of Heart Disease						
	None	Mild	Severe	F-ratio	Relative Validity		
Scale #1	91	90	87	2			
Scale #2	88	78	74	10	5		
Scale #3	95	87	77	20	10		

Responsiveness to Change and Minimally Important Difference (MID)

- HRQOL measures should be responsive to interventions that changes HRQOL
- Need external indicators of change (Anchors)
 - mean change in HRQOL scores among people who have changed ("minimal" change for MID).

Self-Report Indicator of Change

• Overall has there been any change in your asthma since the beginning of the study?

Much improved; Moderately improved; Minimally improved

No change

Much worse; Moderately worse; Minimally worse

Clinical Indicator of Change

 - "changed" group = seizure free (100% reduction in seizure frequency)

- "unchanged" group = <50% change in seizure frequency

Responsiveness Indices

- (1) Effect size (ES) = D/SD
- (2) Standardized Response Mean (SRM) = D/SD^{+}
- (3) Guyatt responsiveness statistic (RS) = D/SD[‡]
 - D = raw score change in "changed" group;
 SD = baseline SD;
 SD[†] = SD of D;
 SD[‡] = SD of D among "unchanged"

Effect Size Benchmarks

- Small: 0.20->0.49
- Moderate: 0.50->0.79
- Large: 0.80 or above

Treatment Impact on PCS

Treatment Impact on MCS

IRT

Latent Trait and Item Responses

Item Responses and Trait Levels

Item Characteristic Curves (1-Parameter Model)

Item Characteristic Curves (2-Parameter Model)

Dichotomous Items Showing DIF (2-Parameter Model)

