Introducing Structural Equation Modeling (SEM) to Novices Using Kevin Heslin's SF-36 Data from Opioid Users

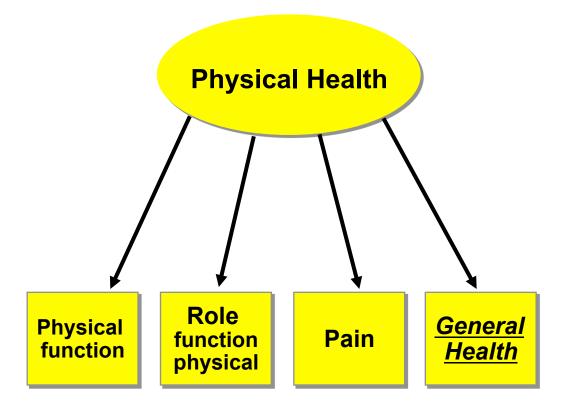
Ron D. Hays, Ph.D.

May 8, 2009, 12:01-12:59pm

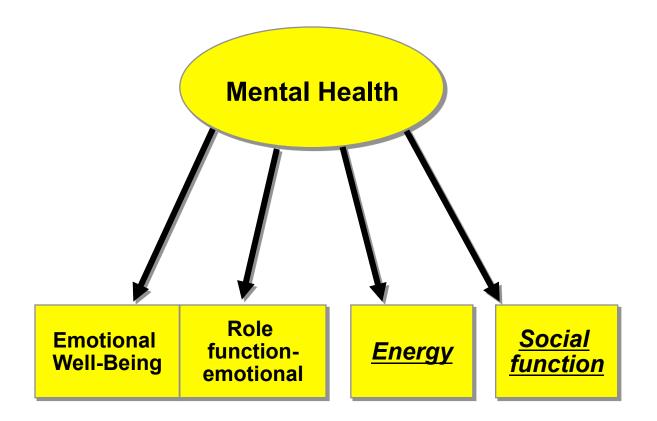
UCLA GIM/HSR Research Seminar Series

Discussed at 04/27/09 RCMAR/ EXPORT Meeting

Heslin, K. C., Stein, J., Pan, D., Magladry, C.,& Hays, R. D. Determinants of health-related quality of life among clinical trial participants with opioid dependence


Methods

- Baseline data
 - 344 opioid users (113 inpat.) in multi-center open-label 13-day detox. trial: buprenophrinenaloxone vs. clonidine
 - 12 community-based treatment programs) from NIDA Clinical Trials Network
 - 01/01-02/ 02 (out); 02/01-07/02 (in)
- Dependent variables
 - SF-36 v. 1; Adjective Rating Scale for Withdrawal (ARSW)


Independent Variables

- Body Mass Index
- Pulse Rate
- Respiratory Rate
- Systolic Blood Pressure
- Abnormal Physical Exam Findings
- Number of Health Conditions

Physical Health

Mental Health

{Module Name} Module Adjective Rating Scale for Withdrawal

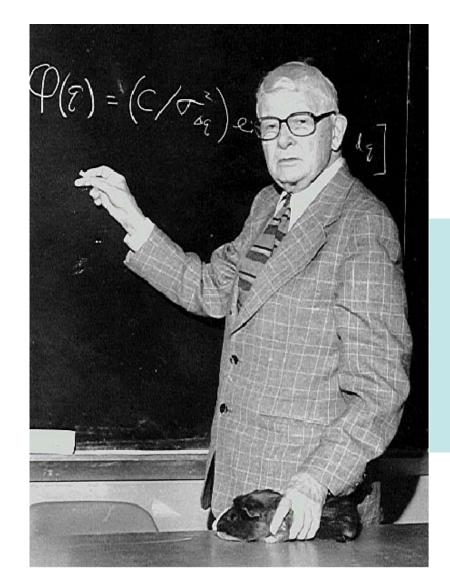
Agency Name: _____

Site Name:

ID #:_____

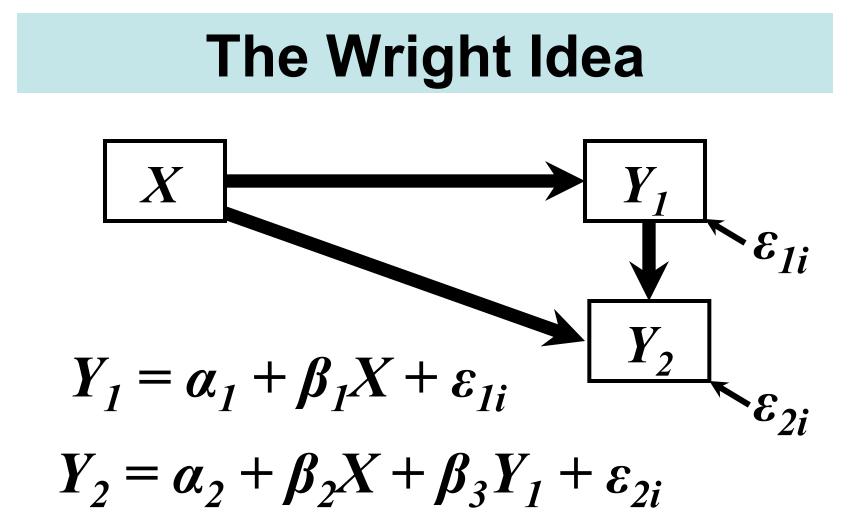
Date: ___/__/____

Please mark the box that best describes how you have been feeling in the last 24 hours.

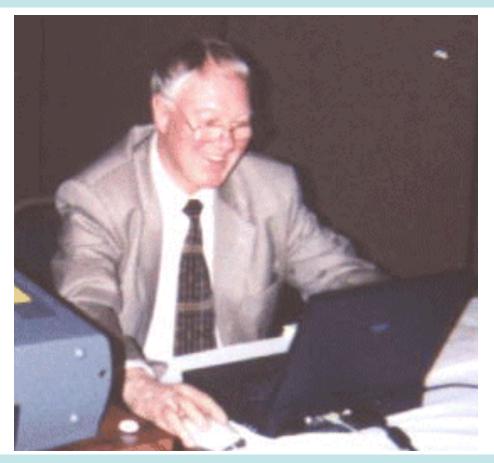

	None		Moderate						Severe	
1. Muscle cramps	0	D 1	D 2	3	4	D 5	D 6	D 7	۵s	D 9
2. Depressed or sad			D 2	3	4	D 5	G 6	D 7	8	D 9
3. Painful joints			D 2	3	4	D 5	D 6	D 7	B 8	90
4. Excessive yawning			D 2	3	4	D 5	6	D 7	B 8	D 9
5. Hot or cold flashes			D 2	3	4	D 5	D 6	D 7	B 8	D 9
6. Trouble getting to sleep			D 2	□3	4	D 5	D 6	D 7	8	۹۵
7. Sick to stomach			D 2	3	4	D 5	D 6	D 7	8	۹۵
8. Irritable			D 2	□3	•4	D 5	D 6	D 7	B 8	D 9
9. Runny nose			D 2	3	4	D 5	D 6	D 7	B 8	۹۵
10. Poor appetite			D 2	□3	•4	D 5	D 6	D 7	8	D 9
11. Weak knees	0		D 2	3	4	D 5	D 6	D 7	8	90
12. Excessive sneezing			D 2	□3	4	D 5	D 6	D 7	B 8	۹۵
13. Tense, jittery			D 2	3	4	D 5	D 6	D 7	8	۹۵
14. Watery eyes			D 2	3	4	D 5	D 6	D 7	B 8	D 9
15. Abdominal cramps			D 2	3	4	D 5	6	D 7	B 8	D 9
16. Fitful sleep	0		D 2	D 3	•4	D 5	D 6	07	8	D 9

Sample Characteristics

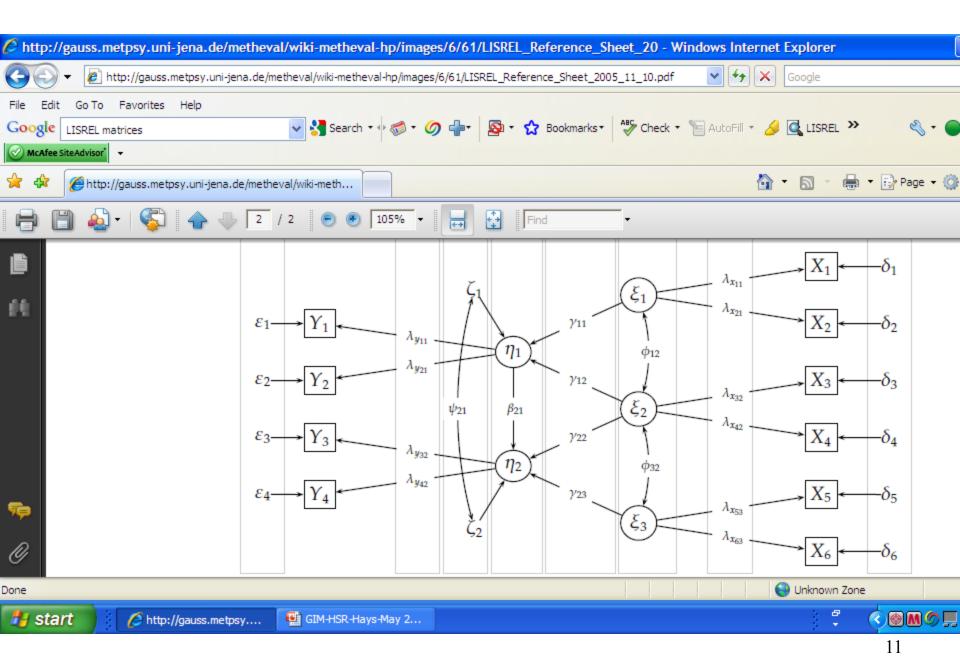
Mean Score				
	Variable	Mean	Range	
50	BMI	25	16- 46	
45	Pulse	76	47-131	
47	Resp. rate	17	1-31	
45	SBP	122	94-182	
38	Exam	1.2	0-8	
39	Conditions	2.2	0-10	
44	2(0/ E	.1.		
39				
	50 45 47 45 38 38 39	50 BMI 45 Pulse 47 Resp. rate 45 SBP 38 Exam 39 Conditions 44 Job Fem 39 Stream	50 BMI 25 45 Pulse 76 47 Resp. rate 17 45 SBP 122 38 Exam 1.2 39 Conditions 2.2	

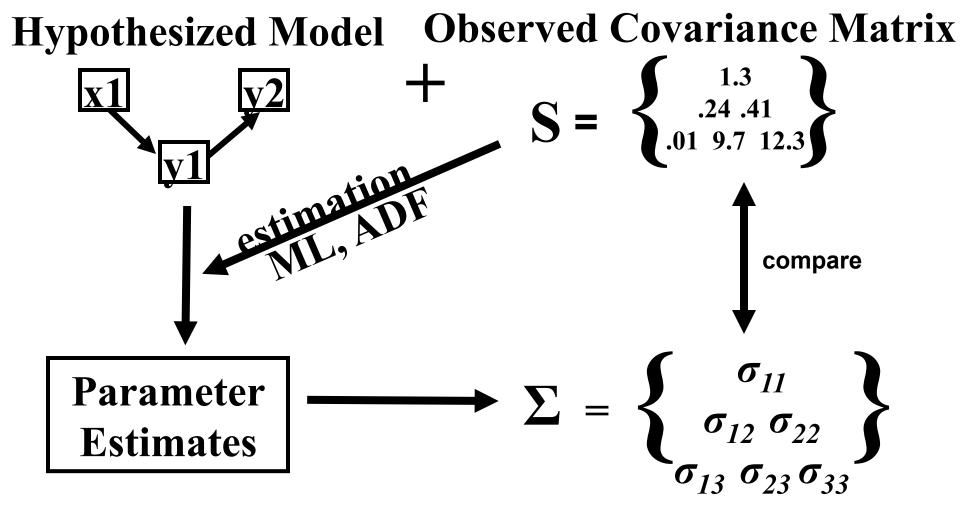

19% Hispanic

Origin of Structural Equation Modeling

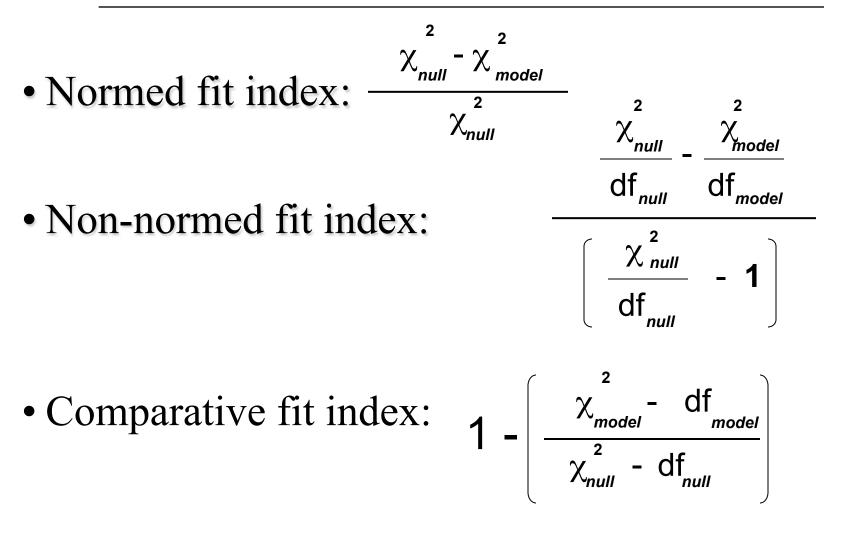


Sewell Wright 1897-1988


1st paper in: 1920


The LISREL Synthesis

Karl Jöreskog 1934 - present Key Synthesis paper- 1973



Evaluation of Model Fit

Implied Covariance Matrix

Fit Indices

Root Mean Square Error of Approximation (RMSEA)

 Lack of fit per degrees of freedom, controlling for sample size

$$-Q = (s - \sigma(\Theta))' W(s - \sigma(\Theta))$$

- SQR of (Q/df) - (1/(N - G))

• RMSEA < 0.06 are desirable

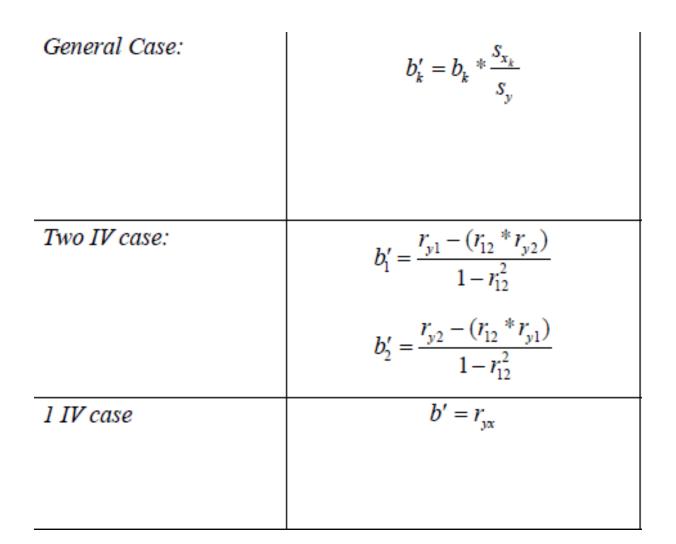
EQS 6.1 for Windows

Bentler, PM. (2006). <u>EQS 6 Structural</u> <u>Equations Program Manual</u>. Encino, CA: Multivariate Software, Inc.

\$300 with UCLA discount – Same as ACER Aspire One //TITLE

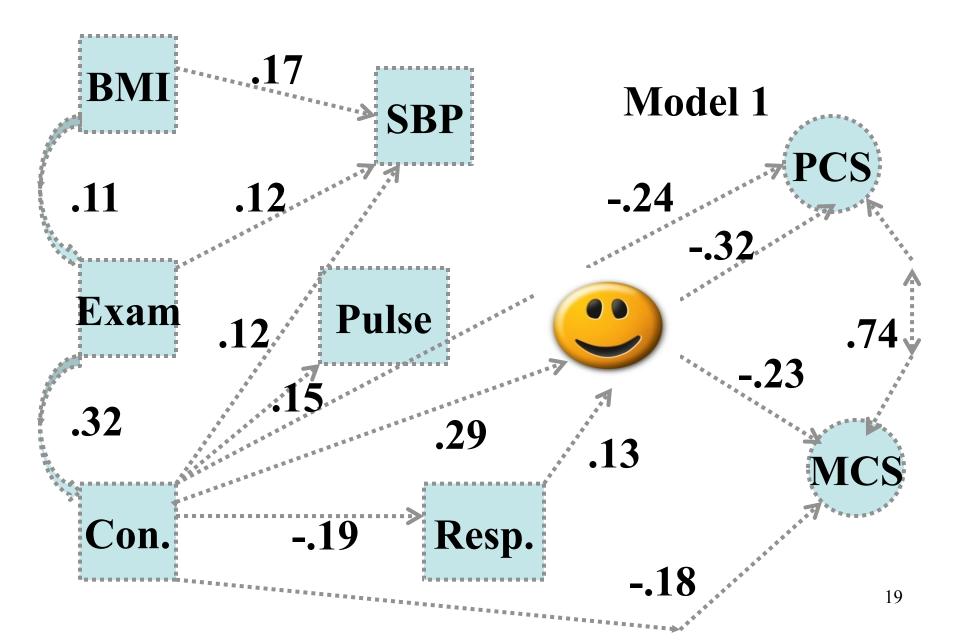
```
Heslin #3 May 1 2009
/SPECIFICATIONS
VARIABLES=18; CASES=327;
DATAFILE='c:\heslinout2.txt'; ANALYSIS=COVARIANCE;MATRIX=RAW;
METHOD=ML,ROBUST;
/LABELS
V1=BMI;V2=EXAM CT;V3=MEDHIST CT;V4=SBP;V5=PULSE;V6=RESP;V7=ARSW1;
V8=ARSW2;V9=ARSW3;V10=ARSW4;V11=PF T;V12=RP T;V13=BP T;V14=GH T;
V15=EM T;V16=RE T;V17=SF T;V18=EN T;
F1=PCS;F2=MCS;F3=ARSW;
/EQUATIONS
V11=1*F1 + E11;
V12=1*F1 + E12;
V13=1*F1 + E13;
V14=1*F1 + 1*F2 + E14;
V15=1*F2 + E15;
V16=1*F2 + E16;
V17=1*F2 + 1*F1 + E17;
V18=1*F2 + E18;
V7=1*F3 + E7;
V8=1*F3 + E8;
V9=1*F3 + E9;
V10=1*F3 + E10;
V6=1*V3 + E6;
V5=1*V3 + E5;
V4=1*V1 + 1*V2 + 1*V3 + E4;
```

```
F1=1*F3 + 1*V3 + 1.000 D1;
```


```
F2=1*F3 + 1*V3 + 1.000 D2;
```

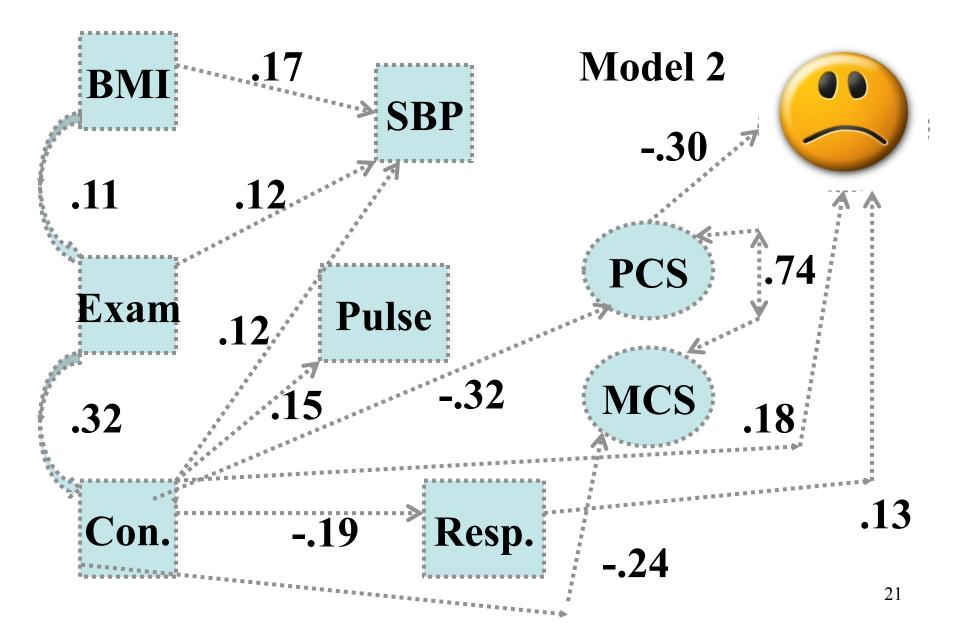
```
F3=1*V3 + 1*V6 + 1.000 D3;
```

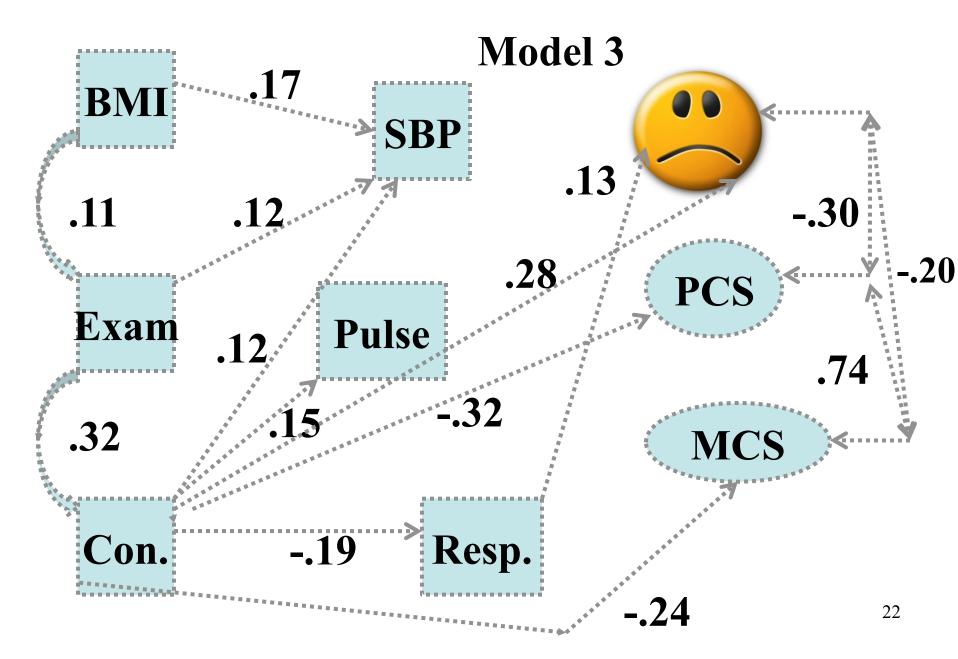
```
/VARIANCES
V1 TO V3=10*;E4 TO E18=5*;D1=1;D2=1;D3=1;
/COVARIANCES
V1,V2=4*;V2,V3=4*;D1,D2=1*;E17,E16=1*;E16,E12=1*;
/TECHNICAL
ITR=200;
/LMTEST
```


set=PVV,PFF,PVV,PEE,GFF,GFD,GFE;

Standardized Betas

18


 $\chi^2 = 264.81$ (df = 123); CFI = 0.945; RMSEA = 0.059


$171-48 = 123 \, dfs$

- 171 unique variances & covariances
 18 observed variables * (19/2) = 171
- 48 estimates in the model
 - 3 observed variable variances
 - 15 observed variable errors (uniqueness)
 - 2 correlations among observed variables
 - 2 correlations among uniqueness terms
 - 14 factor loadings
 - 11 structural paths
 - 1 correlation among residuals

 $\chi^2 = 243.87$ (df = 123); CFI = 0.953; RMSEA = 0.055

$\chi^2 = 265.50 \text{ (df} = 123); \text{ CFI} = 0.945; \text{ RMSEA} = 0.060$

Conclusions

- Stable
 - SBP ← BMI, Exam, Conditions
 - Pulse, Respiratory rate \leftarrow Conditions
 - ARSW ← Conditions, Respiratory rate
 - (Conditions has small indirect effect) - PCS, MCS \leftarrow Conditions
- Instable
 - PCS, MCS \leftarrow ARSW
 - ARSW ←PCS

Acknowledgment of Support

UCLA Resource Center for Minority Aging Research/Center for Health Improvement in Minority Elderly (RCMAR/CHIME), NIH/ NIA Grant Award Number P30AG021684. UCLA/DREW Project EXPORT, NCMHD, P20MD000148 and P20MD000182

Appendix: Identification

- Identification
 - "Every unmeasured variable in a structural model must have its scale determined. This can always be done by fixing a path from that variable to another variable at some known value (usually 1.0). An alternative method for determining the scale of an independent unmeasured variable is to fix its variance at some know value (usually 1.0)."

Appendix: Sample Size

• "The ratio of sample size to number of free parameters to be estimated may be able to go as low as 5:1 under normal and elliptical theory. Although there is little experience on which to base a recommendation, a ratio of at least 10:1 may be more appropriate for arbitrary distributions. These ratios needs to be larger to obtain trustworthy z-tests on the significance of parameters, and still larger to yield correct model evaluation chi-square probabilities."