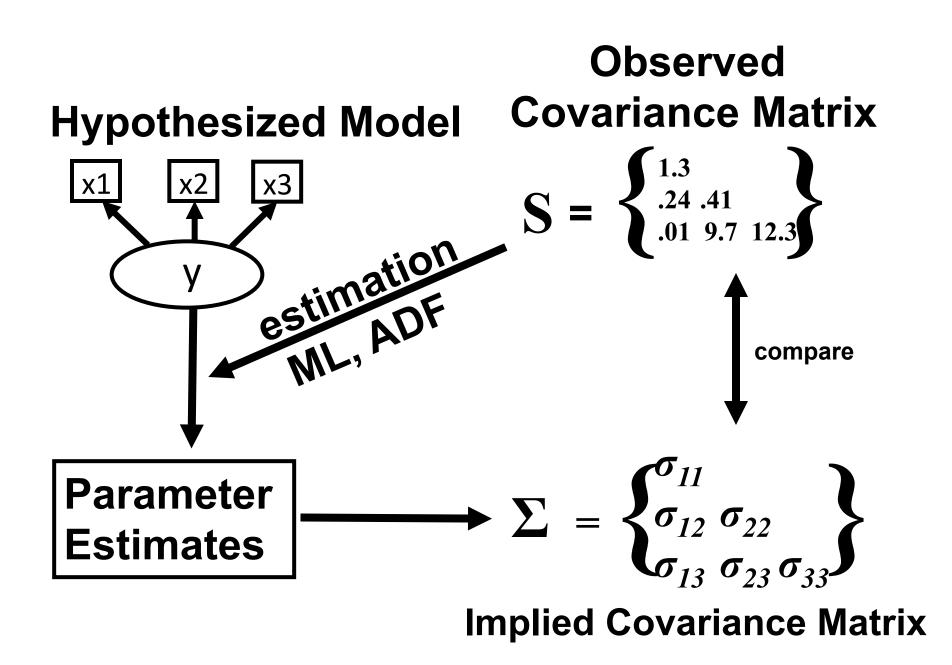

Evaluating IRT Assumptions

Ron D. Hays November 14, 2012 (10:30-10:50am) Geriatrics Society of America Pre-Conference Workshop on Patient-Reported Outcome Item Banks San Diego Convention Center (Room 14-A)

IRT Assumptions


- Dimensionality
 - Unidimensionality for typical models
- Local Independence
- Monotonicity
- Person fit

Hypothesized One-Factor Model

Sufficient Unidimensionality

- One-Factor Categorical Confirmatory Factor Analytic Model (e.g., using Mplus)
 - Polychoric correlations
 - Weighted least squares with adjustments for mean and variance
- Bifactor Model
 - General factor and group-specific factors

Fit Indices

2

- 2 χ_{null} - χ_{model} • Normed fit index: 2 2 χ_{null} $\chi_{_{null}}$ df_{null} $\frac{\chi_{null}}{df} - 1$ Non-normed fit index:
- Comparative fit index:

$$1 - \left(\frac{\chi_{model}^2 - df_{model}}{\chi_{null}^2 - df_{null}}\right)$$

2

df

Xmodel

Root Mean Square Error of Approximation (RMSEA)

 Lack of fit per degrees of freedom, controlling for sample size

$$-Q = (s - \sigma(\theta))' W(s - \sigma(\theta))$$

• RMSEA = SQRT ($\lambda^2 - df$)/SQRT (df (N - 1))

- RMSEA < <u>0.06</u> desirable
 - Standardized root mean residuals < <u>0.08</u>
 - Average absolute residual correlations < 0.10

Local Independence

- After controlling for dominant factor(s), item pairs should not be associated.
- Evaluated by looking at size of residual correlations from one-factor model
 - Look for residual correlations > 0.20
- Avoid asking the same item multiple times.
 - "I'm generally sad about my life."
 - "My life is generally sad."

Item	a	b1	b2	b3	b4
Global01	7.37 (na)	-1.98 (na)	-0.97 (na)	0.03 (na)	1.13 (na)
Global03	<u>7.65</u> (2.31)	-1.89 (-2.11)	-0.86 (-0.89)	0.15 (0.29)	1.20 (1.54)
Global06	1.86 (2.99)	-3.57 (-2.80)	-2.24 (-1.78)	-1.35 (-1.04)	-0.58 (-0.40)
Global07	1.13 (1.74)	-5.39 (-3.87)	-2.45 (-1.81)	-0.98 (-0.67)	1.18 (1.00)
Global08	1.35 (1.90)	-4.16 (-3.24)	-2.39 (-1.88)	-0.54 (-0.36)	1.31 (1.17)

Graded Response Model Parameters for Global Physical Health

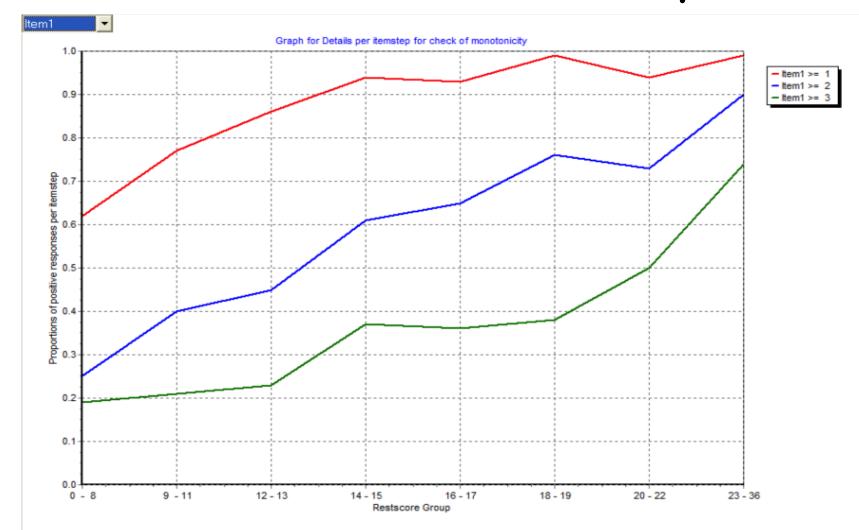
Note: Parameter estimates for 5-item scale are shown first, followed by estimates for 4item scale (in parentheses). na = not applicable

a = discrimination parameter; $b1 = 1^{st}$ threshold; $b2 = 2^{nd}$ threshold; $b3 = 3^{rd}$ threshold; $b4 = 4^{th}$ threshold

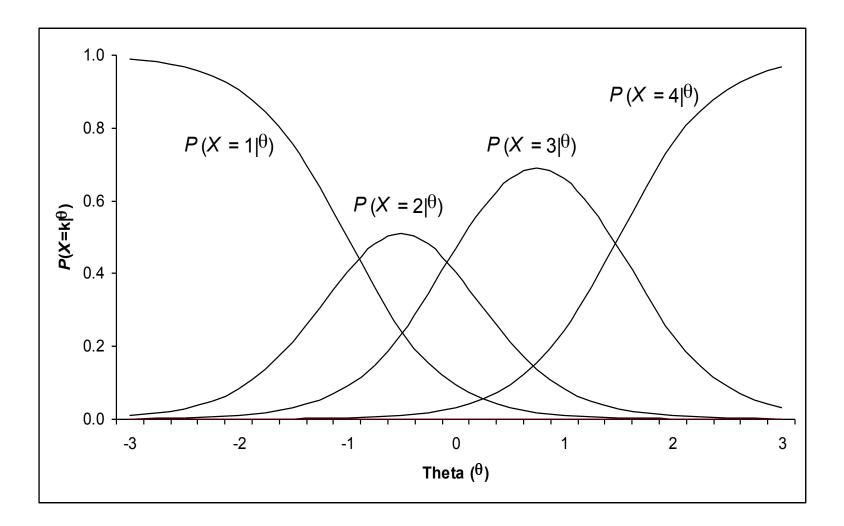
Global01: In general, would you say your health is ...?

Global03: In general, how would you rate your physical health?

Global06: To what extent are you able to carry out your everyday physical activities?


Global07: How would you rate your pain on average?

Global08: How would you rate your fatigue on average?


Monotonicity

- Probability of selecting a response category indicative of better health should increase as underlying health increases.
- Item response function graphs with
 - y-axis: proportion positive for item step
 - x-axis: raw scale score minus item score

Check of Monotonicity

Samejima's Graded Response Model (Category Response Curves)

IRT Model Fit

- Compare observed and expected response frequencies by item and response category
- Items that do not fit and less discriminating items identified and reviewed by content experts

Person Fit

- Large negative Z_L values indicate misfit.
 - one person who responded to 14 of the PROMIS physical functioning items had a $Z_L = -3.13$
 - For 13 items the person could do the activity (including running 5 miles) without any difficulty.
 - But this person reported a little difficulty being out of bed for most of the day.

Person Fit

Item misfit significantly associated with

- Less than high school education
- More chronic conditions
- Non-white
- Including response time in the model lead to significant associations for:
 - More chronic conditions
 - Longer response time
 - Younger age

Acknowledgment of Support

Ron D. Hays (drhays@ucla.edu) received support from the University of California, Los Angeles, Resource Center for Minority Aging Research (RCMAR)/ Center for Health Improvement in Minority Elderly (CHIME), under NIH/NIA Grant P30-AG021684. The content of this presentation does not necessarily represent the official or unofficial views of the NIA or the NIH.