Defining a Responder: Implementing the Patient-Reported Outcome (PRO) Guidance Recommendations

Lori McLeod,¹ Ron D. Hays,² Susan Martin,¹ and Sheri Fehnel¹

¹RTI Health Solutions
²UCLA Department of Medicine/Division of General Internal Medicine & Health Services Research and RAND

ISPOR 15th Annual International Meeting
Atlanta, Georgia
May 19, 2010
1:45 PM – 2:45 PM
Agenda

- Introductions
- Responder Overview from the PRO Guidance
- Minimal Important Difference
- Responder
- Cumulative Distribution Function
- Qualitative Methods for Interpretation
- Examples and Discussion
FDA PRO Guidance

- Draft FDA PRO Guidance: published February 2006
- Final FDA PRO Guidance: published December 2009
- Guidance developed by the SEALD group within the Office of New Drugs (OND) at FDA
- SEALD serves as an advisory group to all reviewing divisions
The Final FDA PRO guidance describes:

- How the FDA evaluates PRO instruments used as endpoints in clinical trials
- The FDA’s current thinking on how sponsors can develop and use study results measured by PRO instruments to support claims in approved product labeling
- How the FDA evaluates instruments for their usefulness in measuring and characterizing the benefit of medical product treatment

Draft Guidance

Detecting Group Change

Minimal Important Difference (MID)

“Amount of difference or change observed that would be interpreted as a treatment benefit.”
Draft FDA PRO Guidance, 2006, Glossary, p. 31

Detecting Individual Change

Responder

“Change in score that would be clear evidence that an individual patient experienced a treatment benefit.”
Draft FDA PRO Guidance, 2006, p. 17
Final Guidance

Detecting Group Change

Minimal Important Difference (MID)

Detecting Individual Change

Responder

“A score change in a measure, experienced by an individual over a predetermined time period that has been demonstrated in the target population to have a significant treatment benefit.”

Final FDA PRO Guidance, 2009, Glossary, p. 33
MID Versus Responder

• MID
 – Typically defined as the smallest difference that is considered clinically important or implies treatment benefit
 – Used as a benchmark for evaluating mean differences between treatments

• Responder
 – Typically larger than the MID
 – Used to categorize patients as having responded to treatment

• When effect sizes are small, the distribution of responses for treatment and placebo groups might be more informative than MID
Defining an MID: Common Approaches

MID

- Anchor-based
- Distribution-based
 - Statistical “Rules”
Defining an MID: Anchor-based Approaches

• Patient- or Physician-based judgment using “anchor”
 – Categorical rating of change between baseline and end-of-study
 – MID = Mean change score on the PRO for those choosing “a little better” on the anchor question

Since the start of the study, how would you describe the change (if any) in <<symptom X, severity of condition>>?

- Much better
- Moderately better
- A little better
- No change
- A little worse
- Moderately worse
- Much worse
Defining an MID: Statistical “Rules”

- Commonly used “rule of thumb”
 - 0.5 change per 7-category ordinal item

<table>
<thead>
<tr>
<th>Number of Items</th>
<th>Scale W</th>
<th>Scale X</th>
<th>Scale Y</th>
<th>Scale Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>MID Estimate</td>
<td>2.5</td>
<td>5</td>
<td>7.5</td>
<td>10</td>
</tr>
</tbody>
</table>

Juniper et al., 1994
Defining an MID: Distribution-Based

- Distribution-based methods categorize the size of a change on a PRO measure by considering the distribution of the scores themselves.
 - Change of 0.5*SD_{bl}
 - Effect size (ES)
 - Change of 0.2 ES = small response
 - Standard error of measurement (SEM) = \(\frac{SD_{bl}}{\sqrt{1 - r_{xx}}} \)

Note: SD_{bl} = standard deviation at baseline
r_{xx} = reliability
Interpretation of PRO Results

• Methods for responder definition in final guidance
 – Primary method
 • Anchor-based
 – Supportive method
 • Distribution-based

• Statistical significance of individual change

• Final guidance also describes an alternative approach to use of a single responder definition
 • Cumulative distribution function (CDF)

• FDA has also requested direct patient input (qualitative research)
Defining a Responder: Guidance-Recommended Method

- Anchor-based methods use a relevant measurement that is easier to interpret than scores on the PRO.
- For example:
 - Mean change scores on the PRO for patients who have a 50% reduction in Hamilton Depression (HAM-D) scores
 - Mean change scores on the PRO for patients reporting an improvement in a patient-reported global impression of change question

Since the start of the study, how would you describe the change (if any) in <<symptom X, severity of condition>>?

- Much better
- Moderately better
- A little better
- No change
- A little worse
- Moderately worse
- Much worse

Responder anchor

MID anchor
Defining a Responder: Additional Methods

- Distribution-based methods categorize the size of a change on a PRO measure by considering the distribution of the scores themselves.
 - Change of 0.5*SD\(_{bl}\)
 - Effect size (ES)
 - Change of 0.2 ES = small response
 - Change of 0.5 ES = medium response
 - Change of 0.8 ES = large response
 - Standard error of measurement (SEM) = \(SD_{bl} \times \sqrt{1 - r_{xx}}\)

Note: SD\(_{bl}\) = standard deviation at baseline
\(r_{xx}\) = reliability
SEM and Significance of Individual Change

- Standard Error of Measurement (SEM) noted as one type of “distribution-based” method
- SEM actually used to estimate 95% confidence interval around an individual’s score
 - Observed score +/- (1.96 * SEM)
- Significance of individual change should be used to define responders
Hays et al., 2000
Physical Functioning and Emotional Well-Being at Baseline for 54 Patients at UCLA-Center for East West Medicine

ESRD = end-stage renal disease; GERD = gastroesophageal reflux disease; MS = multiple sclerosis.

Hays et al., 2000
Change in SF-36 Scores Over Time

Effect Size

<table>
<thead>
<tr>
<th></th>
<th>PFI</th>
<th>Role-P</th>
<th>Pain</th>
<th>Gen H</th>
<th>Energy</th>
<th>Social</th>
<th>Role-E</th>
<th>EWB</th>
<th>PCS</th>
<th>MCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>Followup</td>
<td></td>
</tr>
</tbody>
</table>

Energy = Energy/Fatigue; EWB = Emotional Well-being; Gen H = General Health; MCS = Mental Component Summary; Pain = Bodily Pain; PCS = Physical Component Summary; PFI = Physical Functioning; Role-E = Role-Emotional; Role-P = Role-Physical; Social = Social Functioning
t-test for Within-Group Change

\[
\frac{X_d}{SD_d} \sqrt{\frac{1}{n}}
\]

\(X_d\) = is mean difference, \(SD_d\) = standard deviation of difference
Significance of Group Change (T-scores)

<table>
<thead>
<tr>
<th></th>
<th>Change</th>
<th>t-test</th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-10</td>
<td>1.7</td>
<td>2.38</td>
<td>.0208</td>
</tr>
<tr>
<td>RP-4</td>
<td>4.1</td>
<td>3.81</td>
<td>.0004</td>
</tr>
<tr>
<td>BP-2</td>
<td>3.6</td>
<td>2.59</td>
<td>.0125</td>
</tr>
<tr>
<td>GH-5</td>
<td>2.4</td>
<td>2.86</td>
<td>.0061</td>
</tr>
<tr>
<td>EN-4</td>
<td>5.1</td>
<td>4.33</td>
<td>.0001</td>
</tr>
<tr>
<td>SF-2</td>
<td>4.7</td>
<td>3.51</td>
<td>.0009</td>
</tr>
<tr>
<td>RE-3</td>
<td>1.5</td>
<td>0.96</td>
<td>.3400</td>
</tr>
<tr>
<td>EWB-5</td>
<td>4.3</td>
<td>3.20</td>
<td>.0023</td>
</tr>
<tr>
<td>PCS</td>
<td>2.8</td>
<td>3.23</td>
<td>.0021</td>
</tr>
<tr>
<td>MCS</td>
<td>3.9</td>
<td>2.82</td>
<td>.0067</td>
</tr>
</tbody>
</table>
Defining a Responder: Reliable Change Index (RCI)

\[
\frac{X_2 - X_1}{(\sqrt{2}) (SEM)}
\]

\[
SEM = SD_{bl} \times \sqrt{1 - r_{xx}}
\]

Note: \(SD_{bl}\) = standard deviation at baseline
\(r_{xx}\) = reliability
Amount of Change in Observed Score Needed for Significant Individual Change

<table>
<thead>
<tr>
<th></th>
<th>RCI</th>
<th>Effect size</th>
<th>Cronbach’s alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-10</td>
<td>8.4</td>
<td>0.67</td>
<td>0.94</td>
</tr>
<tr>
<td>RP-4</td>
<td>8.4</td>
<td>0.72</td>
<td>0.93</td>
</tr>
<tr>
<td>BP-2</td>
<td>10.4</td>
<td>1.01</td>
<td>0.87</td>
</tr>
<tr>
<td>GH-5</td>
<td>13.0</td>
<td>1.13</td>
<td>0.83</td>
</tr>
<tr>
<td>EN-4</td>
<td>12.8</td>
<td>1.33</td>
<td>0.77</td>
</tr>
<tr>
<td>SF-2</td>
<td>13.8</td>
<td>1.07</td>
<td>0.85</td>
</tr>
<tr>
<td>RE-3</td>
<td>9.7</td>
<td>0.71</td>
<td>0.94</td>
</tr>
<tr>
<td>EWB-5</td>
<td>13.4</td>
<td>1.26</td>
<td>0.79</td>
</tr>
<tr>
<td>PCS</td>
<td>7.1</td>
<td>0.62</td>
<td>0.94</td>
</tr>
<tr>
<td>MCS</td>
<td>9.7</td>
<td>0.73</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Significant Change for 54 Cases

<table>
<thead>
<tr>
<th></th>
<th>% Improving</th>
<th>% Declining</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF-10</td>
<td>13%</td>
<td>2%</td>
<td>+ 11%</td>
</tr>
<tr>
<td>RP-4</td>
<td>31%</td>
<td>2%</td>
<td>+ 29%</td>
</tr>
<tr>
<td>BP-2</td>
<td>22%</td>
<td>7%</td>
<td>+ 15%</td>
</tr>
<tr>
<td>GH-5</td>
<td>7%</td>
<td>0%</td>
<td>+ 7%</td>
</tr>
<tr>
<td>EN-4</td>
<td>9%</td>
<td>2%</td>
<td>+ 7%</td>
</tr>
<tr>
<td>SF-2</td>
<td>17%</td>
<td>4%</td>
<td>+ 13%</td>
</tr>
<tr>
<td>RE-3</td>
<td>15%</td>
<td>15%</td>
<td>0%</td>
</tr>
<tr>
<td>EWB-5</td>
<td>19%</td>
<td>4%</td>
<td>+ 15%</td>
</tr>
<tr>
<td>PCS</td>
<td>24%</td>
<td>7%</td>
<td>+ 17%</td>
</tr>
<tr>
<td>MCS</td>
<td>22%</td>
<td>11%</td>
<td>+ 11%</td>
</tr>
</tbody>
</table>
Response Interpretation Alternative

• “Alternatively, it is possible to present the entire
distribution of responses for treatment and control group,
avoiding the need to pick a (specific) responder criterion.
…A variety of responder definitions can be identified
along the cumulative distribution of response curve.”

Final FDA PRO Guidance, 2009, p. 25
(presenters’ addition)
Response Interpretation Alternative

- A CDF graphs the cumulative frequency of change in response across the PRO response scale separately by treatment group
 - “This display type may be preferable to attempting to provide categorical definitions of responders” or selecting one definition (presenters’ addition)

Positive change indicates improvement
Potential Analyses Using CDF

- Are there more responders in the treatment group?
 - Chi-square tests at specific points
- Are the curves overlapping?
 - Kolmogorov-Smirnov (KSa) test
 - Riffenburgh, 1999
 - Tests of area under the curve
 - Farrar et al., 2006
 - Confidence bands
 - Diaz-Ramos et al., 1996
- External to Final FDA PRO Guidance

*Positive change indicates improvement
Defining a Responder: Qualitative Approaches

• Thus far we have explored quantitative approaches at the group and individual level.

• Eliciting patient input on changes that would constitute an MID or a response can complement these approaches and has been requested by the FDA.
Case Example - Asthma

• The concept of symptom-free days (SFD) is commonly used as a meaningful measure of treatment efficacy.

• The amount of additional SFD that either would be considered an MID or would define a response from the patient’s perspective has not been established.
Qualitative Approach

• Identifying the patient cohort
 – Eligibility criteria should be similar to those required for entry into the clinical studies
 – Since probing on issues around response to medication, also required that patients had initiated a new treatment for their asthma in the last 6 months

Martin et al., 2010
Discussion Guide Development

• Important to establish the patient’s current disease severity
 – How many days in a typical month do you currently experience no asthma symptoms?

• Need to present the concepts of responder and MID in terms patients are able to relate to
 – What number of additional days in 1 month with no asthma symptoms would be an important improvement for you? (Responder)
 – Thinking about that question again, what would be the fewest number of additional days with no asthma symptoms that you would still see as improvement (MID)
Demographic Characteristics (n = 11)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
</tr>
<tr>
<td>Male</td>
<td>4</td>
</tr>
<tr>
<td>Age, average years (range)</td>
<td>44 (29-59)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
</tr>
<tr>
<td>White (1 white participant was of Hispanic origin)</td>
<td>7</td>
</tr>
<tr>
<td>African American</td>
<td>4</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>High school diploma or GED</td>
<td>4</td>
</tr>
<tr>
<td>Some college</td>
<td>3</td>
</tr>
<tr>
<td>College degree</td>
<td>4</td>
</tr>
</tbody>
</table>
Patient Estimates of SFD Response

- Frequently, patients’ first response was that they would want all of their days to be SFD days.
- However, this desire for a complete cure, was usually followed up by an amount of additional SFD that patient’s would consider desirable or an important improvement in their asthma.
- These additional SFD days ranged from 2 to 15 days, with the average being an increase of 25% SFD days in 1 month.
Patient Estimates of SFD MID

- Additional SFD that would still be considered an improvement to patients ranged from 1 to 6 days, with the average being an increase of 11% in SFD days in 1 month.
Qualitative Findings

• It is possible to elicit patient perceptions of MID and responder values to help with the interpretation of PRO results from clinical trials.

• Recruiting patients that have recently started a new medication may improve the ability of the patients to quantify a desired response.

• These approaches should be considered complementary to quantitative methods, which together can provide an accumulation of evidence for meaningful changes in PRO measures.
Example: Acne-QoL

- Acne-QoL contains 19 items designed to measure the impact of facial acne across four dimensions of patient quality of life.
- **Primary Method:** Patient-based judgment
 - Global patient rating of change in severity at study end
- **Secondary Methods:**
 - Physician-based judgment
 - Change in a categorical physician rating of acne severity between mid-study and end-of-study (2 categories of change required for responder)
 - Distribution-based
 - 0.5 SD at baseline
 - Reliable Change Index
- **Alternative Approach:**
 - CDF

McLeod et al., 2003
Example: Acne-QoL

- Patient-based anchor: “How would you rate your acne now compared to how it was before you started the study medication?”

 - Much improved
 - Somewhat improved
 - Not improved
 - Worse
 - Much worse

- Patients responding “somewhat improved” were defined as those who had experienced a response in acne appearance.
Example: Acne-QoL Score Change by Patient Global

![Graph showing changes in Acne-QoL score by patient global perception, role-emotional, role-social, and acne symptoms differences between visits.](image)
Example: Acne-QoL

• Secondary methods:
 – Physician-based anchor. The Facial Acne Global Assessment (FAGA) ratings categorized the patient’s acne as one of the following:
 - Absent
 - Minimal
 - Mild
 - Mild to moderate
 - Moderate
 - Marked
 - Severe
 • Physician FAGA ratings at mid-study were compared to their responses at end-of-study
 • Responder defined as the average subscale value for the patients that moved up two classifications
Example: Acne-QoL Responder Cutpoints

<table>
<thead>
<tr>
<th></th>
<th>Self-perception</th>
<th>Role-emotional</th>
<th>Role-social</th>
<th>Acne Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Patient global</td>
<td>5.2</td>
<td>4.7</td>
<td>3.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Secondary/Supportive 1</td>
<td>4.5</td>
<td>4.5</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Physician global</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary/Supportive 2</td>
<td>4.1</td>
<td>4.2</td>
<td>3.3</td>
<td>2.9</td>
</tr>
<tr>
<td>0.5 SD at Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary/Supportive 3</td>
<td>5.2</td>
<td>7.7</td>
<td>5.3</td>
<td>7.0</td>
</tr>
<tr>
<td>RCI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Acne-QoL - CDF for Self-perception
Summary

- Primary method: Based on a relevant anchor
 - How to select an appropriate anchor?
 - “The anchors chosen should be easier to interpret than the PRO measure itself” (Final FDA PRO Guidance, 2009)
 - “The external anchor chosen must itself be a valid measure of clinical change” (Eurich et al., 2006)
• If there is no appropriate anchor?
 – Include one next time!
 – “Distribution-based methods for determining clinical significance of particular score changes should be considered as supportive and are not appropriate as the sole basis for determining a responder definition” (Final FDA PRO Guidance, 2009)
 – “In actuality, only anchor-based methods estimate whether group change is big enough to be regarded as minimally or clinically important. The so-called distribution-based indices are simply a way of expressing the observed change in a standardized metric” (Hays et al., 2005)
 – CDF does not require a specified anchor and can be used to assess differences in treatment groups across a relevant range of change scores
Questions?

• Martin S, Stanford R, Dale P and Fehnel S. What represents a meaningful improvement in SFD and RFD? The patient’s perspective - Submitted to the 2010 European Respiratory Society Meeting

• T-test of mean change at week 24

Figure 1. Time-course of the Change from Baseline in ADAS-cog Score for Patients Completing 24 Weeks of Treatment.
• CDF showing separation between treatment and placebo for multiple responder cutpoints

Figure 2. Cumulative Percentage of Patients Completing 24 Weeks of Double-blind Treatment with Specified Changes from Baseline ADAS-cog Scores. The Percentages of Randomized Patients who Completed the Study were: Placebo 80%, 5 mg/day 85% and 10 mg/day 68%.
Pregabalin Label

![Graph showing percent improvement in pain from baseline for different treatment groups.](image)
Lori McLeod, PhD
(919) 541-6741
lmcleod@rti.org

Ron D. Hays, PhD
(310) 794-2294
drhays@ucla.edu

Susan Martin, MSPH
(734) 213-5469
smartin@rti.org

Sheri Fehnel, PhD
(919) 541-7454
sfehnel@rti.org