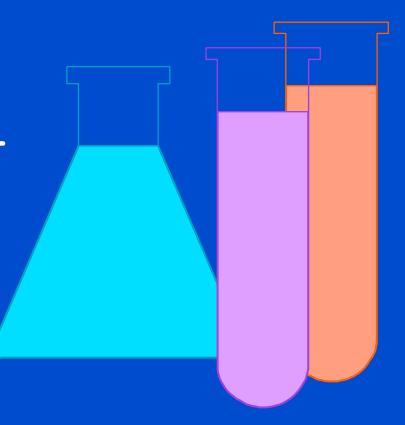
Final Session of Summer: Psychometric Evaluation

Ron D. Hays, Ph.D. (hays@rand.org)

August 23, 2002 (9:30-11:30 am)

Four Types of Data Collection Errors

- Coverage Error
 Does each person in population have an equal chance of selection?
- Sampling Error
 Are only some members of the population sampled?
- Nonresponse Error
 Do people in the sample who respond differ from those who do not?
- Measurement Error
 Are inaccurate answers given to survey questions?


What's a Good Measure?

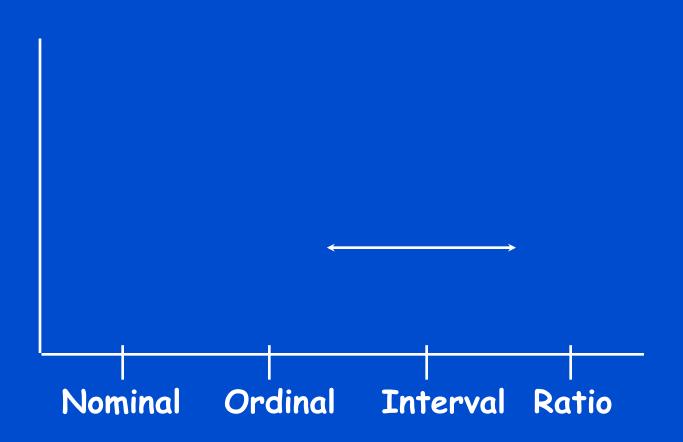
 Same person gets same score (reliability)

 Different people get different scores (validity)

 People get scores you expect (validity)

 It is practical to use (feasibility)

How Are Good Measures Developed?


- · Review literature
- Expert input (patients and clinicians)
- · Define constructs you are interested in
- · Draft items (item generation)
- · Pretest
 - Cognitive interviews
 - Field and pilot testing
- Revise and test again
- Translate/harmonize across languages

Scales of Measurement and Their Properties

Property of Numbers

Type of Scale	Rank Order	Equal Interval	Absolute 0
Nominal	No	No	No
Ordinal	Yes	No	No
Interval	Yes	Yes	No
Ratio	Yes	Yes	Yes

Measurement Range for Health Outcome Measures

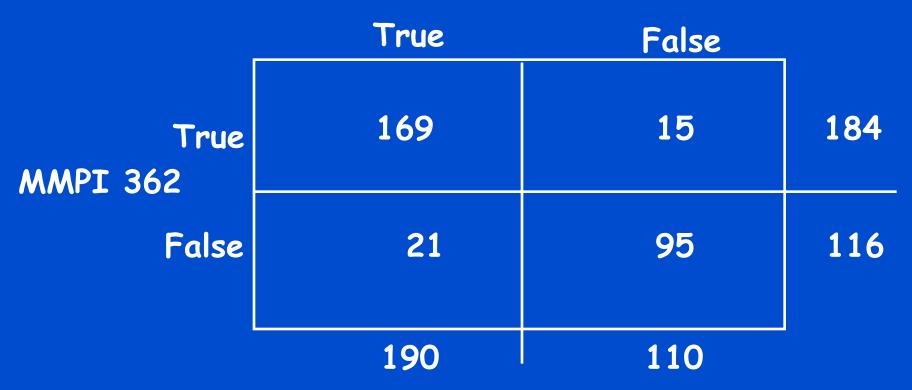
Indicators of Acceptability

- Response rate
- Administration time
- · Missing data (item, scale)

Variability

- · All scale levels are represented
- · Distribution approximates bell-shaped "normal"

Measurement Error


```
observed = true + systematic + random score error (bias)
```

Flavors of Reliability

- Inter-rater (rater)
- · Equivalent forms (forms)
- Internal consistency (items)
- Test-retest (administrations)

Test-retest Reliability of MMPI 317-362 r = 0.75

MMPI 317

I am more sensitive than most other people.

Kappa Coefficient of Agreement (Corrects for Chance)

- · Kappa can only reach 1.0 if the marginal distributions are equal
- Adjusted kappa divides kappa by the maximum possible given the marginals

Example of Computing KAPPA

		Rater A					Row
		1	2	3	4	5	Sum
	1	1	1				2
	2		2				2
Rater B	3			2			2
	4				2		2
	5					2	2
Column S	um	1	3	2	2	2	10

Example of Computing KAPPA (Continued)

$$P_{c} = \frac{(1 \times 2) + (3 \times 2) + (2 \times 2) + (2 \times 2) + (2 \times 2)}{(10 \times 10)}$$

$$P_{obs.} = \frac{9}{10} = 0.90$$

$$C = \frac{0.90 - 0.20}{1 - 0.20} = 0.87$$

= 0.20

Guidelines for Interpreting Kappa

Conclusion	Kappa	Conclusion	Kappa
Poor	< .40	Poor	< 0.0 ⋅

Fleiss (1981) Landis and Koch (1977)

Ratings of Height of Houseplants

Plan	t	Baseline Height	Follow-up Height	Experimental Condition
A1	D 1	120	121	
	R1 R2	120 118	121 120	1
A2				
	R1 R2	084 096	085 088	2
B1				
	R1 R2	107 105	108 104	2
00	KZ	105	104	
B2	R1	094	100	1
	R2	097	104	
<i>C</i> 1	R1	085	088	2
	R2	091	096	

Ratings of Height of Houseplants (Cont.)

Plan	t	Baseline Height	Follow-up Height	Experimental Condition
C2				
	R1	079	086	1
	R2	078	092	
D1		070	074	
	R1 R2	070 072	076 080	1
	NL	0/2	000	
D2	D1	OFA	054	•
	R1 R2	054 056	056 060	2
E1	R1	085	101	1
	R2	097	108	
ГО				
E 2	R1	090	084	2
	R2	092	096	
E2	R1 R2	090 092	084 096	2

Reliability of Baseline Houseplant Ratings

Ratings of Height of Plants: 10 plants, 2 raters

Baseline Results

Source	DF	SS	MS	F
Plants	9	5658	628.667	35.52
Within	10	177	17.700	
Raters	1	57.8	57.800	
Raters x Plants	9	119.2	13.244	
otal	19	5835		

Sources of Variance in Baseline Houseplant Height

Source	dfs	MS	
Plants (N)	9	628.67	(BMS)
Within	10	17.70	(WMS)
Raters (K)	1	57.80	(JMS)
Raters x Plants	9	13.24	(EMS)
Total	19		

Intraclass Correlation and Reliability

Model	Reliability	Intraclass Correlation
One-Way	MS _{BMS} - MS _{WMS}	MS _{BMS} - MS _{WMS} MS _{BMS} + (K-1)MS _{WMS}
Two-Way Fixed	MS BMS - MSEMS MS BMS	MS BMS - MS EMS MS EMS + (K-1)MS EMS
Two-Way Random	N(MS BMS - MS) EMS	MS _{BMS} - MS _{EMS}
Kandom	NMS +MS - MS EMS	$MS_{BMS} + (K-1)MS_{EMS} + K(MS_{JMS} - MS_{EMS})/N$

Summary of Reliability of Plant Ratings

and the state of the				
	Baselir	ne e	Follow-u	p
	R _{TT}	R _{II}	R _{TT}	R _{II}
One-Way Anova	0.97		0.97	0.94
Two-Way Random Ef	fects0.97	0.95	0.97	0.94
Two-Way Fixed Effe	cts 0.98	0.96	0.98	0.97
Source	Label	Bas	eline MS	
Plants	BMS	628	.667	
Within	WMS	17.70	0	
Raters	JMS	57 .	800	
Raters X Plants	EMS	13.	244	
ICC (1,1) = BMS - W/BMS + (K	AS - 1) * WMS			
ICC (2,1) = BMS - EMB BMS + (K	s - 1) * EMS	+ K(JMS	- EMS)/n	
ICC (3,1) = BMS - EM	S			

Cronbach's Alpha

Source	df	55	MS
Respondents (BM Items (JMS) Resp. x Items (E		11.6 0.1 4.4	2.9 0.1 1.1
Total	9	16.1	

Alpha by Number of Items and Inter-item Correlations

alpha_{st} =
$$\frac{K \overline{r}}{1 + (K - 1) \overline{r}}$$

K = number of items in scale

Alpha for Different Numbers of Items and Homogeneity

Average Inter-item Correlation (\bar{r})

Number of Items	.0	.2	.4	.6	.8	1.0
2	.000	.333	.572	.750	.889	1.000
4	.000	.500	.727	.857	.941	1.000
6	.000	.600	.800	.900	.960	1.000
8	.000	.666	.842	.924	.970	1.000

Number of Items and Reliability for Three Versions of the Mental Health Inventory (MHI)

Measure		Completion time (min.)	Reliability
MHI-32	32	5-8	.98
MHI-18	18	3-5	.96
MHI-5	5	1 or less	.90

Data from McHorney et al. 1992

Spearman-Brown Prophecy Formula

alpha
$$y = \left(\frac{N \cdot \text{alpha}_{x}}{1 + (N - 1) \cdot \text{alpha}_{x}}\right)$$

N = how much longer scale y is than scale x

Reliability Minimum Standards

For Group Comparisons
-0.70 or above

For Individual Assessment
-0.90 or higher

Reliability of a Composite Score

Mosier =
$$1 - \frac{\Sigma(\mathbf{w}_j^2)(\mathbf{S}_j^2) - \Sigma(\mathbf{w}_j^2)(\mathbf{S}_j^2)(\alpha_j)}{\Sigma(\mathbf{w}_j^2)(\mathbf{S}_j^2) + 2\Sigma(\mathbf{w}_j)(\mathbf{w}_k)(\mathbf{S}_j)(\mathbf{S}_k)(\mathbf{r}_{jk})}$$

w_i = weight given to component J

 \mathbf{w}_{κ} = weight given to component K

S_i = standard deviation of J

 α_j = reliability of J

r_{iK} = correlation between J and K

Hypothetical Multitrait/Multi-Item Correlation Matrix

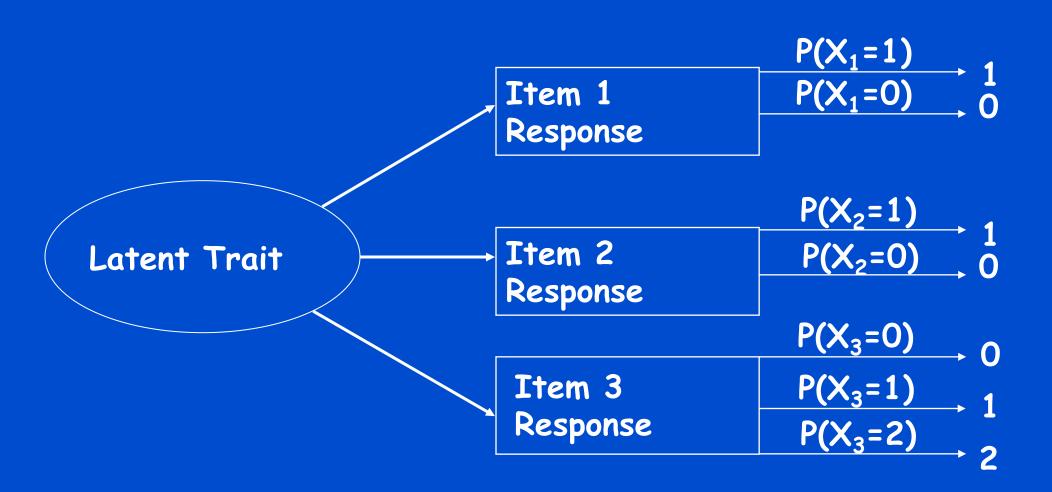
Trait #1		Trait #2	Trait #3	
Item #1	0.80*	0.20	0.20	
Item #2	0.80*	0.20	0.20	
Item #3	0.80*	0.20	0.20	
Item #4	0.20	0.80*	0.20	
Item #5	0.20	0.80*	0.20	
Item #6	0.20	0.80*	0.20	
Item #7	0.20	0.20	0.80*	
Item #8	0.20	0.20	0.80*	
Item #9	0.20	0.20	0.80*	

^{*}Item-scale correlation, corrected for overlap.

Multitrait/Multi-Item Correlation Matrix for Patient Satisfaction Ratings

	Technical	Interpersonal	Communication	Financial
Technical 1 2 3 4 5	0.66*	0.63†	0.67†	0.28
	0.55*	0.54†	0.50†	0.25
	0.48*	0.41	0.44†	0.26
	0.59*	0.53	0.56†	0.26
	0.55*	0.60†	0.56†	0.16
6 Interpersonal 1 2 3 4 5 6	0.59*	0.58†	0.57†	0.23
	0.58	0.68*	0.63†	0.24
	0.59†	0.58*	0.61†	0.18
	0.62†	0.65*	0.67†	0.19
	0.53†	0.57*	0.60†	0.32
	0.54	0.62*	0.58†	0.18
	0.48†	0.48*	0.46†	0.24

Note - Standard error of correlation is 0.03. Technical = satisfaction with technical quality. Interpersonal = satisfaction with the interpersonal aspects. Communication = satisfaction with communication. Financial = satisfaction with financial arrangements. *Item-scale correlations for hypothesized scales (corrected for item overlap). †Correlation within two standard errors of the correlation of the item with its hypothesized scale.


IRT

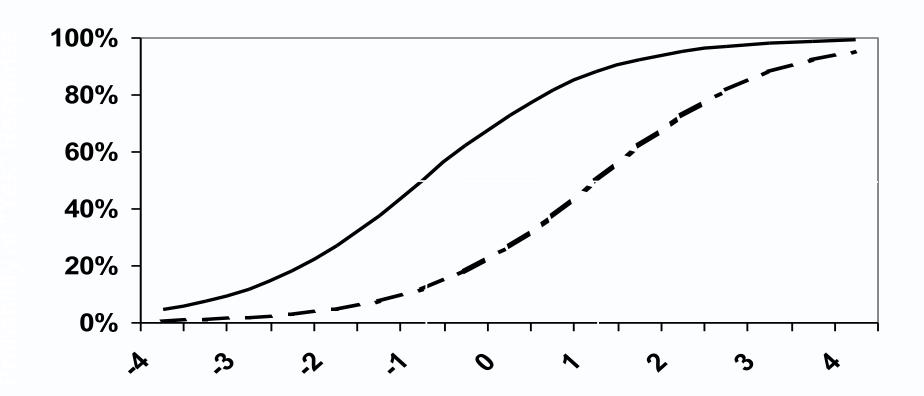
What are IRT Models?

Mathematical equations that relate observed survey responses to a persons location on an unobservable latent trait (i.e., intelligence, patient satisfaction).

Latent Trait and Item Responses

Types of IRT Models

- Unidimensional and multidimensional
- Dichotomous and polytomous
- Parameterization
 - One parameter: difficulty (location)
 - Two Parameter: difficulty and slope (discrimination)
 - Three Parameters: difficulty, slope, and guessing


1-Parameter Logistic Model for (Dichotomous Outcomes)

$$P_i(\Theta) = \frac{e^{(\Theta - b_i)}}{1 + e^{(\Theta - b_i)}}$$

 $P_i(\Theta)$ Probability that a randomly selected respondent with ability Θ (trait level) answers item i correctly.

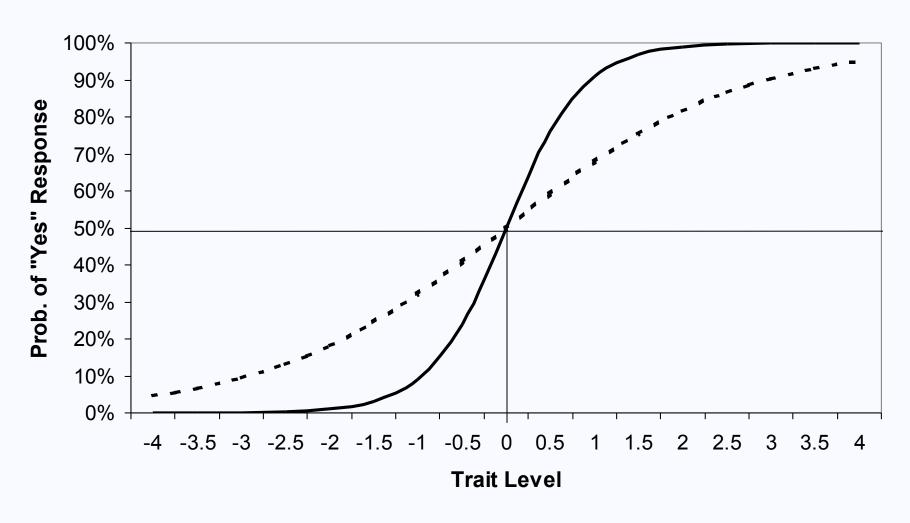
b_i Item i difficulty.

Item Characteristic Curves (1-Parameter Model)

——— Item 1 (Difficulty = -1) — - - Item 3 (Difficulty = 1)

2-Parameter Logistic Model (Dichotomous Outcomes)

$$P_i(\Theta) = \frac{e^{Da_i(\Theta - b_i)}}{1 + e^{Da_i(\Theta - b_i)}}$$

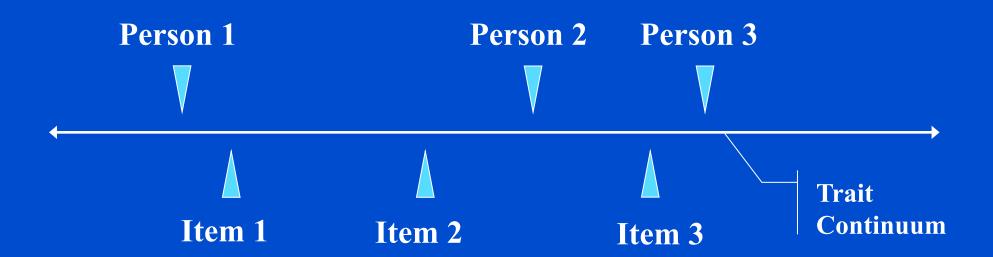

 $P_i(\Theta)$ Probability that a randomly selected respondent with ability Θ (trait level) answers item i correctly.

b_i Item i difficulty.

a_i Item i slope.

D Scaling constant.

Item Characteristic Curves (2-Parameter Model)



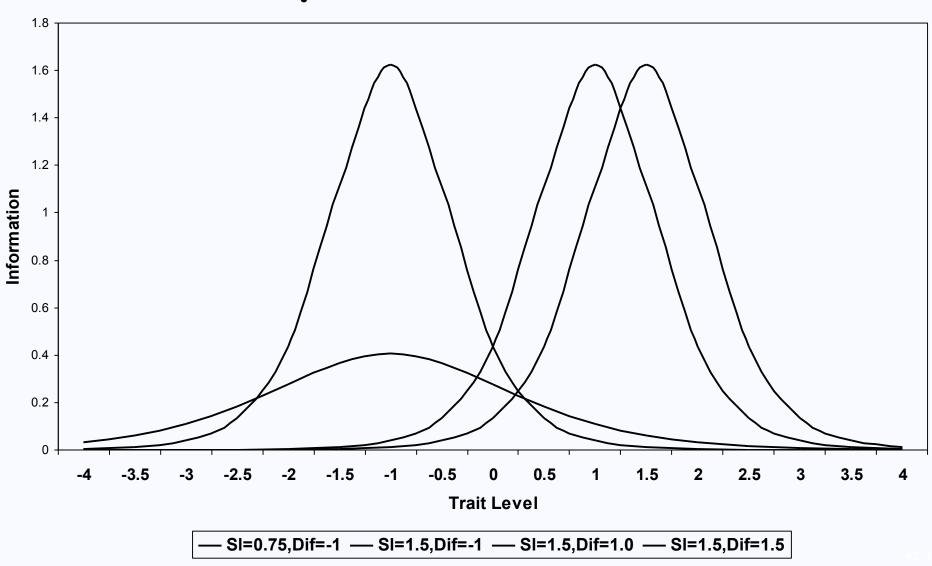
--- Item 1 (Slope = 2.5) - - - Item 2 (Slope = 0.75)

IRT Model Assumptions

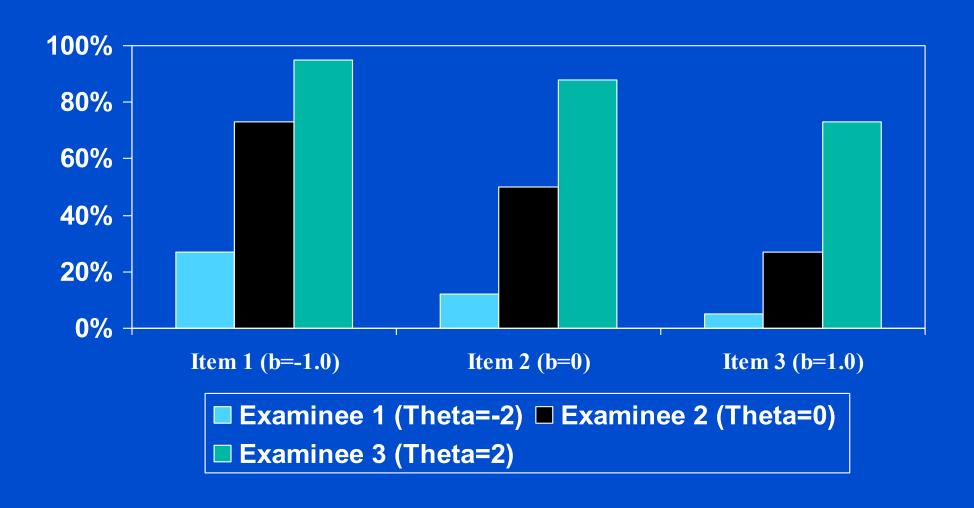
- Unidimensionality
 - -One construct measured by items in scale.
- Local Independence
 - -Items uncorrelated when latent trait(s) have been controlled for.

Item Responses and Trait Levels

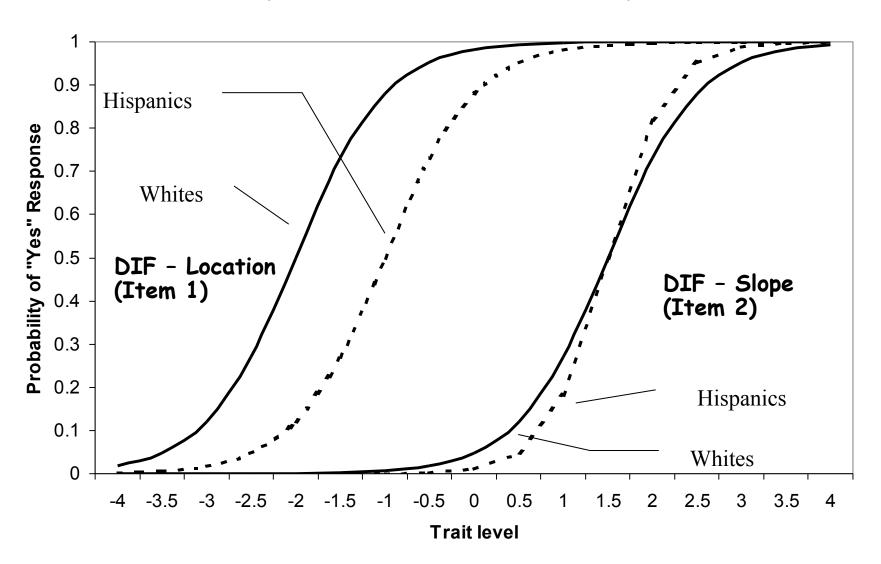
Information Conditional on Trait Level


 Item information proportional to inverse of standard error:

$$SE(\Theta) = \frac{1}{\sqrt{I(\Theta)}}$$


 Scale/Test information is the sum over item information:

$$I(\Theta) = \sum_{i=1}^{n} I_i(\Theta)$$


Item Information (2-parameter model)

Linking Item Content to Trait Estimates

Dichotomous Items Showing DIF (2-Parameter Model)

Forms of Validity

- · Content
- · Criterion
- · Construct Validity

Construct Validity

- Does measure relate to other measures in ways consistent with hypotheses?
- Responsiveness to change

Relative Validity Analyses

- · Form of "known groups" validity
- Relative sensitivity of measure to important clinical difference
- · One-way between group ANOVA

Relative Validity Example

Severity of Heart Disease

	None	Mild	Severe	F-ratio	Relative Validity	
Scale #1	87	90	91	2		
Scale #2	74	78	88	10	5	
Scale #3	<u>77</u>	87	95	20	10	

Responsiveness to Change and Minimally Important Difference

 HRQOL measures should be responsive to interventions that changes HRQOL

- Evaluating responsiveness requires assessment of HRQOL
 - pre-post intervention of known efficacy
 - at two times in tandem with gold standard

Two Essential Elements

- · External indicator of change (Anchors)
 - -mean change in HRQOL scores among people who have a "minimal" change in HRQOL.
- · Amount of HRQOL change

External Indicator of Change (A)

Overall has there been any change in your asthma since the beginning of the study?

Much improved; Moderately improved; Minimally improved

No change

Much worse; Moderately worse; Minimally worse

External Indicator of Change (B)

Rate your overall condition. This rating should encompass factors such as social activities, performance at work or school, seizures, alertness, and functional capacity; that is, your overall quality of life.

7 response categories; ranging from <u>no</u> <u>impairment</u> to <u>extremely severe</u> <u>impairment</u>

External Indicator of Change (C)

- "changed" group = seizure free (100% reduction in seizure frequency)
- "unchanged" group = < 50% change in seizure frequency

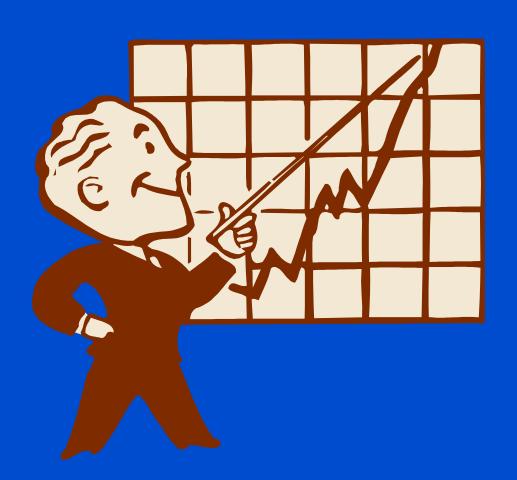
Responsiveness Indices

- (1) Effect size (ES) = D/SD
- (2) Standardized Response Mean (SRM) = D/SD[†]
- (3) Guyatt responsiveness statistic (RS) = D/SD^{\dagger}

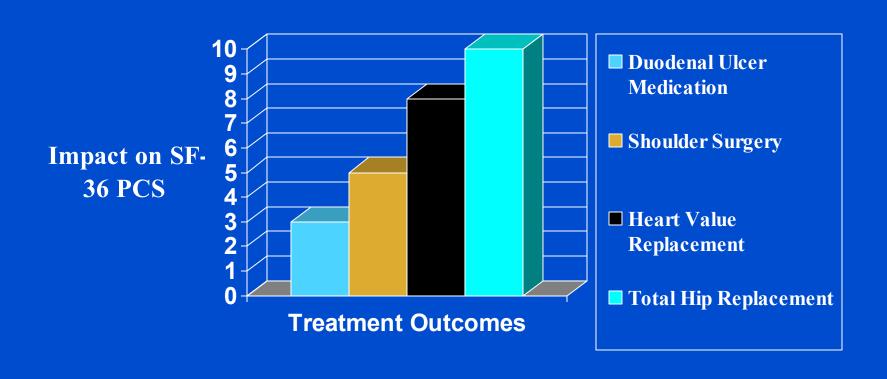
```
D = raw score change in "changed" group;

SD = baseline SD;

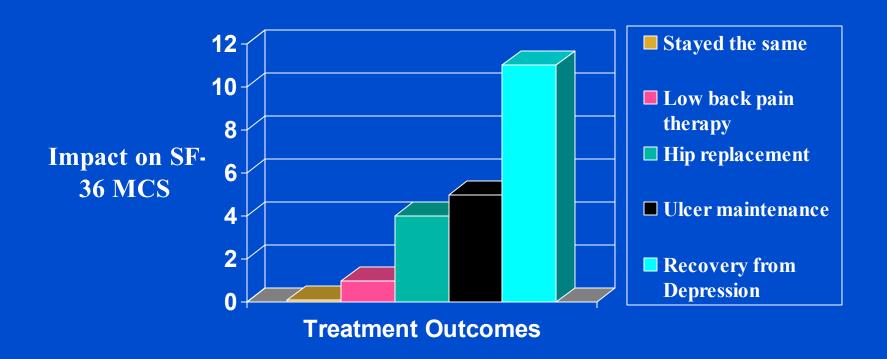
SD<sup>†</sup> = SD of D;


SD<sup>‡</sup> = SD of D among "unchanged"
```

Effect Size Benchmarks


· Small: 0.20->0.49

Moderate: 0.50->0.79


· Large: 0.80 or above

Treatment Impact on PCS

Treatment Impact on MCS

Treatment Impact on SF-12 MCS

- · Prozac for depressed (3 points)
- · Erythropoetin for dialysis patients (5 points)

