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Today's Topics

Review of adiabatic pulses
Small tip approximation
Excitation k-space interpretation
2D EPI pulse design

MATLAB exercise




Summary for Adiabatic Pulses



Adiabatic Pulses Non-adiabatic Pulses
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= Amplitude and frequency = Amplitude modulation with
modulation constant carrier frequency
= Long duration (8-12 ms) = Short duration (0.3-1 ms)

= High B1 amplitude (>12 uT) « Low B1 amplitude

= Generally NOT muilti- = Generally multi-purpose
purpose (inversion pulses (inversion pulses can be
cannot be used for used for refocusing, etc.)

refocusing, etc.)



Bloch Equation
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Non-selective vs. Selective Excitation




$%% User inputs:

mu = 5; $ Phase modulation parameter [dimensionless]
betal = 672; $ Frequency modulation parameter [rad/s]
pulseWidth = 10.24; $ RF pulse duration [ms]

A0 = 0.12; $ Peak Bl amplitude [Gauss].
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nSamples = 512; $ number of samples in the RF pulse

dt = pulseWidth/nSamples/1000; % time step, [seconds]

tim sech = linspace(-pulseWidth/2,pulseWidth/2,nSamples)./1000';
$ time scale to calculate the RF waveforms in seconds.

$ Amplitude modulation function Bl(t):
Bl = A0.* sech(betal.*tim sech);

$ Carrier frequency modulation function w(t):
w = -mu.*betal.*tanh(betal.*tim sech)./(2*pi);
$ The 2*PI scaling factor at the end converts the unit from rad/s to Hz

$ Phase modulation function phi(t):
phi = mu .* log(sech(betal.*tim sech));

¥ Put together complex RF pulse waveform:
rf pulse = Bl .* exp(li.*phi);

$ Generate a time scale for the Bloch simulation:
tim bloch = [0:(nSamples-1)]*dt;




Small Tip Approximation



Bloch Equation (at on-resonance)
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Small Tip Approximation
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M, ~ My small tip-angle approximation
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First order linear differential equation. Easily solved.
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Solving a first order linear differential equation:
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(See the note for complete derivation)
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Small Tip Approximation
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- For small tip angles, “the slice or frequency profile is
well approximated by the Fourier transform of B1(t)”

- The approximation works surprisingly well even for
flip angles up to 90°



What is Multi-Dimensional Excitation?

Multi-dimensional excitation occurs when using
multi-dimensional RF pulses in MRI/NMR, i.e.
2D or 3D RF pulses



1D vs. N-D RF Pulses Requires: o

- Specific B1 waveform

~J\ A~ y Z | - Specific gradient
al ! 1 | waveforms
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1D pulses are selective along 1 dimension, typically the
slice select dimension

2D pulses are selective along 2 dimensions

* S0, a 2D pulse would select a long cylinder instead of a slice
* The shape of the cross section depends on the 2D RF pulse




Excitation k-space
Interpretation



Small Tip Approximation
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Small Tip Approximation
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One-Dimensional Example
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One-Dimensional Example

® This gives magnetization at t = to, the end of
the pulse

® | ooks like you scan across k-space, then
return to origin



Evolution of Magnetization
During Pulse

RF pulse goes in at DC (k; = 0)

Gradients move previously applied
weighting around

Think of the RF as “writing” an analog
waveform in k-space

Same idea applies to reception




Other 1D Examples




Other 1D Examples




Other 1D Examples




Multiple Excitations

® Most acquisition methods require several
repetitions to make an image

- e.g., 128 phase encodes
e Data is combined to reconstruct an image

® Same idea works for excitation!



Simple 1D Example
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Sum the data from two acquisitions

Same profile as slice selective pulse, but zero echo time




2D EPI Pulse Design



Designing EPI k-space
Trajectory

- Ideally, an EPI trajectory scans a 2D raster in k-
space

Resolution? / FOV?




Designing EPI k-space

Trajectory
: T'BW TBW
- Resolution: _ Ay =
Az zkx,mam ! 2ky,maa:
- FOV = 1/Aky
2 max
AV By,
L—1

- Ghost FOV = FOV/2
e Eddy currents & delays produce this




Designing EPI k-space
Trajectory

- Refocusing gradients
e Returns to origin at the end of pulse




Designing EPI Gradients

- Designing readout lobes and blips
e Flat-top only design

 RF only played during flat part (simpler)




To the board ...



Designing EPI Gradients

- Easy to get k-space coverage in ky

- Hard to get k-space coverage in Kx

- We can get more k-space coverage by
 making blips narrower

e playing RF during part of ramps



Blipped EPI

- Rectilinear scan of k-space
- Most efficient EPI trajectory
- Common choice for spatial pulses

- Sensitive to eddy currents and gradient delays
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Gradient Waveforms
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k-Space Trajectory



Continuous EPI

- Non-uniform k-space coverage
- Need to oversample to avoid side lobes
e | ess efficient than blipped
- Sensitive to eddy currents and gradient delays

e Only choice for spectral-spatial pulses
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Gradient Waveforms

k-Space Trajectory



Flyback EPI

- Can be blipped or continuous

- Less efficient since retraces not used (depends
on gradient system)

- Almost completely immune to eddy currents and
gradient delays



‘ Flyback EPI \
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Designing 2D EPI Spatial
Pulses

- Two major options
e General approach, same as 2D spiral pulses
e Seperable, product design (easier)
- General approach
 Choose EPI k-space trajectory
e Design gradient waveforms
e Design W(k), k-space weighting
e Design B(1)




Separable, Product Design

- Assume,
Wks, ky) = Ap(ks) - As(ky)

As(ky): weighting in the slow, blipped direction
AFr(kx): weighting in the fast oscillating direction

- Each impulse corresponds to a pulse in the fast
direction, Ar(kx)




Separable, Product Design




Amplitude, G
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1 ms subpulses

14 subpulses

Flattop only (0.5 ms)

| | 4 ecm x4 em mainlobe
- Sidelobes at +/- 13 cm
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Matlab Exercise



Bloch Simulator

- http://mrsrl.stanford.edu/~brian/blochsim/
[mx,my,mz] = bloch(bl,gr,tp,tl,t2,df,dp,mode,mx,my,mz)

Bloch simulation of rotations due to Bl, gradient and
off-resonance, including relaxation effects. At each time
point, the rotation matrix and decay matrix are calculated.
Simulation can simulate the steady-state if the seqguence

is applied repeatedly, or the magnetization starting at mo0.

bl = (Mxl) RF pulse in G. Can be complex.
gr = (Mxl,2,or 3) 1,2 or 3-dimensional gradient in G/cm.
tp = (Mxl) time duration of each bl and gr point, in seconds,
or 1x1 time step if constant for all points
or monotonically INCREASINC endtime of each
interval..
tl = Tl relaxation time in seconds.
t2 = T2 relaxation time in seconds.
df = (Nx1l) Array of off-resonance freguencies (Hz)
dp = (Px1,2,0r 3) Array of spatial positions (cm).
Width should match width of gr.
mode= Bitmask mode:
Bit 0: O-Simulate from start or MO, 1l-Steady State
Bit 1: 1-Record m at time points. 0-just end time.




Windowed Sinc RF Pulse

$% Design of Windowed Sinc RF Pulses
tbw = 4;
samples = 512;

rf wsinc(tbw, samples);

function h = wsinc(tbw, ns)
wsinc(tbw, ns)
time bandwidth product

-—- number of samples
-- windowed sinc function, normalized so that sum(h)

(ns-1)/2;
[-Xxm:xXm]/xm;
= sinc(x*tbw/2).*(0.54+0.46*cos(pi*x));

h/sum(h);




RF Pulse Scaling

$% Plot RF Amplitude
rf = (pi/2)*wsinc(tbw,samples);

pulseduration = 1; %ms
rfs = rfscaleg(rf, pulseduration); % Scaled to Gauss




RF Pulse Scaling

$% Plot RF Amplitude
rf = (pi/2)*wsinc(tbw,samples);

pulseduration = 1; %ms
rfs = rfscaleg(rf, pulseduration); % Scaled to Gauss

function rfs = rfscaleg(rf,t):
rfs = rfscaleg(rf,t)

rf -- rf waveform, scaled so sum(rf) = flip angle
t —— duration of RF pulse in ms
rfs -- rf waveform scaled to Gauss

gamma = 2*pi*4.257; % kHz*rad/G
dt = t/length(rf);
rfs = rf/(gamma*dt);




Bloch Simulation

%% Simulate Slice Profile
tbw = 4;
samples = 512;

rf = (pi/2)*wsinc(tbw,samples);
pulseduration = 1l; %ms

rfscaleg(rf, pulseduration); $ Scaled to Gauss
[rfs zeros(1l,samples/2)]; $ in Gauss
g = [ones(l,samples) -ones(l,samples/2)]; $ in G/cm

X (-4:.1:4); $ in cm
f (-250:5:250); $ in Hz
dt = pulseduration/samples/le3;
t (l:1length(bl))*dt; % in usec

$ Bloch Simulation
[mx,my,mz] = bloch(bl,qg,t,1,.2,£,%x,0);
mxy=mx+1i*my;




Thank You!

- Further reading
 Read “Spatial-Spectral Pulses” p.153-163
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