RF Pulse Design Multi-dimensional Excitation

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 4/14/2022

Today's Topics

- Review of adiabatic pulses
- Small tip approximation
- Excitation k-space interpretation
- 2D EPI pulse design
- MATLAB exercise

Summary for Adiabatic Pulses

Adiabatic Pulses

■ Flip Angle
$$\neq \int_{0}^{T} B_{1}(t)dt$$

- Amplitude and frequency modulation
- Long duration (8-12 ms)
- High B1 amplitude (>12 μT)
- Generally NOT multipurpose (inversion pulses cannot be used for refocusing, etc.)

Non-adiabatic Pulses

• Flip Angle =
$$\int_{0}^{T} B_{1}(t)dt$$

- Amplitude modulation with constant carrier frequency
- Short duration (0.3-1 ms)
- Low B1 amplitude
- Generally multi-purpose (inversion pulses can be used for refocusing, etc.)

Bloch Equation

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}_{eff}$$

Non-selective vs. Selective Excitation

$$ec{B}_{eff} = \left(egin{array}{c} B_1(t) \\ 0 \\ B_0 - rac{\omega}{\gamma} \end{array}
ight) \qquad ec{B}_{eff} = \left(egin{array}{c} B_1(t) \\ 0 \\ B_0 - rac{\omega}{\gamma} + G_z z \end{array}
ight)$$

Adiabatic Pulses

$$\vec{B}_{eff} = \left(\begin{array}{c} A(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} + \frac{\omega_1(t)}{\gamma} \end{array} \right)$$

```
%%% User inputs:
mu = 5; % Phase modulation parameter [dimensionless]
beta1 = 672; % Frequency modulation parameter [rad/s]
pulseWidth = 10.24; % RF pulse duration [ms]
A0 = 0.12; % Peak B1 amplitude [Gauss].
888888
nSamples = 512; % number of samples in the RF pulse
dt = pulseWidth/nSamples/1000; % time step, [seconds]
tim sech = linspace(-pulseWidth/2,pulseWidth/2,nSamples)./1000';
% time scale to calculate the RF waveforms in seconds.
% Amplitude modulation function B1(t):
B1 = A0.* sech(beta1.*tim sech);
% Carrier frequency modulation function w(t):
w = -mu.*beta1.*tanh(beta1.*tim sech)./(2*pi);
% The 2*PI scaling factor at the end converts the unit from rad/s to Hz
% Phase modulation function phi(t):
phi = mu .* log(sech(beta1.*tim sech));
% Put together complex RF pulse waveform:
rf pulse = B1 .* exp(1i.*phi);
% Generate a time scale for the Bloch simulation:
tim bloch = [0:(nSamples-1)]*dt;
```

Small Tip Approximation

Bloch Equation (at on-resonance)

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

where
$$ec{B}_{eff}=\left(egin{array}{c} B_{1}(t) \ 0 \ B_{0} rac{\omega}{\gamma}+G_{z}z \end{array}
ight)$$

When we simplify the cross product,

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega(z) & 0 \\ -\omega(z) & 0 & \omega_1(t) \\ 0 & -\omega_1(t) & 0 \end{pmatrix} \vec{M}$$

$$\omega(z) = \gamma G_z z$$
 $\omega_1(t) = \gamma B_1(t)$

Small Tip Approximation

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega(z) & 0 \\ -\omega(z) & 0 & \omega_1(t) \\ 0 & -\omega_1(t) & 0 \end{pmatrix} \vec{M}$$

$$M_z pprox M_0$$
 small tip-angle approximation

$$\begin{cases}
\sin \theta \approx \theta \\
\cos \theta \approx 1 \\
M_z \approx M_0 \rightarrow \text{constant}
\end{cases} \frac{dM_z}{dt} = 0$$

$$\frac{dM_{xy}}{dt} = -i\gamma G_z z M_{xy} + i\gamma B_1(t) M_0 \qquad M_{xy} = M_x + iM_y$$

First order linear differential equation. Easily solved.

$$\frac{dM_{xy}}{dt} = -i\gamma G_z z M_{xy} + i\gamma B_1(t) M_0$$

Solving a first order linear differential equation:

$$M_{xy}(t,z) = i\gamma M_0 \int_0^t B_1(s)e^{-i\gamma G_z z \cdot (t-s)} ds$$

$$M_r(\tau, z) = iM_0 e^{-i\omega(z)\tau/2} \cdot \mathcal{FT}_{1D} \{ \omega_1(t + \frac{\tau}{2}) \} \mid_{f = -(\gamma/2\pi)G_z z}$$

(See the note for complete derivation)

$$M_r(\tau, z) = iM_0 e^{-i\omega(z)\tau/2} \cdot \mathcal{FT}_{1D} \{ \omega_1(t + \frac{\tau}{2}) \} \mid_{f = -(\gamma/2\pi)G_z z}$$

Small Tip Approximation

- For small tip angles, "the slice or frequency profile is well approximated by the Fourier transform of B1(t)"
- The approximation works surprisingly well even for flip angles up to 90°

What is Multi-Dimensional Excitation?

Multi-dimensional excitation occurs when using multi-dimensional RF pulses in MRI/NMR, i.e. 2D or 3D RF pulses

1D vs. N-D RF Pulses

RF Gz Selective along z only

2D/N-D Pulse Design Requires:

- Specific B1 waveform
- Specific gradient waveforms

- 1D pulses are selective along 1 dimension, typically the slice select dimension
- 2D pulses are selective along 2 dimensions
 - So, a 2D pulse would select a long cylinder instead of a slice
 - The shape of the cross section depends on the 2D RF pulse

Excitation k-space Interpretation

Small Tip Approximation

$$M_{xy}(t,z) = i\gamma M_0 \int_0^t B_1(s)e^{-i\omega(z)(t-s)}ds$$

$$\omega(z) = \gamma G_z z \qquad \qquad \omega(\vec{r}, t) = \gamma \vec{G}(t) \vec{r}$$

$$M_{xy}(t, \vec{r}) = i\gamma M_0 \int_0^t B_1(s) e^{-i\gamma \int_s^t \vec{G}(\tau) d\tau \cdot \vec{r}} ds$$

Small Tip Approximation

$$M_{xy}(t, \vec{r}) = i\gamma M_0 \int_0^t B_1(s) e^{-i\gamma \int_s^t \vec{G}(\tau) d\tau \cdot \vec{r}} ds$$

Let us define:
$$\vec{k}(s,t) = -\frac{\gamma}{2\pi} \int_s^t \vec{G}(\tau) d\tau$$

$$M_{xy}(t, \vec{r}) = i\gamma M_0 \int_0^t B_1(s) e^{i2\pi \vec{k}(s,t)\cdot \vec{r}} ds$$

One-Dimensional Example

$$\vec{k}(s,t) = -\frac{\gamma}{2\pi} \int_{s}^{t} \vec{G}(\tau) d\tau$$

Consider the value of \mathbf{k} at $s = t_1, t_2, \dots t_7$

One-Dimensional Example

$$k_{z,max} = \frac{T}{2} \frac{\gamma}{2\pi} G_z$$

- This gives magnetization at t = t₀, the end of the pulse
- Looks like you scan across k-space, then return to origin

Evolution of Magnetization During Pulse

- RF pulse goes in at DC (k_z = 0)
- Gradients move previously applied weighting around
- Think of the RF as "writing" an analog waveform in k-space
- Same idea applies to reception

Other 1D Examples

Other 1D Examples

Other 1D Examples

Multiple Excitations

- Most acquisition methods require several repetitions to make an image
 - e.g., 128 phase encodes
- Data is combined to reconstruct an image
- Same idea works for excitation!

Simple 1D Example

Sum the data from two acquisitions

Same profile as slice selective pulse, but zero echo time

2D EPI Pulse Design

Designing EPI k-space Trajectory

 Ideally, an EPI trajectory scans a 2D raster in kspace

Resolution? / FOV?

Designing EPI k-space Trajectory

- Resolution:
$$\Delta x = \frac{TBW}{2k_{x,max}}$$
 $\Delta y = \frac{TBW}{2k_{y,max}}$

– FOV =
$$1/\Delta k_y$$
 $\Delta k_y = rac{2k_{y,max}}{L-1}$

- Ghost FOV = FOV/2
 - Eddy currents & delays produce this

Designing EPI k-space Trajectory

- Refocusing gradients
 - Returns to origin at the end of pulse

Designing EPI Gradients

- Designing readout lobes and blips
 - Flat-top only design

RF only played during flat part (simpler)

To the board ...

Designing EPI Gradients

- Easy to get k-space coverage in ky
- Hard to get k-space coverage in kx
- We can get more k-space coverage by
 - making blips narrower
 - playing RF during part of ramps

Blipped EPI

- Rectilinear scan of k-space
- Most efficient EPI trajectory
- Common choice for spatial pulses
- Sensitive to eddy currents and gradient delays

Blipped EPI

Gradient Waveforms

Continuous EPI

- Non-uniform k-space coverage
- Need to oversample to avoid side lobes
 - Less efficient than blipped
- Sensitive to eddy currents and gradient delays
 - Only choice for spectral-spatial pulses

Continuous EPI

Gradient Waveforms

k-Space Trajectory

Flyback EPI

- Can be blipped or continuous
- Less efficient since retraces not used (depends on gradient system)
- Almost completely immune to eddy currents and gradient delays

Flyback EPI

Gradient Waveforms

k-Space Trajectory

Designing 2D EPI Spatial Pulses

- Two major options
 - General approach, same as 2D spiral pulses
 - Seperable, product design (easier)
- General approach
 - Choose EPI k-space trajectory
 - Design gradient waveforms
 - Design W(k), k-space weighting
 - Design $B_1(t)$

Separable, Product Design

- Assume,

$$W(k_x, k_y) = A_F(k_x) \cdot A_S(k_y)$$

 $A_{S}(k_{V})$: weighting in the slow, blipped direction

 $A_F(k_x)$: weighting in the fast oscillating direction

- Each impulse corresponds to a pulse in the fast direction, $A_F(k_x)$

Separable, Product Design

1 ms subpulses 14 subpulses Flattop only (0.5 ms) 4 cm x 4 cm mainlobe Sidelobes at +/- 13 cm

Matlab Exercise

Bloch Simulator

http://mrsrl.stanford.edu/~brian/blochsim/

```
[mx, my, mz] = bloch(bl, qr, tp, t1, t2, df, dp, mode, mx, my, mz)
Bloch simulation of rotations due to B1, gradient and
off-resonance, including relaxation effects. At each time
point, the rotation matrix and decay matrix are calculated.
Simulation can simulate the steady-state if the sequence
is applied repeatedly, or the magnetization starting at m0.
INPUT:
        b1 = (Mx1) RF pulse in G. Can be complex.
        gr = (Mx1, 2, or 3) 1,2 or 3-dimensional gradient in G/cm.
        tp = (Mx1) time duration of each bl and gr point, in seconds,
                        or 1x1 time step if constant for all points
                        or monotonically INCREASING endtime of each
                        interval..
        t1 = T1 relaxation time in seconds.
        t2 = T2 relaxation time in seconds.
        df = (Nx1) Array of off-resonance frequencies (Hz)
        dp = (Px1,2,or 3) Array of spatial positions (cm).
                Width should match width of gr.
        mode= Bitmask mode:
                Bit 0: 0-Simulate from start or MO, 1-Steady State
                Bit 1: 1-Record m at time points. 0-just end time.
```

Windowed Sinc RF Pulse

```
%% Design of Windowed Sinc RF Pulses
tbw = 4;
samples = 512;
rf = wsinc(tbw, samples);
```

```
function h = wsinc(tbw, ns)

% rf = wsinc(tbw, ns)

% tbw -- time bandwidth product
% ns -- number of samples
% h -- windowed sinc function, normalized so that sum(h) = 1

xm = (ns-1)/2;
x = [-xm:xm]/xm;
h = sinc(x*tbw/2).*(0.54+0.46*cos(pi*x));

h = h/sum(h);
```

RF Pulse Scaling

```
%% Plot RF Amplitude
rf = (pi/2)*wsinc(tbw,samples);
pulseduration = 1; %ms
rfs = rfscaleg(rf, pulseduration); % Scaled to Gauss
```

$$\theta = \int_0^\tau \gamma B_1(s) ds$$

$$\theta_i = \gamma B_1(t_i) \Delta t$$

$$B_1(t_i) = \frac{1}{\gamma \Delta t} \theta_i$$

RF Pulse Scaling

```
%% Plot RF Amplitude
rf = (pi/2)*wsinc(tbw,samples);
pulseduration = 1; %ms
rfs = rfscaleg(rf, pulseduration); % Scaled to Gauss
```

```
function rfs = rfscaleg(rf,t);

%    rfs = rfscaleg(rf,t)
%
%    rf -- rf waveform, scaled so sum(rf) = flip angle
%    t -- duration of RF pulse in ms
%    rfs -- rf waveform scaled to Gauss
%

gamma = 2*pi*4.257; % kHz*rad/G
dt = t/length(rf);
rfs = rf/(gamma*dt);
```

Bloch Simulation

```
%% Simulate Slice Profile
tbw = 4;
samples = 512;
rf = (pi/2)*wsinc(tbw, samples);
pulseduration = 1; %ms
rfs = rfscaleg(rf, pulseduration);
                                          % Scaled to Gauss
b1 = [rfs zeros(1,samples/2)];
                                          % in Gauss
g = [ones(1, samples) -ones(1, samples/2)]; % in G/cm
x = (-4:.1:4); % in cm
f = (-250:5:250); % in Hz
dt = pulseduration/samples/1e3;
t = (1:length(b1))*dt; % in usec
% Bloch Simulation
[mx, my, mz] = bloch(b1, g, t, 1, .2, f, x, 0);
mxy=mx+1i*my;
```

Thank You!

- Further reading
 - Read "Spatial-Spectral Pulses" p.153-163
- Acknowledgments
 - John Pauly's EE469b (RF Pulse Design for MRI)
 - Shams Rashid, Ph.D.

Kyung Sung, PhD ksung@mednet.ucla.edu http://kyungs.bol.ucla.edu