M229: Advanced Topics in Magnetic Resonance Imaging

Spring 2018: 4 Units
Room: 300 Medical Plaza, B500
Lectures: Tue/Thu 10:00 AM – 11:50 AM
https://sites.google.com/site/bmp229ucla/

Instructors: Holden Wu, PhD (holdenwu@mednet.ucla.edu)

Kyung Sung, PhD (ksung@mednet.ucla.edu)

Office: 300 UCLA Medical Plaza, B119

Course Description: This course will explore recent MRI developments that 1) have had high impact on the field, 2) involve novel pulse sequence design or image reconstruction, and/or 3) enable imaging of anatomy or function in a way that surpasses what is currently possible with any other modality. Simulations and programming exercises in Matlab will provide hands-on experience for students. Students will propose and carry out a final project along current directions of advanced MRI research.

Prerequisites: This course is a follow-up to M219 (Principles and Applications of MRI) and is meant for students interested in pursuing research related to the development or translation of new MRI techniques.

Course Schedule:

#1.	April 3	Introduction – Advanced MRI Techniques and Applications
#2.	April 5	RF Pulse Design – Adiabatic Pulses
#3.	April 10	RF Pulse Design – Excitation k-space I
#4.	April 12	RF Pulse Design – Excitation k-space II / Matlab Demo
	[Homework 1]
#5.	April 17	Pulse Sequences – SSFP / GRE / SPGR
#6.	April 19	Pulse Sequences – RARE & Bloch Simulation (Matlab demo)
#7.	April 24	Pulse Sequences – Extended Phase Graphs and Simulation
#8.	April 26	Project Discussion
	[Homework 2	
#9.	May 1	Fast Imaging – EPI, PROPELLER
#10.	May 3	Fast Imaging – Non-Cartesian Sampling I
#11.	May 8	Fast Imaging – Non-Cartesian Sampling II
#12.	May 10	Water-Fat Imaging
#13.	May 15	MR Temperature Mapping
#14.	May 17	Image Reconstruction – Partial k-space
#15.	May 22	Image Reconstruction – Parallel Imaging I
#16.	May 24	Image Reconstruction – Parallel Imaging II / k-t Reconstruction
#17.	May 29	Image Reconstruction – Compressed Sensing
#18.	May 31	Advanced Application Topic – Guest Lecturer: TBD
#19.	June 5	Advanced Application Topic – Guest Lecturer: TBD
[Final Project Presentation, either 6/7 or 6/8]		

Course Assignments:

- Reading book chapters and research papers
- Programming assignments x2 (Matlab)
- Final project presentation (1 page abstract and 10+10 min oral presentation)

Grading Structure:

• Participation (10%), Homework (30%), Final Project (60%), Extra Points.

Reading List:

- Handbook of MRI Pulse Sequences. M. A. Bernstein, K. F. King, and X. J. Zhou. Elsevier Academic Press, 2004. ISBN-13: **978-0120928613**.
- Research papers as assigned