% This is the solution to M219 2017's HW-1 #3. % % 2017.01.30 Patrick Magrath & DBE@UCLA %% HW01 Problem #2A % Define some constants dt=1e-10; % Time steps in seconds gamma=42.57e6; % Gyromagnetic ratio, [Hz/T] B0=1.5; % External magnetic field strength [T] N_Steps=1000; % Number of time steps M0=[1 0 0]'; % Initial condition [A.U.] t_max=dt*N_Steps; % Maximum time of simulation [s] t=linspace(0,t_max,N_Steps); % Vector of time points [s] M_H20=zeros(4,N_Steps); % Initialize the magnetization vectors M_H20(:,1)=[M0; 0]; % Define the initial condition dB0_H20=PAM_B0_op(gamma,B0,dt); % Define the incremental precession % Simulate precession for n=2:N_Steps M_H20(:,n) = dB0_H20*M_H20(:,n-1); end % Plot the results - Note F/W differences are hard to see on short time scales... figure; hold; plot(t,M_H20(1,:),'linewidth',2); plot(t,M_H20(2,:),'linewidth',2); plot(t,M_H20(3,:),'linewidth',2); %plot(t,M_H20(3,:),'linewidth',2); xlabel('Time [s]'); ylabel('Magnetization [a.u.]'); legend('Mx','My','Mz'); title('Free Precession in the B0 Field') set(gcf,'Color','w'); set(gca,'Color','w','XColor','k','YColor','k'); set(gca,'Color','w','XColor','k','YColor','k','LineWidth',1.25,'Fontsize',11,'Fontweight','bold'); set(get(gca,'Title'),'Color','k','FontSize',16); set(get(gca,'Xlabel'),'FontSize',14,'fontweight','bold'); set(get(gca,'Ylabel'),'FontSize',14,'fontweight','bold'); grid('on') print2desktop('/Users/pmagrath/desktop/','HW1_P3_D')