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• 2024 course schedule 
- https://mrrl.ucla.edu/pages/m219_2024 

• Assignments 
- Homework #2 is due on 2/14 

• TA office hours, Weds 4-6pm 

• Office hours, Fridays 10-12pm

Course Overview

https://mrrl.ucla.edu/pages/m219_2024
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Point Spread Function (PSF)
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M̂ 0(kx, ky) = M̂(kx, ky) · window

Point spread function can show 
the extent of blurring of the image

PSF = FT(window)

Extent



Spatial Resolution

Main lobe causes blurring!
(spatial resolution)

m(x, y) ⇤ sinc(wkxx)sinc(wkyy)wkxwky

�x =
1

wkx

�y =
1

wky

Spatial resolution: δx, δy



Spatial Resolution

- Spatial resolution of an imaging system is the 
smallest separation δx of two point sources 
necessary for them to remain resolvable in the 
resultant image.

Î (x) = I (x) ⇤ h (x)

ObjectImage
Point 

Spread 
Function



PSFs

F{�(t)}

F{H(t)}

Narrower central peak,
but lots of ringing

Reduced ringing, but 
broader central peak



PSFs

Filters can be used to reduce 
ringing artifacts but often at the 

expense of spatial resolution

Hamming window seems to have 
good balance in reducing ringing
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Finite Sampling
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k-space Sampling
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k-space Sampling

example from Dan



k-space Sampling

example from Dan



Gibb’s Ringing

⇢meas(!)⇢true(!) sinc(!)

Distortions in the profile arising
from the finite sampling of the data

This type of distortion is most commonly
referred to as Gibb’s ringing



Examples of Gibb’s Ringing



Gibb’s Ringing
how to reduce ringing

F�1{�(t)}

Hamming window can be used to reduce ringing

F�1{H(t)}



Spatial Localization
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Spatial Encoding
• Three key steps: 

– Slice selection 
• You have to pick slice! 

– Phase Encoding 
• You have to encode 1 of 2 dimensions within 

the slice. 
– Frequency Encoding (aka readout) 

• You have to encode the other dimension 
within the slice.
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3 Steps for Spatial Localization
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Pulse Sequence Diagram - Timing diagram of the RF and gradient 
events that comprise an MRI pulse sequence.
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Slice Selection
• Consists of: 

– RF (B1) Pulse 
• Contains frequencies matched to 

slice of interest 
– Slice selection gradient 

• Constant magnitude 
– Slice re-phasing gradient 

• Increases SNR 
• Re-phases spins within slice 
• AKA “slice refocusing gradient” 

• Permits exciting the slice of interest.
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Selective Excitation

RF

Gz
excite a slice perpendicular to z

x-slice
(yz plane)

y-slice
(xz plane)

z-slice
(xy plane)



Gradients?

gradients produce a spatial distribution of frequencies

Bz(z) = B0 +Gz · z

⇥(z) = ⇥0 + �Gz · z

there is a direct correspondence between 
frequency and spatial position



Bloch Equation with Gradient
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Slice Selection
how do we “excite” a certain slice?

the strength of the gradient affects all
parameters for the same spatial location

��a < ��b

�a < �b



Slice Selection

! - the carrier frequency of the RF pulse

�! - frequency bandwidth of the RF pulse

how do we physically set the parameters?



Slice Selection

we want a pulse with as rectangular of an 
slice profile as possible



Selective Excitation
changing the shape of the pulse affects

the bandwidth of excitation

how we do know which shape to use?

small angle approximation

FT
z

We will show the slice profile depends on
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Slice Selective Excitation

z
!0-z

z0

�z

Slice-A

How do you move the slice along ±z?
Compare ∆ω and ωRF for Slice-A and Slice-B.

Do we usually acquire ωRF>ω0?
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Time Bandwidth Product (TBW)
• Time bandwidth (TBW) product: 

– Pulse Duration [s] x Pulse Bandwidth [Hz] 
– Unitless 
– # of zero crossings 
– High TBW 

• Large # of zero crossings ∴ fewer truncation artifacts 
• Longer duration pulse 

• Examples: 
– TBW = 4, RF = 1ms 

• Excitation (RF) bandwidth?  
• Required Gz for 1cm slice?  

– TBW = 16, RF = 1ms 
• Excitation (RF) bandwidth?  
• Required Gz for 1cm slice?
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Slice Selective Excitation - Example
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Selective Excitation
• What factors control slice selection?

!RF Excitation carrier frequency

Pulse envelope functionBe
1 (t)

RF pulse bandwidth

B1

Gx

(e.g. B1,max and ∆ω)

t

t

~G Gradient amplitude

BW



To the Board



RF Pulse Bandwidth and Slice 
Profile: 

Small Tip Angle Approximation



Bloch Equation (at on-resonance)

d ~Mrot
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When we simplify the cross product,



Small Tip Approximation

d ~M

dt
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Mz ⇡ M0 small tip-angle approximation

sin θ ≈ θ 
cos θ ≈ 1 
Mz ≈ M0 → constant

 

 
 

First order linear differential equation. Easily solved.



 

Mr(⌧, z) = iM0e
�i!(z)⌧/2 · FT 1D{!1(t+

⌧

2
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Solving a first order linear differential equation:
 

(See the note for complete derivation)
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To the Board



Small Tip Approximation

- For small tip angles, “the slice or frequency profile is 
well approximated by the Fourier transform of B1(t)” 

- The approximation works surprisingly well even for 
flip angles up to 90°

Fourier 
transform

Mr(⌧, z) = iM0e
�i!(z)⌧/2 · FT 1D{!1(t+

⌧

2
)} |f=�(�/2⇡)Gzz



Small Tip Approximation

the excitation profile, within the small angle
approximation, is just the Fourier transform of the pulse

remember that the Bloch equations are non-linear
 and thus cannot be expected to behave linearly

the approximation works surprisingly well even 
for flip angles up to 900



Shaped Pulses
30� 90�

Pauly, J. J. Magn. Reson. 81 43-56 (1989)

small-angle approximation still works reasonably
well for flip angles that aren’t necessarily “small”



Truncation Artifacts

in MRI we want pulses to be as short as possible
to avoid relaxation effects

the sinc function is defined over all time
which is impractical in any experiment

the sinc pulse needs to be truncated to be
appropriate for clinical scans



Truncation Artifacts
what happens when we truncate our pulses?

non-uniform excitation

excited outside of slice

these deviations from the ideal are known
as truncation artifacts



Truncation Artifacts
alternative Pulse Shapes

Bx(t) = A exp
⇥
�a(t� �/2)2

⇤
gaussian

reduced side-lobes, but not as flat of a profile

Window Functions

Hamming, Hanning, …
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Slice Rewinder

Opposite Polarity
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Slice Selective Excitation Example
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slice select gradient rewinder eliminates the linear phase ramp

rewinder gradient
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Selective Excitation: Conclusion
B1 amplitude 

-> flip angle
B1 amplitude profile 

-> bandwidth, slice profile

B1 carrier frequency 
-> slice location

B1 phase profile 
-> slice location, etc.

Small Tip Approximation
-> slice profile = FT of B1 envelope function



MATLAB Demo



MATLAB Demo



Questions?

• Related reading materials 

- Nishimura - Chap 6.1, 6.2, 6.4

Kyung Sung, Ph.D. 
KSung@mednet.ucla.edu 
http://mrrl.ucla.edu/sunglab

mailto:KSung@mednet.ucla.edu

