MRI Systems II – B1

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/12/2022

Course Overview

- Course website
 - https://mrrl.ucla.edu/pages/m219
- Course schedule
 - https://mrrl.ucla.edu/pages/m219_2022
- Assignments
 - Homework #1 due on 1/26 by 5pm

Course Overview

- Office Hours
 - TA (Ran Yan) Tuesday 4-5pm <u>https://uclahs.zoom.us/j/96870184581?</u> pwd=VkczL0lyRkxsQ3FHcnIxQ1M2U3hPdz09

Password: 900645

 Instructor (Kyung Sung) - Friday 2-3pm <u>https://uclahs.zoom.us/j/94058312815?</u> pwd=Tkl3ajhkamdGTnhqOVNnbk5RMnJGQT09

Password: 888767

Rotations & Euler's Formula

Vectors

- A vector (\vec{v}) describes a physical quantity (e.g. bulk magnetization or velocity) at a point in space and time and has a magnitude (positive real number), a direction, and physical units.
- To define a vector, we need a **basis**:

$$\hat{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• A 3D *vector* has components:

$$\vec{M} = M_x \hat{i} + M_y \hat{j} + M_z \hat{k}$$

2D Vectors - Euler's Formula

 Euler's formula provides a compact representation of a 2D vector using a complex exponential;

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$\vec{M}_{xy}$$

$$\vec{\phi} \quad \sin \phi$$

$$\mathbf{Re}, x, \hat{i}$$

$$\begin{split} \vec{M}_{xy} &= M_x \hat{i} + M_y \hat{j} \\ &= M_x + i M_y \\ &= |\vec{M}_{xy}| \cos \phi \hat{i} + |\vec{M}_{xy}| \sin \phi \hat{j} \\ &= |\vec{M}_{xy}| \cos \phi + i |\vec{M}_{xy}| \sin \phi \\ &= |\vec{M}_{xy}| e^{i\phi} & 5\hat{j} \\ &= |M_{xy}| \cos \phi + i |M_{xy}| \sin \phi \\ &= |\vec{M}_{xy}| e^{i\phi} \end{split}$$

Vector components Complex components Trigonometric components Complex trigonometric components Euler's notation

Euler's formula is mathematically convenient. There is nothing explicitly *imaginary* about M_{xy}.

Rotations

- **Rotations** (R) are vector valued orthogonal transformations that preserve the magnitude of vectors and the angles between them.
- The simplest rotation matrix is the *identity* matrix:

$$R = I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ therefore } \vec{v} = I\vec{v}$$

More simply, R transforms (rotates) one vector to another:

$$\vec{u} = \mathbf{R}\vec{v}$$

Rotations

UCLA

David Geffen School of Medicine Note: Positive values of ϕ produce right-handed (CCW) rotations.

IICI A

Radiology

Rotation Matrices

RIGHT-HANDED

LEFT-HANDED

$$\mathbf{R}_z^{\phi} = \begin{bmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$R_Z(\alpha) = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_Y(\alpha) = \begin{bmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

$$R_X(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$$

Last Time...

$$M_x(t) = M_x^0 \cos(\gamma B_0 t) + M_y^0 \sin(\gamma B_0 t)$$

$$M_y(t) = -M_x^0 \sin(\gamma B_0 t) + M_y^0 \cos(\gamma B_0 t)$$

$$M_z(t) = M_z^0$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Equation of Motion for the bulk magnetization.

 $=B_0\vec{k}$

 $ec{\mu}_n$

To The Board...

Free Precession In The Laboratory Frame Without Relaxation

Free Precession In The Laboratory Frame Without Relaxation

 $= \vec{M} \times \gamma \left(\vec{B_0} \right)$ $rac{dec{M}}{dt}$ \hat{k} M_z M_{y} M_x γB_0

Free Precession w/o Relaxation

$$\mathbf{R}_{z}(\omega_{0}t) = \begin{bmatrix} \cos \omega_{0}t & \sin \omega_{0}t & 0\\ -\sin \omega_{0}t & \cos \omega_{0}t & 0\\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\vec{B}} \underbrace{\vec{B}}_{\boldsymbol{\omega}} \underbrace{\vec{B}}_{\boldsymbol{\omega}}$$

Precession is left-handed (clockwise).

To The Board...

$$M_x(t) = M_x^0 \cos(\gamma B_0 t) + M_y^0 \sin(\gamma B_0 t)$$
$$M_y(t) = -M_x^0 \sin(\gamma B_0 t) + M_y^0 \cos(\gamma B_0 t)$$
$$M_z(t) = M_z^0$$

Signal Reception

 $M_{xy}\left(\vec{r},t
ight)$

V(t)

NMR Signal Detection

- Coil only detects M_{xy}
- Coil does not detect Mz
- Coil must be properly oriented

How does RF alter \vec{M} ? $\vec{B}_1(t)$

Generating B₁-Fields

MRI Hardware

Cryostat

Z-grad

▶ Y-grad

X-grad

Body Tx/Rx Coil (B₁) Main Coil (B₀)

Image Adapted From: http://www.ee.duke.edu/~jshorey

RF Shielding

- RF fields are close to FM radio
 - ¹H @ 1.5T ⇒ 63.85 MHz
 - ${}^{1}H @ 3.0T \Rightarrow 127.71 \text{ MHz}$
 - KROQ \Rightarrow 106.7 MHz
- Need to shield local sources from interfering
- Copper room shielding required

RF Birdcage Coil

- Most common design
- Highly efficient
 - Nearly all of the fields produced contribute to imaging

• Very uniform field

- Especially radially
- Decays axially
- Uniform sphere if L≈D

Generates a "quadrature" field

Circular polarization

Body Tx/Rx Coil (B1)

http://mri-q.com/birdcage-coil.html

B₁ Field - RF Pulse

- B₁ is a
 - radiofrequency (RF)
 - 42.58MHz/T (63MHz at 1.5T)
 - short duration pulse (~0.1 to 5ms)
 - small amplitude
 - <30 µT
 - circularly polarized
 - rotates at Larmor frequency
 - magnetic field
 - perpendicular to B₀

Basic RF Pulse $\overrightarrow{B} = \overrightarrow{B}_0 + \overrightarrow{B}_1(t)$ $\vec{B}_1(t) = B_1^e(t)[\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $B_{1}^{e}(t)$ pulse envelope function ω_{RF} excitation carrier frequency Ĥ initial phase angle

 B_1 is perpendicular to B_0 .

$$\overrightarrow{B}_0 = B_0 \hat{k}$$

Rect Envelope Function $B_1^e(t) = B_1 \sqcap \left(\frac{t - \tau_p/2}{\tau_p}\right) = \begin{cases} B_1, & 0 \le t \le \tau_p \\ 0, & otherwise \end{cases}$

Sinc Envelope Function $B_{1}^{e}(t) = \begin{cases} B_{1} \operatorname{sinc} \left[\pi f_{\omega} \left(t - \tau_{p}/2 \right) \right], & 0 \leq t \leq \tau_{p} \\ 0, & otherwise \end{cases}$

Resonance

"Establishment of a phase coherence among these 'randomly' precessing spins in a magnetized spin system is referred to as resonance."

- Liang & Lauterbur p.69

Resonance

- $\vec{B}_1(t)$ provides external energy
 - RF magnetic field.
- Quantum Physics
 - Electromagnetic radiation of frequency ω_{RF} carries energy that induces a coherent transition of spins from N_{\uparrow} to N_{\downarrow} .
- Classical Physics
 - $\overrightarrow{B}_1(t)$ rotates in the same manner as the precessing spins.
 - Coherently "pushes" on bulk magnetization.

 $N_{\uparrow} =$ Spin-Up State, Low Energy $N_{\downarrow} =$ Spin-Down State, High Energy $\frac{N_{\uparrow} - N_{\downarrow}}{N_{total}} \approx 4.5 \times 10^{-6}$

Resonance Condition

Resonance requires that the frequency of the RF energy (ω_{RF}) match the frequency of precession (ω_0). **Rotating Frame**

Lab vs. Rotating Frame

• The rotating frame simplifies the mathematics and permits more intuitive understanding.

Spins Precess

Observer Precesses

Note: Both coordinate frames share the same z-axis.

Combined B₀ & B₁ Effects

 $\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$ $= \vec{M} \times \gamma \left(\vec{B_0} + \vec{B_1} \right)$

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions $\vec{M}_{rot} \equiv \begin{bmatrix} M_{x'} \\ M_{y'} \\ M_{z'} \end{bmatrix}$ $\vec{B}_{rot} \equiv \begin{bmatrix} B_{x'} \\ B_{y'} \\ B_{z'} \end{bmatrix}$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

Applied B-field components in the rotating frame.

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \Longrightarrow \quad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

 $\vec{M}_{lab}(t) = R_{Z}(\omega_{RF}t) \cdot \vec{M}_{rot}(t)$

 $\overrightarrow{B}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{B}_{rot}(t)$

Bloch Equation (Rotating Frame)

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Equation of motion for an ensemble of spins (isochromats). [Laboratory Frame]

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \left(\frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \right) \overset{\text{Equation of motion for an}}{\underset{[\text{Rotating Frame}]}{\text{Equation of motion for an}}}$$

$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$
Effective B-field that
M experiences in the rotating frame.
M experiences in the rotating frame.
M experiences in the rotating frame.
Fictitious field that demodulates the apparent effect of *B*₀

Bloch Equation (Rotating Frame) $\vec{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $\overrightarrow{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF} + \theta) \\ B_0 \end{pmatrix} \qquad \overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{bmatrix}$ $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$ Effective B-field that Applied B-field in the rotating frame. M experiences in the Fictitious field that demodulates rotating frame. the apparent effect of B_{0} .

Bloch Equation (Rotating Frame) $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$

Assume no RF phase ($\theta = 0$)

$$\vec{B}_{eff}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \\ & \omega_{RF} \\ B_0 \\ & \gamma \end{pmatrix}$$

To The Board...

Mathematics of Hard RF Pulses

Rules for RF Pulses

- RF fields induce left-hand rotations
- Phase of 0° is about the x-axis
- Phase of 90° is about the y-axis

Flip Angle - α

• "Amount of rotation of the bulk magnetization vector produced by an RF pulse, with respect to the direction of the static magnetic field."

- Liang & Lauterbur, p. 374

Rules: 1) Specify α 2) Use B_{1,max} if we can 3) Shortest duration pulse

Change of Basis (θ)

$$\mathbf{R}_{Z}(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Rotation by Alpha

$$\mathbf{R}_{X}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & \sin\alpha \\ 0 & -\sin\alpha & \cos\alpha \end{bmatrix}$$

Change of Basis $(-\theta)$

$$\mathbf{R}_{Z}(-\theta) = \begin{bmatrix} \cos(-\theta) & \sin(-\theta) & 0\\ -\sin(-\theta) & \cos(-\theta) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

RF Pulse Operator

 $\mathbf{R}_{\theta}^{\alpha} = \mathbf{R}_{Z}\left(-\theta\right)\mathbf{R}_{X}\left(\alpha\right)\mathbf{R}_{Z}\left(\theta\right)$

 $= \begin{bmatrix} c^{2}\theta + s^{2}\theta c\alpha & c\theta s\theta - c\theta s\theta c\alpha & -s\theta s\alpha \\ c\theta s\theta - c\theta s\theta c\alpha & s^{2}\theta + c^{2}\theta c\alpha & c\theta s\alpha \\ s\theta s\alpha & -c\theta s\alpha & c\alpha \end{bmatrix}$

RF Pulse Operator

$\vec{\mathbf{M}}\left(0_{+}\right) = \mathbf{RF}_{\theta}^{\alpha}\vec{\mathbf{M}}\left(0_{-}\right)$

Hard RF Pulses

 $\mathrm{R}^{90^{\circ}}_{0^{\circ}}$

 $\mathrm{R}^{90^{\circ}}_{90^{\circ}}$

$$\mathbf{R}_{90^{\circ}}^{90^{\circ}} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{R}_{0^{\circ}}^{90^{\circ}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

- Related reading materials
 - Liang/Lauterbur Chap 3.2

Kyung Sung, Ph.D. KSung@mednet.ucla.edu http://mrrl.ucla.edu/sunglab

Types of RF Pulses

- Excitation Pulses
- Inversion Pulses
- Refocusing Pulses
- Saturation Pulses
- Spectrally Selective Pulses
- Spectral-spatial Pulses

Excitation Pulses

Excitation Pulses

- Tip M_z into the transverse plane
- Typically 200µs to 5ms
- Non-uniform across slice thickness
 - Imperfect slice profile
- Non-uniform within slice
 - Termed B₁ inhomogeneity
 - Non-uniform signal intensity across FOV

90° Fxcitation Pulse

Z

Y

D

Small Flip Angle Excitation Ζ X Y

Excitation Pulses - Applications

- 90° RF Pulse
 - Spin Echo
 - Saturation Recovery
- Small Flip Angle (<~20°)
 - FLASH (<u>Fast Low Angle Shot</u>)
 - AKA SPGR
- Moderate Flip Angle (30°-90°)
 - TrueFISP

Inversion Pulses

Inversion Pulses

- Typically, 180° RF Pulse
 - non-180° that still results in -M_Z
- Invert M_Z to -M_Z
 - Ideally produces no M_{XY}
- Hard Pulse
 - Constant RF amplitude
 - Typically non-selective
- Soft (Amplitude Modulated) Pulse

Inversion Pulses z

U

Y

Inversion Pulse - Applications

- T1 species nulling/attenuation
 - STIR (<u>Short Tau Inversion Recovery</u>)
 - Suppress specific tissue-T1
 - SPECIAL (Spectral Inversion at Lipids)
 - Suppress lipid signals (short T1)
 - FLAIR (<u>Fluid Attenuated Inversion</u> <u>Recovery</u>)

Refocusing Pulses

- Typically, 180° RF Pulse
 - Provides optimally refocused M_{XY}
 - Largest spin echo signal
- non-180°
 - Partial refocusing
 - Lower SAR
 - Multiple non-180° produce stimulated echoes

U

Y

Refocusing Pulses - Applications

- Spin Echo imaging
- RARE
 - <u>Rapid Acquisition with Relaxation</u>
 <u>Enhancement</u>
 - RF Excitation followed by 180° train
 - Reduce acquisition time by N-echoes
 - Common for T2-weighted imaging
 - AKA Fast Spin Echo
- Spin-Echo EPI