MRI Systems II - B1

M219 - Principles and Applications of MRI Kyung Sung, Ph.D.

1/12/2022

Course Overview

- Course website
- https://mrrl.ucla.edu/pages/m219
- Course schedule
- https://mrrl.ucla.edu/pages/m219 2022
- Assignments
- Homework \#1 due on 1/26 by 5pm

Course Overview

- Office Hours
- TA (Ran Yan) - Tuesday 4-5pm https://uclahs.zoom.us/j/96870184581? pwd=VkczLOlyRkxsQ3FHcnlxQ1M2U3hPdz09

Password: 900645

- Instructor (Kyung Sung) - Friday 2-3pm https://uclahs.zoom.us/j/94058312815? pwd=Tkl3ajhkamdGTnhqOVNnbk5RMnJGQT09

Password: 888767

Rotations \& Euler's Formula

Vectors

- A vector (\vec{v}) describes a physical quantity (e.g. bulk magnetization or velocity) at a point in space and time and has a magnitude (positive real number), a direction, and physical units.
- To define a vector, we need a basis:

$$
\hat{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \hat{j}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \hat{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- A 3D vector has components:

$$
\vec{M}=M_{x} \hat{i}+M_{y} \hat{j}+M_{z} \hat{k}
$$

2D Vectors - Euler's Formula

- Euler's formula provides a compact representation of a 2D vector usina a comnlex exponential:

$$
\begin{aligned}
& e^{i \phi}=\cos \phi+i \sin \phi \\
\vec{M}_{x y} & =M_{x} \hat{i}+M_{y} \hat{j} \\
& =M_{x}+i M_{y} \\
& =\left|\vec{M}_{x y}\right| \cos \phi \hat{i}+\left|\vec{M}_{x y}\right| \sin \phi \hat{j} \\
& =\left|\vec{M}_{x y}\right| \cos \phi+i\left|\vec{M}_{x y}\right| \sin \phi \\
& =\left|\vec{M}_{x y}\right| e^{i \phi} \\
& =\left|N_{x y}\right| \cos \phi+\imath| | M_{x y} \mid \sin \phi \\
& =\left|\vec{M}_{x y}\right| e^{i \phi}
\end{aligned}
$$

Vector components
Complex components
Trigonometric components
Complex trigonometric components Euler's notation

Euler's formula is mathematically convenient.

Rotations

- Rotations (R) are vector valued orthogonal transformations that preserve the magnitude of vectors and the angles between them.
- The simplest rotation matrix is the identity matrix:

$$
\mathrm{R}=\mathrm{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, therefore } \vec{v}=\mathrm{I} \vec{v}
$$

- More simply, R transforms (rotates) one vector to another:

$$
\vec{u}=\mathrm{R} \vec{v} \xrightarrow{\vec{u}} \overrightarrow{\underbrace{}_{i}}
$$

Rotations

- (

	\hat{i} ends up	\hat{j} ends up	\hat{k} does not
Magnitude of rotation	here	here	change
	$[\cos \phi$	$-\sin \phi$	0
$\mathrm{R}_{z}^{\phi}=$	$\sin \phi$	$\cos \phi$	0
	0	0	1
Axis (phase) of rotation			
	$\vec{u}=\mathrm{R} \vec{v}$		

Rotation Matrices

RIGHT-HANDED

$$
\begin{aligned}
& \mathrm{R}_{z}^{\phi}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right] R_{Z}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & \sin \alpha & 0 \\
-\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R_{Y}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & -\sin \alpha \\
0 & 1 & 0 \\
\sin \alpha & 0 & \cos \alpha
\end{array}\right]
\end{aligned}
$$

$$
R_{X}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right]
$$

Last Time...

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu} \times \vec{B} \quad \vec{S}=\vec{r} \times \vec{\rho}
\end{aligned}
$$

$$
\begin{aligned}
& N_{\text {total }} \\
& \overrightarrow{\ln } \\
& M_{x}(t)=M_{x}^{0} \cos \left(\gamma B_{0} t\right)+M_{y}^{0} \sin \left(\gamma B_{0} t\right) \\
& M_{y}(t)=-M_{x}^{0} \sin \left(\gamma B_{0} t\right)+M_{y}^{0} \cos \left(\gamma B_{0} t\right) \\
& d \vec{M} \\
& M_{z}(t)=M_{z}^{0} \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma\left(\overrightarrow{B_{0}}\right) \\
& \vec{B}_{0}=B_{0} \vec{k}
\end{aligned}
$$

To The Board...

Free Precession In The Laboratory Frame Without Relaxation

Free Precession In The Laboratory Frame Without Relaxation

Free Precession w/o Relaxation

$\mathbf{R}_{z}\left(\omega_{0} t\right)=\left[\begin{array}{ccc}\cos \omega_{0} t & \sin \omega_{0} t & 0 \\ -\sin \omega_{0} t & \cos \omega_{0} t & 0 \\ 0 & 0 & 1\end{array}\right]$

Precession is left-handed (clockwise).

$$
\begin{aligned}
\vec{M}(t)=\mathbf{R}_{z}\left(\omega_{0} t\right) \vec{M}^{0} \\
\boldsymbol{\imath} \\
\omega_{0}=-\gamma B_{0}
\end{aligned}
$$

$$
\vec{\omega}=-\gamma \vec{B}=-\gamma B_{0} \hat{k}
$$

$$
\mathbf{Z}
$$

Precession only apparent when: $\vec{M} \neq\|\vec{M}\| \hat{k}$

To The Board...

$$
\begin{aligned}
& M_{x}(t)=M_{x}^{0} \cos \left(\gamma B_{0} t\right)+M_{y}^{0} \sin \left(\gamma B_{0} t\right) \\
& M_{y}(t)=-M_{x}^{0} \sin \left(\gamma B_{0} t\right)+M_{y}^{0} \cos \left(\gamma B_{0} t\right) \\
& M_{z}(t)=M_{z}^{0}
\end{aligned}
$$

Signal Reception

Faraday's Law
of Induction

$M_{x y}(\vec{r}, t)$
$V(t)$

NMR Signal Detection

- Coil only detects M_{xy}
- Coil does not detect M_{z}
- Coil must be properly oriented

How does RF alterM ? $\vec{B}_{1}(t)$

Generating B1-Fields

MRI Hardware

Image Adapted From: http://www.ee.duke.edu/~jshorey

RF Shielding

- RF fields are close to FM radio
- ${ }^{1} \mathrm{H}$ @ 1.5T $\Rightarrow 63.85 \mathrm{MHz}$
- ${ }^{1} \mathrm{H} @ 3.0 \mathrm{~T} \Rightarrow 127.71 \mathrm{MHz}$
- $\mathrm{KROQ} \Rightarrow 106.7 \mathrm{MHz}$
- Need to shield local sources from interfering
- Copper room shielding required

RF Birdcage Coil

- Most common design
- Highly efficient
- Nearly all of the fields produced contribute to imaging
- Very uniform field
- Especially radially
- Decays axially
- Uniform sphere if $\mathrm{L} \approx \mathrm{D}$
- Generates a "quadrature" field

- Circular polarization

B1 Field - RF Pulse

- B_{1} is a
- radiofrequency (RF)
- $42.58 \mathrm{MHz} / \mathrm{T}$ (63 MHz at 1.5 T)
- short duration pulse (~ 0.1 to 5 ms)
- small amplitude
- <30 $\mu \mathrm{T}$
- circularly polarized
- rotates at Larmor frequency
- magnetic field
- perpendicular to Bo

Basic RF Pulse $\vec{B}=\vec{B}_{0}+\vec{B}_{1}(t)$

$$
\vec{B}_{1}(t)=B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t+\theta\right) \hat{i}-\sin \left(\omega_{R F} t+\theta\right) \hat{j}\right]
$$

$\omega^{\omega} F$
 excitation carrier frequency

θ initial phase angle
B_{1} is perpendicular to B_{0}.

$$
\vec{B}_{0}=B_{0} \hat{k}
$$

Rect Envelope Function

$$
B_{1}^{e}(t)=B_{1} \Pi\left(\frac{t-\tau_{p} / 2}{\tau_{p}}\right)= \begin{cases}B_{1}, & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}
$$

Sinc Envelope Function

 $B_{1}^{e}(t)= \begin{cases}B_{1} \operatorname{sinc}\left[\pi f_{\omega}\left(t-\tau_{p} / 2\right)\right], & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}$

Resonance

"Establishment of a phase coherence among these 'randomly' precessing spins in a magnetized spin system is referred to as resonance."

- Liang \& Lauterbur p. 69

Resonance

- $\vec{B}_{1}(t)$ provides external energy
- RF magnetic field.
- Quantum Physics
- Electromagnetic radiation of frequency $\omega_{R F}$ carries energy that induces a coherent transition of spins from N_{\uparrow} to N_{\downarrow}.
- Classical Physics
- $\vec{B}_{1}(t)$ rotates in the same manner as the precessing spins.
- Coherently "pushes" on bulk magnetization.

Zeeman Splitting

$$
N_{\uparrow}=\text { Spin-Up State, Low Energy }
$$

$N_{\downarrow}=$ Spin-Down State, High Energy

$$
\frac{N_{\uparrow}-N_{\downarrow}}{N_{\text {total }}} \approx 4.5 \times 10^{-6}
$$

Resonance Condition

$$
\Delta E=E_{\downarrow}-E_{\uparrow}=\hbar \gamma B_{0} \quad E_{R F}=\hbar \omega_{R F}
$$

Resonance Condition
Resonance requires that the frequency of the RF energy ($\omega_{R F}$) match the frequency of precession (ω_{0}).

Rotating Frame

Lab vs. Rotating Frame

- The rotating frame simplifies the mathematics and permits more intuitive understanding.

Note: Both coordinate frames share the same z-axis.

Combined B_{0} \& B_{1} Effects

$\frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B}$

$$
=\vec{M} \times \gamma\left(\overrightarrow{B_{0}}+\overrightarrow{B_{1}}\right)
$$

Relationship Between Lab and Rotating Frames

$$
\begin{aligned}
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \\
& \text { Rotating Frame Definitions } \\
& \vec{M}_{r o t}=\left[\begin{array}{l}
M_{x^{\prime}} \\
M_{y^{\prime}} \\
M_{z^{\prime}}
\end{array}\right] \quad \vec{B}_{r o t}=\left[\begin{array}{c}
B_{x^{\prime}} \\
B_{y^{\prime}} \\
B_{z^{\prime}}
\end{array}\right] \\
& B_{z^{\prime}} \equiv B_{z} \\
& M_{z^{\prime}} \equiv M_{z} \\
& \vec{M}_{l a b}(t)=R_{\mathrm{Z}}\left(\omega_{R F} t\right) \cdot \vec{M}_{\text {rot }}(t) \\
& \vec{B}_{l a b}(t)=R_{Z}\left(\omega_{R F} t\right) \cdot \vec{B}_{r o t}(t) \\
& \text { Bulk magnetization } \\
& \text { components in the } \\
& \text { rotating frame. } \\
& \text { Applied B-field } \\
& \text { components in the } \\
& \text { rotating frame. } \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \quad \longrightarrow \frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma \vec{B}_{e f f}
\end{aligned}
$$

Bloch Equation (Rotating Frame)

Equation of motion for an ensemble of spins (isochromats).
[Laboratory Frame]

$\frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma\left(\frac{\vec{\omega}_{r o t}}{\gamma}+\vec{B}_{r o t}\right) \begin{gathered}\begin{array}{c}\text { Equation of motion for an } \\ \text { ensemble of spins (isochromats) } \\ \text { [Rotating Frame] }\end{array}\end{gathered}$

$$
\vec{B}_{e f f} \equiv \frac{\vec{\omega}_{r o t}}{\gamma}+\vec{B}_{r o t} \quad \vec{\omega}_{r o t}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right)
$$

Effective B-field that M experiences in the rotating frame.
$\varlimsup_{\text {Applied B- }}$
Fictitious field that demodulates
the apparent effect of $B 0$.

Bloch Equation (Rotating Frame)

$$
\begin{aligned}
& \vec{B}(t)=B_{0} \hat{k}+B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t+\theta\right) \hat{i}-\sin \left(\omega_{R F} t+\theta\right) \hat{j}\right] \\
& \vec{B}_{l a b}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \cos \left(\omega_{R F} t+\theta\right) \\
-B_{1}^{e}(t) \sin \left(\omega_{R F}+\theta\right) \\
B_{0}
\end{array}\right) \quad \vec{B}_{\text {rot }}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \cos \theta \\
-B_{1}^{e}(t) \sin \theta \\
B_{0}
\end{array}\right) \\
& \vec{B}_{e f f} \equiv \frac{\vec{\omega}_{\text {rot }}}{\gamma}+\vec{B}_{\text {rot }} \quad \vec{\omega}_{\text {rot }}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right) \\
& \text { Effective B-field that } \\
& M \text { experiences in the } \\
& \text { rotating frame. } \\
& \text { Applied B-field in the rotating frame. } \\
& \text { Fictitious field that demodulates } \\
& \text { the apparent effect of } B \text {. }
\end{aligned}
$$

Bloch Equation (Rotating Frame)

$$
\vec{B}_{e f f} \equiv \frac{\vec{\omega}_{\text {rot }}}{\gamma}+\vec{B}_{r o t}
$$

Assume no RF phase ($\theta=0$)

$$
\begin{gathered}
\vec{B}_{r o t}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \\
0 \\
B_{0}
\end{array}\right) \quad \vec{\omega}_{r o t}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right) \\
\vec{B}_{e f f}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \\
0 \\
B_{0} \\
\omega_{R F}
\end{array}\right)
\end{gathered}
$$

To The Board...

Mathematics of Hard RF Pulses

Rules for RF Pulses

- RF fields induce left-hand rotations
- Phase of 0° is about the x-axis
- Phase of 90° is about the y-axis

Flip Angle - α

- "Amount of rotation of the bulk magnetization vector produced by an RF pulse, with respect to the direction of the static magnetic field."
- Liang \& Lauterbur, p. 374

Rules for RF Pulses

\(\begin{cases}\alpha \& \rightarrow Flip Angle
\theta \rightarrow Phase\end{cases}\)

How to determine α ?

$$
\alpha=\gamma \int_{0}^{\tau_{p}} B_{1}^{e}(t) d t
$$

Rules: 1) Specify α
2) Use $\mathrm{B}_{1, \max }$ if we can
3) Shortest duration pulse

How to determine α ?

$$
\begin{gathered}
\alpha=\gamma \int_{0}^{\tau p} B_{1}^{e}(t) d t \\
\tau=\frac{\alpha}{\gamma B_{1, \max }}=\frac{\pi / 2}{2 \pi \cdot 42.57 H z / \mu T \cdot 60 \mu T}=0.098 \mathrm{~ms}
\end{gathered}
$$

Change of Basis (θ)

$$
\mathbf{R}_{Z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation by Alpha

$$
\mathbf{R}_{X}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right]
$$

Change of Basis $(-\theta)$

$$
\mathbf{R}_{Z}(-\theta)=\left[\begin{array}{ccc}
\cos (-\theta) & \sin (-\theta) & 0 \\
-\sin (-\theta) & \cos (-\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

RF Pulse Operator

$$
\begin{aligned}
\mathbf{R}_{\theta}^{\alpha} & =\mathbf{R}_{Z}(-\theta) \mathbf{R}_{X}(\alpha) \mathbf{R}_{Z}(\theta) \\
& =\left[\begin{array}{ccc}
\mathrm{c}^{2} \theta+\mathrm{s}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & -\mathrm{s} \theta \mathrm{~s} \alpha \\
\mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & \mathrm{~s}^{2} \theta+\mathrm{c}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \alpha \\
\mathrm{~s} \theta \mathrm{~s} \alpha & -\mathrm{c} \theta \mathrm{~s} \alpha & \mathrm{c} \alpha
\end{array}\right]
\end{aligned}
$$

RF Pulse Operator

$\vec{M}\left(0_{+}\right)=R F_{\theta}^{\alpha} \vec{M}\left(0_{-}\right)$

Hard RF Pulses

$$
\mathbf{R}_{0^{\circ}}^{90^{\circ}} 9 \mathbf{R}_{90^{\circ}}^{90^{\circ}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \quad \mathbf{R}_{90^{\circ}}^{90^{\circ}}=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Questions?

- Related reading materials
- Liang/Lauterbur - Chap 3.2

Kyung Sung, Ph.D.
KSung@mednet.ucla.edu
http://mrrl.ucla.edu/sunglab

Types of RF Pulses

- Excitation Pulses
- Inversion Pulses
- Refocusing Puises
- Saturation Pulses
- Spectrally Selective Pulses
- Spectrai-spatiai Puises

Excitation Pulses

Excitation Pulses

- Tip M_{z} into the transverse plane
- Typically 200 4 s to 5 ms
- Non-uniform across slice thickness
- Imperfect slice profile
- Non-uniform within slice
- Termed B1 inhomogeneity
- Non-uniform signal intensity across FOV

90° Fxcitation Pıilse

Z

X
\mathbf{Y}
DCVI

Small Flin Ande Excitation Z

Excitation Pulses - Applications

- 90° RF Pulse
- Spin Echo
- Saturation Recovery
- Small Flip Angle (<~20ㅇ)
- FLASH (East Low Angle Shot) - AKA SPGR
- Moderate Flip Angle $\left(30^{\circ}-90^{\circ}\right)$
- TrueFISP

Inversion Pulses

Inversion Pulses

- Typically, 180° RF Pulse
- non- 180° that still results in -Mz
- Invert Mz to -Mz
- Ideally produces no Mxy
- Hard Pulse
- Constant RF amplitude
- Typically non-selective
- Soft (Amplitude Modulated) Pulse

X
\mathbf{Y}

Inversion Pulse - Applications

- T1 species nulling/attenuation
- STIR (Short Iau Inversion Recovery)
- Suppress specific tissue-T1
- SPECIAL (Spectral Inversion at Lipids)
- Suppress lipid signals (short T1)
- FLAIR (Eluid Attenuated Inversion Recovery)

Refocusing Pulses

- Typically, 180° RF Pulse
- Provides optimally refocused Mxy
- Largest spin echo signal
- non-180 ${ }^{\circ}$
- Partial refocusing
- Lower SAR
- Multiple non- 180° produce stimulated echoes

Refociusinn Pılses Z

X

Refocusing Pulses - Applications

- Spin Echo imaging
- RARE
- Rapid Acquisition with Relaxation Enhancement
- RF Excitation followed by 180° train
- Reduce acquisition time by N -echoes
- Common for T2-weighted imaging
- AKA Fast Spin Echo
- Spin-Echo EPI

