Image Reconstruction Parallel Imaging II

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2021.05.25

Class Business

- Final project abstract / presentation
 - Abstract due on 6/4 by 5pm
 - Recorded presentation file due on 6/7 by 5pm
 - Final Project Presentation and Q&A Session on 6/8 (10-12pm)

- Office hours
 - Instructors: Fri 10-12 noon
 - email beforehand would be helpful

Today's Topics

- Parallel Imaging
 - SMASH review
 - Auto-SMASH
 - GRAPPA

Parallel Imaging (SMASH)

SMASH

Simultaneous Acquisition of Spatial
 Harmonics (SMASH) uses linear
 combinations of acquired k-space data from multiple coils to generate multiple data sets
 with offsets in k-space

SMASH Review

Signal Equation:

$$\hat{m}_j(k_x, k_y) = \int_y \int_x C_j(x, y) m(x, y) \exp^{-i2\pi(k_x \cdot x + k_y \cdot y)} dx dy$$

m(x,y) = image $C_j(x,y) = j^{th}$ coil sensitivity

$$\hat{m}_j(k_y) = \int_y C_j(y) m(y) \exp^{-i2\pi(k_y \cdot y)} dy$$

SMASH Review

 The linear combination of coil sensitivities looks like sinusoids:

$$e^{-i2\pi(m\Delta k_y)y} = \sum_{j=0}^{L-1} a_{j,m} C_j(y)$$

• Once we have $a_{j,m}$,

$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y}e^{-2\pi (m\Delta k_y)y}dy$$

$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y}\sum_{j=0}^{L-1} a_{j,m}C_j(y)dy$$

SMASH Review

$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y} \sum_{j=0}^{L-1} a_{j,m} C_j(y) dy$$

$$L-1$$

$$\hat{m}(k_y + m\Delta k_y) = \sum_{j=0}^{L-1} a_{j,m} \int_{y} C_j(y) m(y) e^{-i2\pi k_y y} dy$$

$$\hat{m}(k_y + m\Delta k_y) = \sum_{j=0}^{L-1} a_{j,m} m_j(k_y)$$

To the board ...

Key Points of SMASH

- k-space lines are synthesized by combining signals from multiple coils such that it creates a partial replacement for a phase encoding gradient
- Decreases acquisition time by 1/N
 - N is the number of generated spatial Harmonics

$$\sum_{j} a_{j,m} C_j(y) = e^{-i2\pi \Delta k_y y}$$

Spatial Harmonic Generation Using Coil Arrays

$$C_m^{comp}(y) = \sum_j a_{j,m} C_j(y) = e^{-i2\pi m\Delta k_y y}$$

- Linear surface coil array sensitivities C_j are combined with linear weights, $a_{j,m}$, to produce composite sinusoidal sensitivity
- Composite sensitivities are arranged to be spatial harmonics
- m is an integer, chosen to be a desired harmonic

Theory: Spatial Harmonics

- 8 coil array
- Gaussian coil sensitivity distribution used
- m = 0, 1, -1, 2, -2
- Each spatial harmonic generated is shifted by -mΔk_y

SMASH Reconstruction

SMASH Reconstruction

Auto-SMASH

• Estimate $a_{j,m}$ directly

• Solve for $a_{j,m}$ from calibration data & synthesize the missing data with $a_{j,m}$

Parallel Imaging (GRAPPA)

GRAPPA

- Coil sensitivities are
 - Smooth in image space
 - Local in k-space

$$m(\vec{x})C_j(\vec{x})$$

GRAPPA

Missing information is implicitly contained by adjacent data

GRAPPA Reconstruction

 How do we find missing data from these samples?

$$\hat{m}_k(k_x,k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x,k_y + j\Delta k_y)$$
 missing data for each coil neighborhood data for each coil

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$

- Assume there is a fully sampled region
- We have samples of what the GRAPPA synthesis equations should produce

Invert this to solve for GRAPPA weights

- Calibration area has to be larger than the GRAPPA kernel
- Each shift of kernel gives another equation

Here, 3x3 kernel, 5x5 calibration area gives 9 equations

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$

Write as a matrix equation

GRAPPA Coefficients

$$\underline{M_{k,c}} = M_A \cdot a_k$$

Calibration Neighborhood

Data Data

GRAPPA weights are:

$$a_k = (M_A^* M_A + \lambda I)^{-1} M_A^* M_{k,c}$$

GRAPPA - Synthesis

Auto-Calibration Parallel Imaging

$$\sum_{l=1}^{L} S_{l}^{ACS}(k_{y} - m\Delta k_{y}) = \sum_{l=1}^{L} n(l, m) S_{l}(k_{y})$$

GRAPPA formula to reconstruct signal in one channel

$$S_{j}(k_{y}-m\Delta k_{y})=\sum_{l=1}^{L}\sum_{b=0}^{N_{b}-1}n(j, b, l, m)S_{l}(k_{y}-bA\Delta k_{y})$$

A: Acceleration factor n(j,b,l,m): GRAPPA weights

Griswold et al. MRM, 47(6):1202-1210 (2002)

GRAPPA Reconstruction

GRAPPA

- Compute GRAPPA weights from calibration region
- Compute missing k-space data using the GRAPPA weights
- Reconstruct individual coil images
- Combine coil images

Considerations of GRAPPA

- Calibration region size
- GRAPPA kernel size
- Sample geometry dependence

GRAPPA

- Compute GRAPPA weights from calibration region
- Compute missing k-space data using the GRAPPA weights
- Reconstruct individual coil images
- Combine coil images

Summary

- Parallel imaging utilizes coil sensitivities to increase the speed of MRI
- Cases for parallel imaging
 - Higher patient throughput,
 - Real-time imaging/Interventional imaging
 - Motion suppression
- Cases against parallel imaging
 - SNR starving applications

Summary

- Many approaches:
 - Image domain SENSE
 - k-space domain SMASH, GRAPPA
 - Hybrid ARC

- We will focus on two:
 - SENSE: optimal if you know coil sensitivities
 - GRAPPA: autocalibrating / robust

Further Reading

- Multi-coil Reconstruction
 - http://onlinelibrary.wiley.com/doi/10.1002/ mrm.1910160203/abstract
- SENSE
 - http://www.ncbi.nlm.nih.gov/pubmed/10542355
- SMASH
 - http://www.ncbi.nlm.nih.gov/pubmed/9324327
- Parallel Imaging Overview
 - http://www.ncbi.nlm.nih.gov/pubmed/17374908

Thanks!

- Next time
 - Compressed Sensing & Artificial Intelligence

Kyung Sung, PhD

ksung@mednet.ucla.edu

https://mrrl.ucla.edu/sunglab/