Image Reconstruction Parallel Imaging I

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2020.05.19

Today's Topics

- Multicoil reconstruction
- Parallel imaging
 - Image domain methods:
 - SENSE
 - k-space domain methods:
 - SMASH
 - GRAPPA (next time)

Multi-coil Arrays

Multi-coil Sensitivity

 $\|\vec{B}(\vec{r})\|$

Multi-coil Reconstruction

- Each coil has a complete image of whole FOV and an amplitude and phase sensitivity $C_l(\vec{x}) \qquad l = 1, 2, \dots L$
- Coils are coupled, so noise is correlated $E[n_i n_j] = \Psi$
- Received data from coil I:

 $m_l(\vec{x}) = C_l(\vec{x})m(\vec{x}) + n_l(\vec{x})$

• Given $m_l(x)$, how do we reconstruct m(x)?

Multi-coil Reconstruction

For a particular voxel x

 $m_s(\vec{x}) = Cm(\vec{x}) + n$ L x 1 L x 1 L x 1

Minimum Variance Estimate

$$\hat{m}(\vec{x}) = (C^* \Psi^{-1} C)^{-1} C^* \Psi^{-1} m_s(\vec{x})$$
1 x 1 1 x L L x 1

Covariance (variance)

$$COV(\hat{m}(\vec{x})) = C^* \Psi^{-1} C$$

What if Ψ is $\sigma^2 I$?

$$\hat{m}(\vec{x}) = (C^*C)^{-1}C^*m_s(\vec{x})$$

Intensity Phase Correction Correction

Approximate Solution

• Often we don't know $C_l(x)$, but

$$m_l(\vec{x}) = C_l(\vec{x})m(\vec{x})$$

• Approximate solution:

$$\hat{m}_{SS}(\vec{x}) = \sqrt{\sum_{l} m_l^*(\vec{x}) m_l(\vec{x})}$$

• For SNR > 20, within 10% of optimal solution

PB Roemer et al. MRM 1990

- Parallel Imaging
 - Coil elements provide some localization
 - Undersample in k-space, producing aliasing
 - Sort out in reconstruction

Parallel Imaging

- Many approaches:
 - Image domain SENSE
 - k-space domain SMASH, GRAPPA
 - Hybrid ARC

- We will focus on two:
 - SENSE: optimal if you know coil sensitivities
 - GRAPPA: autocalibrating / robust

Parallel Imaging (SENSE)

Cartesian SENSE

$m_1(\vec{x_1}) = C_1(\vec{x_1})m(\vec{x_1}) + C_1(\vec{x_2})m(\vec{x_2})$

$m_2(\vec{x_1}) = C_2(\vec{x_1})m(\vec{x_1}) + C_2(\vec{x_2})m(\vec{x_2})$

 $n_1(ec{x_1})$ $m_1(\vec{x_1})$ $C_1(\vec{x_1})$ $C_1(\vec{x_2})$ $n_2(ec{x_1})$ $m_2(\vec{x_1})$ $C_2(\vec{x_1})$ $C_2(\vec{x_2})$ $m(\vec{x_1})$ + $m(\vec{x_2})$ Source $m_L(\vec{x_1})$ $C_L(\vec{x_1})$ $C_L(\vec{x_2})$ $n_L(ec{x_1})$ Voxels Sensitivity at Aliased Source Voxels Images OR 2 x 1 m + n m_s = L x 2 L x 1 $L \times 1$

$$\hat{m}(\vec{x}) = (C^* \Psi^{-1} C)^{-1} C^* \Psi^{-1} m_s(\vec{x})$$

$$2 \times 2 \qquad 2 \times L \qquad L \times 1$$

L aliased reconstruction resolves 2 image pixels

For an N x N image, we solve (N/2 x N) 2 x 2 inverse systems

For an acceleration factor R, we solve (N/R x N) R x R inverse systems

SENSE Reconstruction

Unwrap fold over in image space

SNR Cost

- How large can R be?
- Two SNR loss mechanisms
 - Reduced scan time
 - Condition of the SENSE decomposition
- SNR Loss

Geometry Factor

 Covariance for a fully sampled image (variance of one voxel):

$$\chi_F = \frac{1}{n_F} (C_F^* \Psi^{-1} C_F)^{-1}$$

• Covariance for a reduced encoded image:

$$\chi_R = \frac{1}{n_R} (C_R^* \Psi^{-1} C_R)^{-1}$$

To the board ...

Geometry Factor

- g-factor is critical since it depends on:
 - Acceleration
 - Spatial position
 - Aliasing direction
 - Coil geometry
- Minimizing g-factor drives system design
- Sense coils are different from traditional array coils

To the board ...

Parallel Imaging Tradeoffs

1/g-factor Map for R=4

∞ elements

32 elements

16 elements

Relative SNR Scale

12 elements

8 elements

g-factor and its impact on images 2.4 Rate 1 2 3 4

g-map

SENSE

aliased

Dependence on Coil Sensitivity

 Images reconstructed using coil sensitivity maps with different order P of polynomial fitting

P=0 P=1 P=2

Pruessmann et al. MRM 1999

Parallel Imaging (SMASH)

SMASH

 Simultaneous Acquisition of Spatial Harmonics (SMASH) uses linear combinations of acquired k-space data from multiple coils to generate multiple data sets with offsets in k-space

Phase Encoding by Amplitude Modulation

• Signal Equation:

$$S(k_x, k_y) = \int \int C(x, y) \rho(x, y) e^{-ik_x x - ik_y y} dx dy$$

 $\rho(x,y) = \text{spin density}$ C(x,y) = receiver coil sensitivity

Phase Encoding by Amplitude Modulation

$$S(k_x, k_y) = \iint C(x, y)\rho(x, y)e^{-ik_x x - ik_y y} dxdy$$

- If C(x,y) ≈ 1 (relatively homogeneous coil sensitivity), S(k_x,k_y) = FT{ρ(x,y)}
- But coils often do not have uniform sensitivity, and usually there is a fall-off of sensitivity with distance from the coil

Phase Encoding by Amplitude Modulation

- Use the arrangement of coils to construct sinusoidal sensitivity profiles
 - Sensitivity profiles are combination of multiple coils, whose signals are combined to produce the desired sinusoidal sensitivity

$$C^{comp}(y) = \cos(\Delta k_y^{comp} y) + i \sin(\Delta k_y^{comp} y)$$
$$= e^{i\Delta k_y^{comp} y}$$

The wavelength could be $\lambda = 2\pi/\Delta k_y = FOV$

Spatial Harmonic Generation Using Coil Arrays

$$C_m^{comp}(y) = \sum_j a_{j,m} C_j(y) = e^{-i2\pi m \Delta k_y y}$$

- Linear surface coil array sensitivities C_j are combined with linear weights, a_{j,m}, to produce composite sinusoidal sensitivity
- Composite sensitivities are arranged to be spatial harmonics
- m is an integer, chosen to be a desired harmonic

Theory: Spatial Harmonics

- 8 coil array
- Gaussian coil sensitivity distribution used

Each spatial harmonic generated is shifted
 by -m∆k_y

Coil #1	Coil #2	Coil #3
---------	---------	---------

Interleave the Harmonics

SMASH Reconstruction

Three-Element Array

Reference images

SMASH images

Four-Element Array

Reference images

SMASH images

Key Points of SMASH

- k-space lines are synthesized by combining signals from multiple coils such that it creates a partial replacement for a phase encoding gradient
- Decreases acquisition time by 1/N
 - N is the number of generated spatial Harmonics

$$\sum_{j} a_{j,m} C_j(y) = e^{-i2\pi\Delta k_y y}$$

Sodickson et al. MRM 1997

Summary

- Parallel imaging utilizes coil sensitivities to increase the speed of MRI
- Cases for parallel imaging
 - Higher patient throughput,
 - Real-time imaging/Interventional imaging
 - Motion suppression
- Cases against parallel imaging
 - SNR starving applications

Further Reading

- Multi-coil Reconstruction
 - <u>http://onlinelibrary.wiley.com/doi/10.1002/</u> <u>mrm.1910160203/abstract</u>
- SENSE
 - <u>http://www.ncbi.nlm.nih.gov/pubmed/10542355</u>
- SMASH
 - <u>http://www.ncbi.nlm.nih.gov/pubmed/9324327</u>
- Parallel Imaging Overview
 - <u>http://www.ncbi.nlm.nih.gov/pubmed/17374908</u>

Thanks!

Kyung Sung, PhD ksung@mednet.ucla.edu http://kyungs.bol.ucla.edu