UCLA Radiology 2018 Fellows' Lectures 2018.08.13

Holden H. Wu, Ph.D.

Magnetic Resonance Research Labs Department of Radiological Sciences, University of California, Los Angeles, CA, USA

Outline

- MRI and Motion
- Techniques to Manage Motion
- Managing Cardiac Motion
- Managing Respiratory Motion

- MRI is slow (vs. US, CT)
- MRI time scales
 - **–** TR: 1 1000 ms
 - image: 100 ms 10 min

- Motion Characteristics
 - voluntary vs. non-voluntary
 - periodic vs. aperiodic
 - rigid vs. non-rigid
 e.g., translation, rotation, shearing ...
 - inter-voxel vs. intra-voxel
 - inter-view vs. intra-view

- Motion Sources, Time Scales, Magnitudes
 - cardiac: ~60 bpm (1 Hz), mm
 - respiratory: ~5 sec/breath (0.2 Hz), mm cm
 - bulk motion: mm cm
 - vascular pulsation, CSF pulsation: mm
 - peristalsis: mm
 - swallowing, coughing, twitching: mm cm
 - blood flow

- Effects of Motion on MRI Quality
 - image blurring
 - aliasing artifacts
 - signal dropout
 - other artifacts

Techniques to Manage Motion

- Subject Setup and Communication
- Acquisition Methods
- Reconstruction Methods

Subject Setup and Communication

- Explain Scan Procedures
- Medication (if required)
 - reduce claustrophobia
 - reduce peristalsis
- Coaching (e.g., stay still, breath hold)
- Coil and placement
- ECG and bellows placement
- Reassurance and breaks

Acquisition Methods

- Suppress Signal from Moving Tissues
 - e.g., flow suppression, spatial saturation
- Swap Frequency and Phase Encoding Directions
 - e.g., A/P vs R/L in axial acquisitions
- Multiple Averages
- Disadvantages?

courtesy of Dr. Kyung Sung

Acquisition Methods

- Accelerate the Acquisition
 - partial Fourier
 - parallel imaging
 - multi-slice imaging
 - single-shot EPI
 - single-shot HASTE
- Use Motion-Robust Acquisition
 - gradient moment nulling
 - PROPELLER / BLADE, radial, spiral, etc.
- Disadvantages?

Reconstruction Methods

- Reconstruct Undersampled Data
 - partial Fourier
 - parallel imaging
- Motion Compensation
 - may need some motion information
 - reject inconsistent data
 - correct motion-affected data
- Disadvantages?

Managing Cardiac Motion

- Cardiac Motion
 - non-voluntary
 - non-rigid
 - quasi-periodic
 - ~60 bpm (1 Hz)
 - mm scale

Managing Cardiac Motion

Cardiac Phases

Phase 1	Phase 2	Phase 3
---------	---------	---------

Temporal duration of the cardiac phases?

- <50 ms to resolve cardiac motion (i.e., >20 frames/sec)
- depends on sampling parameters (and trade-offs)

Managing Cardiac Motion

Real-Time MRI

Managing Cardiac Motion

Real-Time MRI

courtesy of Dr. Daniel Ennis

Managing Cardiac Motion

- Real-Time MRI: Challenges
 - compromises in spatial resolution and/or temporal resolution (i.e., frame rate)
 - typical parameters
 - 2-3 mm in-plane resolution 50-200 ms/frame (5-20 frame/sec)
 - may not have high enough spatial resolution and/or frame rate to resolve cardiac motion

Managing Cardiac Motion

Cardiac Triggering

- ECG or pulse ox signal
- sync scan to cardiac cycle
- assume steady HR
- segmented acquisition acquire subset of data each HB fully acquire data over multiple HBs
- Need to manage respiratory motion as well e.g., breath holding (BH)

Managing Cardiac Motion

Managing Cardiac Motion

How many lines per segment?

- LinesPerSeg * TR = temporal duration of "cardiac phase"

Managing Cardiac Motion

How many heartbeats (HB) needed?

- need M = NumKspLines / LinesPerSeg segments to cover k-space

Radiology

UCLA

- If we need M segments to cover k-space, need M heartbeats

Managing Cardiac Motion

UCLA Radiology

Managing Cardiac Motion

Example

- NumKspLines = 128
- LinesPerSeg = 8; TR = 5 ms
- temporal duration of "cardiac phase" = 40 ms (i.e., 25 phases per sec)
- need M = 128/8 = 16 segments
- need a 16-HB breath hold scan

Managing Cardiac Motion

Cardiac Triggering

No triggering

ECG triggering

Fig. 12.1, Handbook of MRI Pulse Sequences

Managing Cardiac Motion

Cardiac Triggering

courtesy of Dr. Daniel Ennis

Managing Cardiac Motion

- Cardiac Triggering: Challenges
 - unreliable ECG signal especially at higher field (B₀≥3T)
 - variations in each HB
 - fast HR; irregular HR
 - BH limits scan duration limits # HBs limits segmentation and # cardiac phases

Managing Cardiac Motion

New Techniques: Free-Breathing Cardiac Cine MRI

David Geffen School of Medicine

courtesy of Dr. Daniel Ennis

Managing Cardiac Motion

New Techniques: Free-Breathing 4D Cardiovascular MRI

Han et al. MRM 2017; Zhou et al. NMR Biomed 2017; Han et al. MRM 2015; Nguyen et al JMRI 2017; Nguyen et al JCMR 2017; Finn et al. JMRI 2017

courtesy of Dr. Peng Hu

- Respiratory Motion
 - voluntary
 - non-rigid
 mostly S/I
 - quasi-periodic
 - ~5 sec/breath (0.2 Hz)
 - mm cm scale

- Breath Holding (BH)
 - temporarily suspend respiratory motion
 - usually end expiration or end inspiration
 - 10-20 sec in patients
 - may need multiple BH (sets of slices/slabs)

Managing Respiratory Motion

No breath-holding

With breath-holding

Fig. 12.15, Handbook of MRI Pulse Sequences

Managing Respiratory Motion

BH T2w HASTE AXL (2D)

BH T2w HASTE COR (2D)

Managing Respiratory Motion

BH T1w VIBE AXL (3D)

BH T1w VIBE COR (3D)

- BH MRI: Challenges
 - short BH duration compromises in scan parameters
 - imperfect BH
 - residual motion artifacts (e.g., aliasing)
 - multiple BH scans wears subject down inconsistent BH position
 - patient may be unable to BH

- Free Breathing (FB) + Multiple Averages
 - average out the motion
 - e.g., 3-8 averages
 - can be used for different types of motion

- FB + Multiple Averages: Challenges
 - variations in respiratory pattern
 - image blurring
 - residual artifacts (e.g., aliasing)
 - long scan

- FB + Respiratory Gating
 - measure respiratory status / position
 e.g., bellows, MR navigator signal
 - acquire data when in consistent resp. state
 - fully acquire data over multiple resp. cycles

Managing Respiratory Motion

MR Navigator

courtesy of Dr. Fei Han

Managing Respiratory Motion

Respiratory Gating

Prospective vs. Retrospective

courtesy of Dr. Fei Han

Managing Respiratory Motion

FB T2w TSE AXL (2D)

- FB + Respiratory Gating: Challenges
 - inconsistent respiratory pattern
 - residual motion artifacts (e.g., aliasing)
 - can be long scans with unknown duration

Managing Respiratory Motion

New Techniques: Real-Time Non-Cartesian 2D MRI

courtesy of Samantha Mikaiel

Managing Respiratory Motion

New Techniques: FB Non-Cartesian 3D MRI

BH 3D Cartesian MRI

FB 3D Stack-of-Radial MRI

3D Cartesian

AXL

COR reformat

3D Stack of Radial

AXL

COR reformat

courtesy of Tess Armstrong

UCLA Radiology

Summary

- MRI and Motion
- Techniques to Manage Motion
- Managing Cardiac Motion
- Managing Respiratory Motion

Acknowledgments

HoldenWu @ <u>mednet.ucla.edu</u>

TANK SCHOOL OF HERE

David Geffen School of Medicine

http://mrrl.ucla.edu