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ABSTRACT: Quantitative phase imaging (QPI) is a label-free,
wide-field microscopy approach with significant opportunities for
biomedical applications. QPI uses the natural phase shift of light
as it passes through a transparent object, such as a mammalian
cell, to quantify biomass distribution and spatial and temporal
changes in biomass. Reported in cell studies more than 60 years
ago, ongoing advances in QPI hardware and software are leading
to numerous applications in biology, with a dramatic expansion
in utility over the past two decades. Today, investigations of cell
size, morphology, behavior, cellular viscoelasticity, drug efficacy,
biomass accumulation and turnover, and transport mechanics are
supporting studies of development, physiology, neural activity,
cancer, and additional physiological processes and diseases. Here, we review the field of QPI in biology starting with
underlying principles, followed by a discussion of technical approaches currently available or being developed, and end with an
examination of the breadth of applications in use or under development. We comment on strengths and shortcomings for the
deployment of QPI in key biomedical contexts and conclude with emerging challenges and opportunities based on combining
QPI with other methodologies that expand the scope and utility of QPI even further.
KEYWORDS: microscopy, quantitative phase imaging, holography, tomography, interferometry, phase retrieval, diagnostics, biophysics

Advances in microscopy have driven advances in biology
and medicine by enabling visualization and greater
perspectives on the machinery of life. In this review, we

discuss advances in quantitative phase imaging (QPI), a label-
free microscopy technique that measures fundamental cell
properties and behaviors, including mass, mechanical proper-
ties, growth, and intracellular transport. We discuss the history
of QPI, technical aspects of its applications, and emerging
developments that will shape future applications of this
technology for addressing opportunities and challenges in
biomedicine.

QPI methods measure the phase shift of light as it passes
through a transparent sample. This phase shift is caused by
light slowing down as it passes through a material with a higher
refractive index than water1 and can be written as
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where ϕ is the phase shift of light (in fractions of a wavelength)
contributed by all elements in the sample of varying refractive
index, n, through the height of the sample, h, in the z direction.
This measured phase shift is directly proportional to the dry

mass content of a biological sample.2 Dry mass includes all
mass excluding water and is therefore inclusive of biological
macromolecules. For example, the increase of refractive index
(real component) for a protein solution is proportional to the
increase in protein concentration.3 The slope of refractive
index versus mass concentration defines this relationship and is
called the specific refractive increment.1,4 The average specific
refractive increment, α, for the typical contents of mammalian
cells, including proteins, nucleic acids, sugars, and lipids is
∼1.8−2.0 × 10−4 m3/kg,2,3,5 with a value of 1.85 × 10−4 m3/
kg1 used as a typical choice that is correct to within ∼6%.5 The
cell dry mass, m, can then be calculated using the specific
refractive increment, α, of a sample by2

=m dA
2 (2)

where this integral is performed over A, the imaged area of the
cell, and λ is the wavelength of light used for imaging. The
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ability of QPI to measure quantitative, biophysical features of
the cell, such as mass, is central to its applications and potential
in biomedicine.

Along with QPI, there are other widely used methods for
leveraging the phase shift of light as it passes through a cell or
other biological sample to generate image contrast. These
include Zernike phase contrast microscopy6,7 and Nomarski
differential interference contrast (DIC) microscopy.8 In phase
contrast microscopy, a sample is illuminated with a limited
spatial frequency range (background light). The refractive
index distribution of nonuniform structures within cells then
causes this background light to diffract and undergo a phase
shift relative to the unperturbed background light. Both this
diffraction and phase delay helps to generate contrast in the
resulting image. As a result, even minute differences in
refractive index translate into amplitude changes in the
resulting image. In DIC microscopy, image contrast arises by
splitting the incident light based on orthogonal polarization
and introducing a small lateral shear of one polarization angle
relative to the other using a Nomarski-modified Wollaston
prism. Recombination of this polarized light after passing
through the sample at a second Wollaston prism causes
interference based on the relative phase shift between the two

polarization angles. The image intensity in DIC microscopy,
therefore, relates to the gradient of phase in the shear direction.
Both phase contrast and DIC microscopy enable label-free
measurements of cell shape and position. However, the
intensity of images from phase contrast and DIC imaging do
not linearly relate to the corresponding phase unless used as
the basis for a phase retrieval method.9,10 As a result, and in
contrast to QPI, phase contrast and DIC microscopy remain
qualitative phase methods. As discussed further, the
quantitative data available with QPI enable more precise
statistical and incremental studies for probing biological
mechanisms than are available with qualitative methods.

In this review, we introduce the fundamental problem of
QPI and trace the development of methods to solve this
problem (Figure 1a). With the ever-increasing availability of
computational resources, these solutions have increasingly
converged, leading to a number of key applications in
quantitative biology and a dramatic increase in research
interest in QPI (Figure 1b). Finally, we conclude by discussing
four key ongoing areas of QPI research that we believe will
have the greatest influence in the future.

Figure 1. QPI has undergone a steady increase in interest driven by advances in different fields of optics. (a) Schematic of four main QPI
approaches with interferometry (green timeline), holography (red timeline), wavefront sensing (orange timeline), and phase retrieval
algorithms (light blue timeline) are indicated. These methods have improved extensively over time with the emergence of greater
computational resources (thick black line). The improved efficiency of computational resources led to technical advances in QPI that
include quantitative phase tomography (magenta timeline), in vivo QPI (dark blue timeline), multimodal approaches (brown timeline), and
machine learning methods (yellow-green timeline). (b) The growth in interest and advances in QPI over time depicted by the number of
publications on Web of Science using search terms “Quantitative Phase Imaging” or “Quantitative Phase Microscopy” by year.
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SOLVING THE FUNDAMENTAL PROBLEM OF
QUANTITATIVE PHASE
QPI techniques seek to recover the phase shift of light that
passes through a sample. However, conventional optical
detectors recover only the amplitude of incident light, so
additional optics and/or computations are necessary to recover
phase shift information. This is the fundamental problem that
all QPI methods must solve, which has stimulated the
development of multiple QPI techniques. Here, we discuss
the development of QPI in the context of these solutions,
focusing on the four primary approaches that have had the
largest impact on modern QPI methods and applications:
interferometry,11,12 wavefront sensing,13,14 phase retrieval,15,16

and digital holography.17 While many of these approaches have
integrated methods and concepts from electron, X-ray, and
radio-wave techniques, here we use the term QPI to refer
specifically to methods for phase retrieval based on visible
light. We then discuss the convergence of these various
techniques at the end of this section.

Interferometry. One method for computing phase
information is interferometry. In interferometry, light incident
on a sample is split into two paths, a sample path and a
reference path, before recombining at a detector (Figure 2a).
The amplitude of the resulting interference image relates to the
phase shift of light passing through the sample with respect to
the reference path by constructive and destructive interference
between the light from these two paths. Interferometry was
invented by Albert Michelson and improved further in
collaboration with Edward Morley and famously used for the
Nobel prize winning 1887 Michelson−Morley experiment that
provided evidence against the existence of the luminiferous
aether18 (Figure 1a). Major early improvements were the
introduction of separate sample and reference cells in the
Mach−Zehnder interferometer19 and use of thin calcite films
faced at 45° to enable microinterferometry.20 These dual path
interferometers were followed by common-path interferom-
eters where the reference beam and sample beam travel along
the same path, reducing measurement sensitivity to vibra-

Figure 2. Examples of the four primary QPI lineages shown in Figure 1. (a) Michelson interferometry uses the interference between light
beams passing through a sample and a reference to generate an interferogram that encodes phase information in the image amplitude (e.g.
ref 12). The number of visible interference fringes generated depends on the optical setup and coherence of the light source, with low
coherence light sources (e.g., white light)24 producing fewer visible fringes than highly coherent lasers.25 An in-focus interferogram is then
used to generate the phase image, and, in phase shifting interferometry, the reference and sample path lengths are adjusted in steps, e.g., with
a piezo, to shift the fringes by a fraction of a wavelength.26 (b) DHM computationally reconstructs the phase image from an interferogram
obtained using an interferometer.27,28 Here, a Mach−Zehnder interferometer with a slightly off-axis reference beam is used to avoid the twin
image problem, where the image and its conjugate sit on top of one another. (c) Wavefront sensing with QWLSI uses a diffraction grating
that captures gradients in phase shift as local distortions in the resulting intensity grid pattern on the camera sensor.14 A comparison of
sample images to a reference wavefront image is used to determine the wavefront distortion due to the sample itself, with numerical
integration to recover phase. (d) Differential phase contrast (DPC) microscopy, a deterministic phase retrieval method, images a sample
using half-circle patterns of illumination that extend beyond the microscope objective numerical aperture. Light refraction through the
sample then causes intensity increases (or decreases) in one-half-circle image and decreases (or increases) in image intensity with the
opposing half-circle pattern. The normalized difference between these two images approximates the gradient of phase along one axis.15

Multiple pairs of images are collected, and the phase is numerically reconstructed.
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tion.21,22 A common-path interferometer microscope built by
Dyson was used to image fixed biological specimens.23

The next major advance in QPI toward biomedical
applications was the calibration of a specific refractive
increment3 using varying specimen compositions29,30 that
enabled the calculation of cell dry mass. The earliest
applications of cell dry mass measurements with interferometry
mostly focused on regularly shaped organisms such as yeast
and bacteria to simplify calculations.31,32 Early work on
irregularly shaped cells used multiple images to find the total
projected area and average optical thickness, the product of
which is proportional to total cell dry mass through the specific
refractive increment.33 The integration of the scanning optical
microspectrograph with the interference microscope increased
resolution,34 although not to the level of modern systems.35

Other major improvements in interferometry focused on
convenience for use in biological studies. This included a
polarization interference microscope that replaced the partially
silvered reflecting layers of earlier common path systems with a
birefringent layer.20 The Baker interference microscope, which
was used widely on mammalian cells, is a polarizing
microscope modified into a two beam interferometer.36,37

Additional improvements included the use of a warmed stage
to measure live yeast38,39 or bacteria32 and the replacement of
uneven mercury lamp illumination with fiber optics. Although
the relationship between amplitude and phase in interfero-
metric images is straightforward, the required phase reference
increases the complexity and number of optical elements and
increases susceptibility to vibrations40 and instability of a light
source.41 Therefore, it was not until the introduction of digital
cameras and image processing42,43 that interferometry
provided reliable and reproducible quantitative data for
internally complex mammalian cells.

Advances in a number of areas of interferometry-based QPI
measurements benefit from the increasing use of computers.
Automated image focusing has improved interference imaging
accuracy and speed.44 Single-wavelength interferometry cannot
distinguish adjacent imaging pixels with a phase difference
exceeding one-quarter of a wavelength,2 but substantially larger
phase shifts can be accurately measured by digitally combining
images taken at two wavelengths.45 Errors introduced from the
unevenness of a reference surface can also be digitally
corrected.46 Phase shifting interferometry, in which multiple
interference images are acquired at subwavelength shifts in the
reference relative to the sample path length, corrects error due
to external disturbances.41 Applications of this approach with
the required temporal and spatial resolution to study subtle
changes in the shape of cancer cells require tight integration
with computers for motion control and image processing.35

Automated cell segmentation enables interferometry to
measure the growth of many cells simultaneously in uniform12

or mixed populations.47 Automated segmentation has also
improved the application of phase unwrapping or removal of
phase jumps of one wavelength (2π radians) created due to the
inherent ambiguity in interpreting interferometry data, thereby
reducing errors in dry mass measurements.48 Overall,
computer control of interference microscopes and digital
image processing of the resulting data has revolutionized this
100+ year old method and led to a convergence with other
methods, as discussed below.

Digital Holography. Digital holography directly descends
from interferometry (Figure 1a) and also captures the
interference between a reference and sample beam. However,

unlike interferometry, digital holography does not typically
require mechanical scanning of the resulting interference
fringes. In digital holography, the interferogram is captured
with a digital camera placed at a known distance in front of the
image plane.49 This interferogram is analyzed using diffraction
theory to reconstruct the complex object wavefront, including
the phase shift and intensity modulation of light passing
through the sample. Digital holography emerged from the
establishment of holography by Gabor50 for which he won the
Nobel prize in 1971.51 Gabor’s work demonstrated that light
from a point source interfering with secondary waves from
light scattered by an object produces a negative photograph of
a three-dimensional (3D) image. However, a conjugate image
is also superimposed on the reconstructed image, resulting in
ambiguity due to the presence of this twin image. It was later
shown that use of an off-axis reference beam can separate the
real and conjugate image.52−55 Marine plankton provided an
early application of live cells imaged using holography in a
chamber with close proximity to a photographic plate.56

The use of digital cameras57−59 and numerical reconstruc-
tion60 has greatly improved the accessibility of holography.
Since the 1970s, holography has been used extensively for cell
imaging.61 Later, digital holography was introduced for 3D
imaging enabling visualization of specimens with highly
fluctuating phase profiles such as pollen.62 Initial applications
of holography to quantitative phase measurements were
restricted to measuring the refractive index distribution of
inorganic materials,63. The broader application of digital
holography to QPI was enabled by the development of
efficient computational reconstruction of holograms in the
early 2000s64 as well as developments in the field of electron
microscopy.65 This led to digital holographic microscopy
(DHM) of live neuron cells in culture with high phase
accuracy.27 Improved computational resources sped up the
hologram reconstruction process for applications such as
mapping the refractive index of cells.66,67 Schlieren images
were also generated from holography of patterns in inorganic
materials,68 which were later used to measure optical
thickness.69

DHM has been implemented in multiple hardware
configurations.70 Of these, the Mach−Zehnder interferome-
ter19 is the most widely used (Figure 2b), although this
approach has the same disadvantages of other double-path
interferometers discussed previously. Traditionally, DHM
requires spatially and temporally coherent laser light, leading
to speckle noise. However, a number of white light and
incoherent DHM alternatives are available, including spatial
light interference microscopy (SLIM), a combination of digital
holography and Zernike’s phase contrast microscopy.71 By
processing a hologram of the 3D specimen wavefront, DHM
also allows computational refocusing for the evaluation and
standardization of QPI methods, discussed in more detail
below.

Of note, DHM loses resolution with removal of the twin-
image generated by in-line holography using the sideband
technique72 and through sideband filtering and cropping in the
Fourier domain during hologram reconstruction in off-axis
holography.65 This loss of resolution of the reconstructed
phase can be compensated by using higher numerical aperture
and magnification objectives for imaging,73 at the expense of
obtaining fewer imaging pixels of phase data relative to other
methods, such as phase shifting interferometry. Overall, DHM
has high temporal resolution74 and can be used for accurate
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phase measurements due to typically high signal-to-noise ratio
in the reconstructed phase images.75

Wavefront Sensing. Wavefront sensing refers to ap-
proaches that seek to recover the aberrations in a wavefront
caused by phase delays within a sample. Important wavefront
sensing methods include Shack−Hartmann wavefront sens-
ing76 and Ronchi sensing.77 Of these, the Shack−Hartmann
wavefront sensor is the most commonly used version, with
construction that uses either an array of evenly spaced holes or
a lens microarray for improved image quality. Either of these
arrays creates a pattern of focused light spots on the camera
sensor.78 Aberrations in the light wavefront causes these spots
to move, allowing reconstruction of the total phase shift
through the sample.

The earliest work in wavefront sensing used lateral shearing
interferometry.77,79 Lateral shearing wavefront imaging is
similar to Nomarski DIC imaging in that the incident wave
shears into two identical but tilted wave fronts that then
interfere. The resulting single-direction phase gradient from
lateral shearing interference data lacks the necessary gradient
information to generate a complete two-dimensional (2D)
phase-field and thus requires the use of multiwave
interferometry techniques80 that generate more than one
gradient direction. Numerical reconstruction of the wavefront
is possible, with such methods developed in 1986.81 However,
this method is computationally intensive and was later used in
practice on images captured using a three-wave shearing
interferometer configuration.82 Typical wavefront sensors lack
the resolution needed for imaging cells. Quadriwave lateral
shearing interferometry (QWLSI) uses a modified, micro-
fabricated Hartmann mask, resulting in a pattern of dark spots
that measures phase gradients along perpendicular directions,83

allowing the measurement of both intensity and phase (Figure
2c). Importantly, this mask enables high-resolution images to
support the live cell application of wavefront sensing in
measurements of phase using QWLSI on erythrocyte cells.84

Wavefront sensing has multiple advantages, such as higher
sensitivity, speed, and temporal resolution with less complex
instrumentation than typical interferometry methods.14 Im-
portantly, wavefront sensing techniques do not require a
reference arm14 and therefore are less affected by vibrations
and other disturbances than double-path systems. Wavefront
sensing typically also uses single image acquisition, resulting in
high potential temporal resolution.85 However, this approach
has a trade-off with lower spatial resolution, as the light from
each phase measurement spot is spread over many pixels on a
digital camera sensor. Similar to DHM losing resolution due to
sideband cropping in Fourier space during imaging and
reconstruction,86 this loss can be compensated for by using a
higher NA objective for imaging.73 Diffraction limited
resolution in QWLSI can, therefore, be achieved in high
magnification imaging, enabling phase sampling at double the
diffraction limit and satisfying the Nyquist criteria.87 Thus,
wavefront sensing is a good choice for imaging high-speed cell
dynamics requiring accurate phase information, but has the
downside of lower spatial resolution. Theoretically single cell
imaging with QWLSI phase images using an ideally matched
reference image should result in flattened background, but
there are often residual optical aberrations after reference
subtraction88 requiring a low degree polynomial fitting to
flatten the image background for accurate biomass measure-
ments.75 In practice, these can result due to deviations in focal
plane when screening across large surfaces or using multiwell

plates, when changing media levels over the course of an
experiment, or when using a previously acquired phase
reference to enable faster imaging. Although other QPI
methods like DHM can be improved with similar fitting
procedures,89 background fluctuations (when present) and an
inherent amount of both spatial and temporal noise due to the
recovery of phase by numerical integration can impact cell
segmentation. Overall, however, this approach can achieve high
accuracy for measurements of the dry mass of cells, even at
high cell densities.90

Phase Retrieval Algorithms. Phase retrieval refers
broadly to noninterferometric methods that computationally
reconstruct the phase shift from a sequence of intensity images
taken under varying conditions. The primary advantage of
phase retrieval methods is that they can be performed using
simpler optical systems or used to enhance the performance of
more complex optical systems. Phase retrieval methods can be
classified as either iterative or deterministic.91 Iterative
methods use iterative computation to satisfy constraints in
object and Fourier space between intensity images at the
sample and detector plane to resolve the phase problem.92

Iterative methods of phase retrieval were originally developed
for electron microscopy to reconstruct the wavefront
propagation between image and diffraction planes from the
corresponding amplitude images.93 The Gerchberg−Saxton
(GS) algorithm was a widely used iterative phase retrieval
method. The GS method iteratively approximates both source
(e.g., illumination) and target (e.g., image) intensities and
complex phase distributions from measured intensity images of
the source and target. However, the GS algorithm typically
requires a large number of iterations and can become stuck at
local minima and therefore not converge on the real phase
solution.94 This was addressed by the introduction of the
steepest gradient search94 and input-output methods.95 One
common implementation of iterative phase retrieval is in
Fourier ptychography.96−98 Ptychography was developed to
solve the phase problem in electron diffraction measure-
ments.99 Fourier ptychography recovers high spatial resolution
(or large field of view) phase information at the object plane
from a series of intensity images, such as at varying angles,
resulting in data from which a higher spatial frequency image
can be reconstructed.100,101 Fourier ptychography has also
been used to visualize the 3D structures from light scattering
signals102 or complex transmittance functions.98

Deterministic methods directly solve for phase images
without iteration, enabling real-time phase imaging. One
commonly used approach is based on the transport of intensity
(TIE) equation which relates phase data at the in-focus plane
to the axial derivative of intensity distribution.103 The TIE
equation was proposed based on conservation of energy and
describes the transport of energy in an optical field.16 TIE
methods can be used along with other phase retrieval
algorithms to improve image quality.104 Differential phase
contrast (DPC) microscopy, another commonly used
deterministic imaging method, evolved from the idea of
contrast enhancement by asymmetric illumination.105 In DPC
microscopy, multiple images of the specimen are obtained at
different angles of half-plane illumination to recover phase
information106 (Figure 2d). In this way, DPC imaging is
similar to Schlieren imaging in which half-plane illumination is
used to remove half the spatial frequencies from the intensity
image in one direction, giving phase gradients in orthogonal
dimensions.107 The earliest work on DPC imaging used a half-
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plane electron source in a scanning transmission electron
microscope108 and was later applied to imaging with visible
light109 and applied to increase contrast in images of fixed
cells.110

In contrast with interferometric methods, phase retrieval is
typically less costly or uses more widely available optics, such
as DIC,111 phase contrast,112,113 or custom-made imaging
systems.15 This is because phase retrieval algorithms eliminate
the use of a reference based on knowledge, or approximation,
of the optical transfer function of the imaging system.114 Phase
retrieval is also possible with partially coherent light
sources.115−117 However, the requirement of multiple images
as inputs for phase retrieval methods lowers the imaging
temporal resolution compared to interference and wavefront
sensing methods.75 The use of iterative algorithms for phase
retrieval also increases the overall workflow time.

As a primarily computational method, phase retrieval has
benefited greatly from advances in computing power. The
practical application of phase retrieval for QPI therefore began
in the 1990s with extensive use of computing resources.118,119

Advances in optical systems further enhanced phase retrieval
QPI, including the use of color-multiplexing to obtain phase
data from a single image,120 lens-less phase retrieval with
super-resolution reconstruction,121 and volumetric holography
using asymmetric illumination.122 Looking forward, phase
retrieval stands to benefit greatly from future advances in
computation. This is especially evident in recent applications
of machine learning, where phase retrieval is possible without
an optical physics model.123,124 A possible limitation that needs
addressing as this field moves forward is that with more
computation, more noise tends to occur. Additionally, the
more opaque the method, the harder it is to track down
sources of error, a particular concern with machine learning
approaches. Overall, however, these advances, combined with
the ability to work with data acquired from diverse sets of
optical approaches, points toward a larger role for phase
retrieval methods in the future of QPI.

Comparison and Evaluation of QPI Methods. Each
lineage of QPI methods has advantages and disadvantages
compared to one another, which have diminished in magnitude
over time from technological advances and verified stand-
ardizations. Briefly summarizing the four QPI lineages
described above: interferometry is accurate but sensitive to
reference arm noise; wavefront sensing has good temporal
resolution and no reference arm, but has low spatial resolution;
phase retrieval provides a large field of view and higher spatial
resolution, but has low temporal resolution; and DHM has
high temporal resolution but, as an interferometric approach, is
susceptible to noise from a reference arm.

A number of technical improvements address key limitations
of these four QPI lineage approaches. For example, adapting
DPC microscopy to work with multicolor illumination instead
of separately imaging individual illumination patterns125−128

achieved temporal resolution as high as 100 frames per second
(fps).129 A high-speed interferometry method using a
diffraction grating generated a temporal resolution of 104

fps.128 Recent developments in DHM systems enabled removal
of a reference arm, for instance, by using a self-referencing
module.130 It was shown that holography could mathematically
retrieve phase using single intensity images through an
illumination control without a reference.131 The use of
coherent and partially coherent illumination can also help to
reduce noise in QPI. Coherent illumination, such as from a

laser, while useful for generating interference, has a
disadvantage of being sensitive to noise from system optics,
especially speckle noise.132 Use of partially coherent
illumination, such as from an LED or lamp, can eliminate
these artifacts, at the cost of a moderate increase in difficulty
aligning the optical system. Sub-Rayleigh resolution has been
achieved by adjusting the illumination source.133 Mach−
Zehnder interferometry has been adapted for biosensing within
microchannels, increasing sensitivity.125,126

Another approach to generate improvements in QPI is to
combine principles from different QPI lineages. For example,
interferometry using a diffraction grating in a Mach−Zehnder
system can eliminate the need for a reference arm and increase
phase sensitivity, by reducing measurement noise.127 The use
of iterative phase retrieval algorithms on single-shot holograms
also enables the 3D reconstruction of QPI images without
needing a reference standard.92 Applying iterative phase
retrieval algorithms to holographic techniques has also
increased spatial resolution.134 The same iterative phase
retrieval method has also been successfully applied to transport
of intensity algorithms using holographic microscopy135 to
improve image quality.136 The transport of intensity equation
can be used to capture 3D QPI images at the diffraction limit
using an electrically tunable microlens array, similar to that
used in wavefront sensing, thereby significantly increasing
temporal resolution.137

The software package used for assessing QPI measurements
is another key system consideration. Some QPI approaches
have available commercial analytic packages including those
from Wyko Corporation, Phasics Corporation, Phase Holo-
graphic Imaging (PHI), Inc. and other vendors, whereas some
analytical packages are custom-coded in MATLAB or Python.
The choice of commercial versus custom-written software is
critical for individual use cases, as custom software may be
more flexible, at the cost of additional complexity. Table 1
summarizes the available software, for example, methods from
the four QPI lineages discussed in this review.

Polystyrene beads are a widely used phase calibration
standard for many QPI methods138,139 and have been used
with DHM,140 QWLSI,14 and DPC141 techniques. However,
there is variability in the refractive index of polystyrene,142 and
typically large refractive index differences between polystyrene
beads relative to cell culture media, combined with sharp
“imaging edges” of these round beads, can lead to phase
unwrapping artifacts that are not usually encountered with live
cell samples. Potential phase unwrapping artifacts using
polystyrene bead calibration standards can be mitigated by,
for example, mounting the beads within material with a closer
refractive index.139,143 However, this approach also moves the
calibration data range further from actual cell imaging
conditions, which could impact experimental accuracy. Red
blood cells have also been used as a phase calibration standard
in the development of QPI methods because of their
availability and fairly uniform shape and size.12,144 Typically,
nondiseased RBCs show a population dry mass variation of
∼15%.145 However, as a biological sample, this can be more
challenging to work with than an inanimate calibration
standard. A number of studies have used USAF resolution
test targets that are readily available because of their wide use
in calibrating imaging systems.138,146 However, these standards
are typically used for calibrating intensity images and are made
of thin metal films, meaning that they do not function as pure
phase objects. A phase specific calibration standard for QPI
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was developed and used in a comparison with atomic force
microscopy (AFM), which showed that QPI has nanometer
sensitivity over a wide range of spatial frequencies.97 A 3D
phase “phantom” that captures subcellular features of cells for
calibration in 3D QPI methods has also been demonstrated,147

however further development and characterization of widely
accessible standards is needed to support continued advances
in QPI.

Critical Performance Metrics for QPI. Quantitative
comparison of QPI systems can be performed using a number
of critical performance metrics that define the quality of images
and data provided by QPI. These include accuracy, signal-to-
noise ratio (SNR), phase measurement sensitivity, and both
spatial and temporal resolution of the resulting QPI data.

Accuracy indicates the ability of the combined microscopy
method and reconstruction algorithm to compute the expected
phase shift of a calibration sample. Accuracy can be computed
from differences in the computed phase shift (ϕMeasured) to the
expected phase shift (ϕActual):

=
| |

×Accuracy 100%Measured Actual

Actual (3)

Background standard deviation quantifies the phase image
reconstruction accuracy as well and is calculated as standard
deviation of the segmented blank spaces in phase images or
reference phase images.88 The background standard deviation
can then be used to estimate the SNR as the absolute mean
phase signal (|φ|) over the standard deviation of the measured
background (σ):142,148

= | |
SNR

(4)

SNR is used to define image quality when analyzing images for
measuring physical quantities, e.g., phase shift, optical volume,
or cell mass.

The peak spatial SNR of phase images (PSNR) is another
metric used to measure the quality of reconstructed images.
Unlike SNR, PSNR is not affected by image intensity
rescaling.149 PSNR can calculated as150

= × i
k
jjj y

{
zzzR

PSNR 10 log
MSE10 (5)

where R is the maximum fluctuation in the image, and MSE is
the mean squared error between the reconstructed image and
the reference. The error in phase is the standard deviation of
the phase signal to the mean of phase signal subtraction.88

Noise in QPI measurements can be reduced, increasing the
SNR, by increasing the number of measurements. This is
especially important when using coherent illumination.75

Sources of noise may include temporal and spatial variations
along with fluctuations over repeated measurements.151 These
combined sources of noise may account for <1% to 5% of total
biomass measured, depending on the magnification of the
measurement.151 This noise also contributes to the overall
phase measurement sensitivity of a system, which can be
quantified by the Crameŕ−Rao bound algorithmic sensitivity
and experimental sensitivity of the system.152

The theoretical spatial resolution of a QPI system can be
determined from the objective numerical aperture (NA) and
illumination (NAi) asT
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=
+

r 1.22
NA NAi (6)

where r is the spatial resolution limit of the system, with low
specimen contrast or improper illumination lowering this
value. Spatial resolution also becomes diffraction limited when
using a high NA imaging objective. A phase signal must be
sampled at twice the diffraction limit of the system to satisfy
Nyquist criteria, thereby yielding diffraction limited resolu-
tion.87 This means two features in a sample separated by the
diffraction limit will be captured by two separate phase imaging
pixels.

In order to obtain phase data, all methods trade some
imaging performance, which can limit the achievable spatial or
temporal resolution. DHM requires cropping in the Fourier
domain86 (Figure 2b), while wavefront sensing requires
integration over multiple pixels (Figure 2c), with data
processing via cropping in Fourier space as well.83 This
means for a given camera sensor size (e.g., 1 megapixel), the
resulting number of phase pixels will be lower for DHM or
wavefront sensing, though the diffraction limit can be achieved
with such methods, at the cost of fewer phase pixels and a
smaller field of view available for viewing the sample. However,
methods that use the full resolution of the camera sensor
typically trade away some temporal resolution by requiring
multiple exposures to reconstruct a single phase image. For
example, in phase shifting interferometry (Figure 2a) up to
nine images are acquired with small shifts of the path lengths of
the reference arm relative to the sample arm in order to
reconstruct a single phase image. Typical phase retrieval
methods require multiple image acquisitions as well. For
example, four images are required to reconstruct a single phase
image in DPC microscopy (Figure 2d).

A summary of critical performance metrics, including the
reported accuracy, SNR, resolution, and background standard
deviation, for the discussed QPI modalities is summarized in
Table 1.

Impact of Image Focus Position on QPI Performance.
A key factor influencing performance of 2D QPI methods is
the focal position or location of the image plane along the
optical axis, used for capturing phase images. QPI images taken
out of focus show up to a 40% difference in measured optical
volume differences for uniform microspheres, and QPI images
of cells can show up to a 25% decrease in measured biomass
compared to in focus QPI images.143 For 2D QPI, more planar
adherent cells show greater measurement robustness with
imperfect focal position relative to rounded cells, although
there can be a significant difference in QPI dry mass data due
to focus position even for flatter, adherent cells.151 This
dependence on focal position illustrates the importance of
getting this parameter correct. A key parameter to consider for
correct focal plane imaging is the depth of field (DFD),
computed as171

=
×

n
DFD

NA

NA NA
i

i

2

(7)

where n is the refractive index of the material between the
objective and sample. A larger depth of field can introduce
errors due to dust and debris above or below the sample,151

whereas a smaller depth of field increases the sensitivity to out
of focus imaging. Overall, the importance of focal position
imaging necessitates the use of algorithms to determine the

correct focal position for accurate and reproducible QPI data
collection.

Selection of an appropriate algorithm and metric for optimal
focusing, or autofocusing during automated image acquisition,
depends on the QPI imaging modality. For example, in
interferometric systems with a low coherence light source, such
as phase shifting interferometry, focus can be achieved by
maximizing the contrast of the interference fringe intensity as
the focal position is adjusted.172,173 Maximized fringe contrast
results in a minimized optical path difference between the
sample and reference light paths of an interferometer. The use
of an external focusing tool such as a digital video disc pickup
head can also be applied to determine optimal focal position of
both reference and sample arms.173 External focusing tools are
not limited for use to interferometry and can also be used for
optimizing the focal imaging plane in other QPI modalities,
such as using a laser focusing device to determine the optimal
focal imaging plane in wavefront sensing QWLSI systems.85

All QPI imaging modalities, including noninterferometric
methods such as wavefront sensing and phase retrieval, can
make use of more conventional autofocusing techniques based
on image features. Focus optimizing algorithms are evaluated
by their unimodality (focus functions require a singular peak),
accuracy (the focus function extremum should match the
location of best focus), robustness (the extremum of the focus
function should be a sharp peak), and range (focus function
should have a smooth, broad tail to enable focusing over a wide
range).174 For example, two focus functions that performed
well in approaching these desired qualities were a differ-
entiation based method, such as the squared gradient (SG),
and a Laplacian (LA) focus method:174

=
g x y

x
dxdySG

( , )
image

2

(8)

=
g x y

x
dxdyLA

( , )
image

2

2

2

(9)

where g is the gray scaled image value measured as a function
of spatial position, x and y. Faster wavefront sensing
autofocusing algorithms have also optimized for the Tamura
coefficient (TC)175,176 defined as

=
g

g
TC

( )

(10)

where σ(g) is the standard deviation of the grayscale intensity,
and g is the average grayscale image intensity. Reported DHM
focus methods have also maximized image sharpness using the
weighted spectral analysis (SPEC) and cumulated edge
detection by gradient calculation (GRA):177

= + F g u vSPEC log(1 ( )( , ))
u v

B
, (11)

= +
g x y

x
g x y

y
dxdyGRA

( , ) ( , )
image

2 2

(12)

where FB(g)(u, v) is the band-pass filtered Fourier transform of
the grayscale image, g, summed over the Fourier domain
coordinates, u,v.

Additionally, by capturing a hologram that reflects the
complex optical field, DHM enables numerical refocusing after
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image acquisition. This approach can be used to adjust for
optical aberrations and enlarge the depth of examination178

without the need for additional mechanical scanning. The
range for which the refocusing distance produces accurate
information is defined by179,180

| |z DFD (13)

where Δz is the distance of refocusing and DFD is defined in
eq 7.

There are many autofocus algorithms for numerical
refocusing including those that use amplitude,182 spar-
sity,183,184 a correlation coefficient,185 and other properties186

to determine optimal focus in DHM. One example of a DHM
numerical refocusing metric that achieves the desired proper-
ties of a focal position algorithm is the DarkFocus (DF)
metric,181 which optimizes for the sharpness of images as

= | |var U zDF ( ( ) ) (14)

where var is the variance operator and U(z) is the complex
optical field calculated for a focal distance, z. However, these
methods of refocusing may suffer errors when applied to
nonideal situations, such as using coherent light based
algorithms for an extended or spatially incoherent light
source,179 and thus must be tailored for specific DHM
applications.

Computational Convergence. Starting in the early
2000s, QPI began to rely increasingly on digital image

acquisition and data processing, with the field also advancing
from creative method combinations that were emerging from
multiple technical lineages. For example, SLIM combines
principles of digital holography with phase contrast methods,71

and QWLSI combines the principles of wavefront sensing with
interferometry and phase retrieval algorithms.14 The combi-
nation of DHM with principles from lateral shearing
interferometry addresses the twin image problem,187 and this
combined approach can reconstruct optimally sampled QPI
data.188 Further improvements in computation and machine
learning are enabling approaches analogous to QWLSI using
unstructured, random phase masks. These exciting develop-
ments point toward the future of QPI with increasing
availability of computational resources and algorithms,
including creative applications of machine learning, which
will further advance quantitative studies in biology and
medicine.

ADVANCES IN QUANTITATIVE BIOLOGY
As QPI approaches have advanced, so too have QPI
applications. One advantage of QPI is that it is label-free.
Therefore, QPI can study cell behavior with minimal impact, a
leveraged feature in a number of biological applications. As
summarized above, there are also a number of additional label-
free microscopy approaches, including the more widely used
methods of phase contrast and DIC microscopy. The primary
advantage of QPI over these other approaches, however, is

Figure 3. Evolution of complexity and information content from QPI measurements of cell dry mass and mass distributions within living
cells. Representative images and data analyses are shown in a time series. (a) QPI film image of Tradescantia bractea pollen grain (top) along
with QPI pollen grain dry mass measurements (bottom, upward arrowheads are no sucrose estimates and downward arrowheads show
measurements within a 5% sucrose solution) and volume (circles) during different phases of development. Adapted with permission from ref
191 .Copyright 1954 Company of Biologists Ltd. (b) QPI of chicken fibroblasts with dry mass densities ranging from 0.01 (darkest gray) to
0.6 (white) pg/μm2(top), processed to measure spread area relative to total cell mass (bottom). Adapted with permission from ref 202.
Copyright 1995 Company of Biologists Ltd. (c) QPI of human H929 multiple myeloma cells (top) showing computationally processed data
that simultaneously captures drug responses of hundreds of single cells, shown as initial cell mass versus normalized changes in mass during
drug treatment (bottom). Adapted and data set with permission from ref 12. Copyright 2011 Elsevier. (d) High-resolution QPI of a human
buccal epithelial cell (top) and an example of changes in dry mass of HeLa cells undergoing apoptosis triggered by exposure to cytotoxic
paclitaxel (bottom). Adapted with permission under Creative Commons Attribution (CC BY) license from ref 163. Copyright 2017 Springer
Nature.
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that, in contrast to phase contrast or DIC microscopy, the data
contained in each pixel of a QPI image are a quantitative
measure of the phase delay of light as it passes through that
portion of a sample. Measurement of this phase delay can
utilize any of the approaches already discussed above. Once
captured, analysis of this phase data can provide quantitative
insights into numerous biological processes and systems. Here
we summarize key advances in the application of QPI to
quantitative studies in biology, ranging from applications that
quantify the behavior of individual cells to emerging
opportunities in clinical diagnostics.

QPI Applications Using Measurements of Cell Mass
or Growth Rate. The refractive index of a material is related
to its mass through a quantity called the specific refractive
increment.5 For cells, a typical average value is 1.8−2.0 × 10−4

m3/kg.2,3,5 The phase shift measured by QPI is the integral of
the difference in refractive index between a cell and its
surroundings through the thickness of a cell’s projected area.
The measured phase shift of a cell is proportional to the mass
of the cell’s contents excluding water, which is the dry mass of
the cell. This provides a quantitative measure of cell size, which
can provide valuable information on cell viability, growth over
time, replication, and function. Measuring cell volume is an
alternative method to cell mass quantification that can be used
to measure cell growth.189 However, measurements of cell
volume typically require a simplifying assumption about cell
shape (e.g., spherical mammalian cells, rod-shaped bacterial
cells) and cell volume changes depend upon intra- and
extracellular osmolality, which can be unrelated to internal dry
mass amounts.190 By contrast, dry mass is independent of
osmolality and instead depends upon the balance of
biosynthetic (anabolic) and degradative (catabolic) processes
within a cell. In the early- to mid-1950s, several investigators
began using QPI to measure the absolute total dry mass of live
eukaryotic cells, including measurements of mass throughout
the cell cycle4,29,30,38,191 (Figure 3). Additionally, repeated QPI
measurements of dry cell mass over time can provide dry mass
accumulation or loss rates to quantify cell growth12,190,192−196

(Figure 3), or the decrease in mass that occurs during cell
death.163,197−201 Below, we discuss example applications of
QPI measurements of cell mass and growth in studies of basic
biological processes, including in immunology and in the
behavior of neurons.

Applications of QPI to Studies of Cell Growth and
Associated Biological Processes. Several example studies
discussed here demonstrate the utility of QPI measurements
for providing insight into the regulation of cell size, growth,
and additional fundamental biological processes. In studies of
cell size regulation, QPI measurements during fibroblast cell
spreading revealed that the spread area is actively regulated by
an undefined mechanism that adjusts the total area of
spreading proportionally to the total cell mass.202 Separately,
dry mass quantification using SLIM during the cell cycle
showed that osteosarcoma cells exhibit a mass-dependent
growth that was best approximated by an exponential rather
than a linear model of cell growth.192 More precise QPI
measurements of cell mass revealed oscillations in growth rate
that were previously unappreciated, suggesting that a pure
exponential model of cell growth is insufficient to explain the
regulation of mammalian cell growth.88

The impact of extracellular perturbations on cell size and
growth have also been interrogated by QPI. For example,
changes in available glucose,194 or the addition of small

molecule inhibitors such as tunicamycin to induce cell stress,12

led to reproducible, QPI-quantifiable changes in cell dry mass
and growth rate as indicators of cellular responses. These study
results led to the use of QPI as a label-free method for
screening different stimulants or inhibitors. Examples include
QPI-based screens for agents that cause changes in cell growth
rate and cytotoxicity.12,160 QPI has also been applied to study
the influence of mechanical properties of the extracellular
matrix on growth rate, migration, and metastatic potential of
melanoma cells.203 Long-term SLIM studies of cell growth in
epithelial and fibroblast cocultures examined the influence of
cell clusters on neighboring cells, with a few clusters, termed
“influencer clusters”, showing a strong correlation between
growth rate and distance, with potential implications for
organogenesis and cancer cell metastasis.203

QPI has also enabled studies of the impact of genetic
mutations on cell growth. For example, QPI tracked the
growth and division of primary human melanocytes for 30 days
in culture.204 Results showed that a proliferative arrest
associated with oncogene expression, previously thought to
be caused by G0 cell cycle phase senescence, was a reversible
and conditional mitotic arrest, an observation subsequently
validated using clinical specimens. QPI also confirmed the
impact of transcription factor YAP expression in HEK293 cells
as a potential coordinating mechanism between cell and tissue
size.205 Additionally, QPI helped to demonstrate utility for
assessing whether different cell states, and transitions between
cell states, alter the absolute dry mass or dry mass
accumulation or loss rates of cells. One study quantified cell
dry mass partitioning between daughter cells during and
following cytokinesis and showed that mass asymmetry present
at the time of cleavage furrow formation persisted through
cytokinesis.11 Addition of cytoskeleton-disrupting agents with
differing mechanisms of action, including latrunculin A,
blebbistatin, nocadozole, and cytochalasin B increased the
number of daughter cell pairs exhibiting asymmetric dry mass
partitioning. This suggested an absence of an active mass
partitioning mechanism after cleavage furrow positioning and
the requirement for mass adjustments by dynamic changes in
cell growth rate, and/or cell cycle time, over the succeeding
cell cycle. The lineage nondirected differentiation of human
pluripotent stem cells (hPSCs)206 was also interrogated using
QPI measurements of absolute dry mass and changes in
growth and mass redistribution rates prior to and following the
induction of differentiation. Study findings included that
hPSCs grow at a consistent, exponential rate independent of
colony size, with coordinated intracolony mass movement
ceasing with the onset of differentiation. In contrast, growth
and proliferation rates decreased by only ∼15% during early
differentiation despite global changes in gene expression and
energy metabolism, suggesting that the regulation of mass and
proliferation are independent of pluripotency during early
differentiation.

Applications of QPI to Studies of Immune Cell
Behavior. QPI measurements have also been used to gain
insights into the functions of cells of the mammalian immune
system. At the cellular level, the adaptive immune response
requires rapid, massive cell growth to support the generation of
both effector and long-lived memory cells. QPI, therefore, is
well suited to studying the regulation and features of this
process. For example, QPI measures of dry mass changes in a
binary cytotoxic T lymphocyte (CTL) − cognate cancer-cell
killing assay were illuminating. Study results revealed that the
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cancer cell mass decreased 20−60% over 1−4 h during a
successful CTL attack, with a 4-fold increase in CTL mass
accumulation rate at the start of killing and a 2−3-fold increase
in CTL absolute mass relative to the mass of unresponsive T
cells.47 These results provide a kinetic, quantitative assessment
of CTL activation in tumor cell killing and, potentially, a
relatively rapid way to identify specific, activated patient-
derived T cells for applications in cancer immunotherapy.
Furthermore, QPI measurements of reconstituting donor T
cells following hematopoietic stem cell transplantation showed
mass changes correlated with immune reconstitution within
the first few weeks post-transplant, a finding which could guide
the withdrawal of immunosuppressive drugs and reduce the
likelihood of graft-versus-host disease or cancer relapse.207

In studies of B lymphocytes, QPI measurements also
uncovered rapid mass accumulation and cell proliferation
within the first 24 h of B cell activation accompanied by
sustained AMP-kinase activation in the absence of energetic
stress, an unexpected result because AMP-kinase activity
strongly opposes anabolism and constrains mass accumulation
in most biological contexts.208 QPI was also used to measure
variability in naiv̈e B cell size and partitioning of mass between
daughter cells during B cell expansion, providing support for an
in silico model suggesting that intrinsic biological noise plays a
key role in determining the extent of B cell proliferation, which
ultimately determines which cells contribute to an immune
response.209

Applications of QPI to Measure Neuron Behavior.
Neuron growth and behavior is yet another impactful area for
QPI applications. Many studies would benefit from imaging
with a label-free method that avoids phototoxicity and
photobleaching from long duration fluorescence imaging. As
an example, label-free QPI separately quantified neuronal body
(soma) and projection (neurite) masses, which showed that
most mass accumulation during a 5 d in vitro neuronal
differentiation protocol goes toward the production of
additional neurite connections rather than strengthening of
existing connections.210 The process of neuronal branching has
also been quantified using QPI plus machine learning as an
alternative to fluorescent staining.211 The high sensitivity of
QPI has been leveraged to track the transport of individual
vesicles within neuronal processes.212 QPI has also been
applied to measure long-term (∼1 min) responses of neurons
to stimulation related to transmembrane ion fluxes213 as well as
short-term (∼0.1 ms)88 fluctuations in neuron shape during
neuronal spikes.128

Applications of QPI in Measuring the Physical
Structure of a Cell. In addition to measuring total cell
mass, QPI can also measure the distribution of dry mass within
cells. This enables QPI applications that measure the structural
features of individual cells and use this information to inform
physical models. For example, a recent study showed that the
morphological differences in retinal nuclei of mice correspond
to a pattern of nuclear architecture common to other nocturnal
mammals.214 Specifically, adult mouse retinal cells showed a
spatially organized nuclear refractive index pattern, which
contrasted with a more dispersed refractive index pattern
uncovered in diurnal pig or immature mouse retinal cells.
Simulations of light transmission found that the refractive
index pattern in mouse retinal cells more effectively focused
light and reduced scattering, suggesting a potential role in
enhancing nocturnal vision. This result generated much
discussion on the role of refractive index patterns in the

nucleus. The appearance of a large phase shift through cell
nuclei supports a physical model of a reduced nuclear refractive
index,215 which has been validated in other studies reporting a
lower refractive index in nuclei than in the cytoplasm.216−219

These results were further supported by 3D QPI results that
also showed a lower nuclear refractive index outside of the
nucleolus.220,221

Applications of QPI in Studies of Intracellular
Transport. Intra- and intercellular transport of biomaterials
are required for cell growth and function, with patterns of
transport providing information on cell behavior, disease states,
and cellular responses to changing environmental conditions.
Two relatively common, non-QPI methods for studying
cellular transport employ fluorescent labels typically attached
to biomolecules, or to introduced particles, coupled with live
cell imaging,222,223 and label-free techniques, such as DIC
microscopy.224 Imaging of fluorescently tagged markers
provides a high degree of specificity, and can be quite
sensitive, but suffers the disadvantages of photobleaching,
limiting transport study times, phototoxicity, which can induce
cell stress and modify cell behavior, and autofluorescence,
which excitation or emission filters may not completely
remove.225 These imaging limitations are irrelevant for QPI,
although there is a loss of biomolecule specificity and
sensitivity.224 As discussed previously, QPI, unlike DIC and
phase-contrast imaging, also quantifies the dry mass of cells
and some tracked intra- and intercellular components, such as
lipid droplets, revealing that lipid trafficking motion ranges
from subdiffusive to active transport.226 As a label-free method
that provides additional quantitative data on cell behavior, QPI
is a good option to consider for measurements of intracellular
transport.

Imaging interferometry coupled to finite element analysis
measured the intracellular transport of dry mass in fibroblasts
at low resolution and showed that the kinetic energy of
intracellular motility can be several hundred times greater than
the kinetic energy of cellular translocation across a surface.227

Recent improvements in image processing speed and methods
are helping to increase the scope of intracellular transport
studies available to QPI platform methods. For example, SLIM
measured the label-free diffusion of organelles and vesicles in
hippocampal neurons and cardiomyocytes using a Laplace
operator, with extended transport study time enabling
extraction of diffusion coefficients.212 SLIM also revealed the
3D time series movement of dry mass in neurons. Results were
analyzed using dispersion-relation phase spectroscopy, a
method to measure the spatiotemporal decay of the
autocorrelation signal of phase,212 and revealed differences
between transport in neuronal bodies and neurites, and also
between longitudinal and transverse trafficking orientations.228

Additional SLIM platform studies were inconsistent with
purely passive diffusion and suggested advective transport of
cargo within neuronal dendrites, also using the dispersion-
relation phase spectroscopy analytic technique.212 A holo-
tomographic version of QPI combined with epifluorescence
examined mitochondrial network and lipid droplet dynamics
inside HeLa endocervical carcinoma cells. Features uncovered
included the shape and dry mass dynamics of lipid droplets,
endocytic structures, and a multiorganelle spinning phenom-
enon whose underlying mechanism remains undefined.229

An alternative to QPI tracking of individual particles is phase
correlation imaging. This method measures the temporal
decorrelation time of QPI collected data based on fluctuations
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of cell refractive index as an indicator of intracellular mass
transport. A549 lung carcinoma cells were imaged using SLIM
and treated with an actin polymerization inhibitor, cytochala-
sin-D, which showed only small local effects, but also
uncovered a distribution of correlation times that is
qualitatively different for quiescent and senescent cells, without
cell labeling, providing a creative method for identifying
quiescent versus senescent cells within a cell population.230

Another application of phase correlation imaging revealed that
intracellular mass transport rates were significantly different for
osteoblast cells with different levels of migratory capacity.231

Studies of aggressive, highly metastatic HeLa cells using SLIM
and dispersion-relation phase spectroscopy revealed that mass
transport in the cytoplasm was mainly active (ballistic,
directed), compared to the nucleus which showed active and
passive (diffusive) components, with faster mass transport in
the cytoplasm than the nucleus.232

Applications of QPI to Cell Migration Assays. QPI
provides a label-free alternative method to DIC or phase
contrast microscopy for conventional cell motility or wound
healing assays. An advantage of QPI in this application is that it
additionally captures quantitative information on other cell
features. For example, a commercially available digital

holographic cytometry version of QPI was equipped with
semiautomated image acquisition, segmentation, and analysis
software. Measurements of melanoma cell motility and
metastatic potential were highly accurate in a comparison
with field-standard measures of wound healing, transwell
migration, and invasion assays, with the added benefits of
identifying rare hypermotile metastatic cells and an ability to
distinguish motility from cell division associated cell displace-
ment.233 Measurements of cell mass and morphology with the
same system could similarly track kinetic epithelial-to-
mesenchymal cell transitions in heterogeneous cultures.234

Finally, optical diffraction tomography, a 3D, label-free QPI-
based imaging method, was used to study and quantify the
dynamics of NIH3T3 cell migration in a wound healing assay,
revealing single cell resolution of subcellular structure behavior
and transport that underlies the mechanisms involved in gap
closure and closure rate, with potential implications for
pharmaceuticals development or repurposing.235

Applications of QPI for Measuring Biophysical Cell
Properties. QPI can measure the distribution of mass within a
cell, including mass due to structural elements such as the
cytoskeleton, and how this distribution changes over time. It is,
therefore, possible to extract information about the biophysical

Figure 4. QPI biomechanics measurement evolution. (a) Early QPI biomechanical analyses required physical perturbations, such as
actuation of a magnetic bead indenter on NIH3T3 fibroblasts (top) or HeLa carcinoma cells to extract Young’s modulus (E; bottom).
Adapted with permission from ref 244. Copyright 2008 IOP Publishing Ltd. (b) Detailed mechanical modeling from contactless
measurements of biomechanical properties of red blood cells (RBCs; top left) using natural fluctuations in phase caused by membrane
motion (top right) captures mechanical property variations (bottom) for populations of normal (DC), spiculated (EC), and spherical (SC)
shaped RBCs. Adapted with permission from ref 246. Copyright 2010 National Academy of Sciences, U.S.A. Scale bar = 1.5 μm. (c) QPI
phase (top-middle) of more complex cells HT-29 wild-type and shRNA (top left), HT-29 with CSK shRNA-mediated knock down (top
middle), A431 epidermoid carcinoma control (top right) and cytochalasin D treated A431 (middle left) cells, and A549 lung
adenocarcinoma cells (middle right) used to compute a mean phase disorder strength, related to intracellular cytoskeletal structure and
independent measurements of shear stiffness (bottom). Adapted with permission from ref 247. Copyright 2017 Elsevier. (d) Time lapse QPI
data (top) showing the redistribution of mass within single cells and cell clusters, which provides both resistance to deformation and decay
terms. These terms were validated by comparisons with AFM measurements of stiffness (bottom left) and viscosity (bottom right) for MCF-
7 and BT-474 breast carcinoma cells, and for HeLa endocervical carcinoma cells, treated with different concentrations of cytochalasin B.
Adapted with permission under Creative Commons Attribution (CC BY) license from ref 250. Copyright 2020 Springer Nature.
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properties of single cells,230−232 such as effective cell stiffness
and cell viscosity, from QPI data. These viscoelastic properties,
in turn, underlie cell structure, movement, and function and
have increasingly served as biomarkers for diseases,236 cell
states,237 and biological transitions.238 A standard method for
measuring cell viscous and elastic properties is to examine
stiffness and elastic, dissipative responses to an applied stress.
Numerous physically interactive methods have evolved to
make such measurements, including by cell deformation using
an AFM,239,240 or by using external and intracellular
introduced probes, as in particle tracking microrheol-
ogy.240−242 The use of probes243 and applied stress,244

however, can affect cell behavior and impact measurements
of cell viscoelasticity. Thus, the use of noninteractive

techniques, such as those based on QPI, could circumvent or
at least minimize these potential confounding influences.

QPI measurements of viscoelasticity divide into two main
categories: (1) static measurements based on the spatial
distribution and structure of mass within cells, including the
cell cytoskeleton, and (2) dynamic measurements of changing
cell mass distributions based on the temporal redistribution of
mass. Early QPI dynamic measurements of viscoelasticity
utilized sustained and rhythmic, temporal actuation and
relaxation of magnetic beads as a form of spherical indenter,
to induce local, transmitted stress on fibroblasts and observe
the resulting mass redistribution and cell stiffening over time.35

Actuated magnetic beads and QPI measurements also probed
different cell types with and without cytoskeletal disruptions244

Figure 5. Progress toward QPI clinical applications as a screening and selection tool for treatments, and as a diagnostic tool to identify
healthy versus diseased states. (a) Specific QPI features can identify disease or changes from a healthy or control state. For example, QPI
measured differences in RBC membrane fluctuations at 37 and 41 °C in vitro can distinguish between healthy and ring, trophozoite, or
schizont diseased states with P. falciparum parasitic infection. Adapted with permission from ref 261. Copyright 2008 National Academy of
Sciences, U.S.A. (b) Once QPI features of interest are identified, validation is sought with an independent, orthogonal method, if available.
For example, shown here is an area under the curve (AUC) or receiver operating characteristic (ROC) plot of the true positive (sensitivity)
versus false positive (specificity) rate determining malignance from hematoxylin and eosin counter-stained tissue biopsy. This previously
validated method is used to validate QPI determined malignant state for breast tissue biopsies. Adapted with permission under Creative
Commons Attribution (CC BY) license from ref 267. Copyright 2018 Springer Nature. (c) Validation of a QPI measured feature in a specific
context can broaden its utility. For example, validation of QPI measured changes in growth rate was successfully applied to identify effective
treatments from a pool of candidate agents against carboplatin-resistant, patient-derived xenograft HCI09 breast carcinoma cells. Adapted
with permission under Creative Commons Attribution (CC BY) license from ref 253. Copyright 2019 Elsevier. (d) Example of QPI as a
diagnostic tool, with spatial light interference microscopy (SLIM; middle and right columns) identification of benign (top row) versus
malignant (bottom row) glandular tissue, validated by pathological classification of hematoxylin and eosin stained biopsy material (left
column). Adapted with permission under Creative Commons Attribution (CC BY) license from ref 267. Copyright 2018 Springer Nature.
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(Figure 4a), whereas an optical stretching method was also
applied in conjunction with DHM to examine differentiating
bone marrow precursor cells for changes in subcellular
structure and refractive index.245 A key disadvantage in these
studies, however, is that they required the use of non-native
probes. By contrast, probe-independent, noncontact studies of
RBCs used QPI to measure fluctuations in cell shape, coupled
to a mechanical model of the relatively simple discoid structure
of RBCs. This method was then used to quantify changes in
RBC membrane shear, area, and bending moduli during
transitions from discoid to abnormal echinocyte and spherical
shapes, with potential implications for circulation and oxygen
delivery to tissues246 (Figure 4b). However, this method
requires a mechanical model, which in this case is limited to
enucleated RBCs. More recent noncontact studies linked static
QPI measurements of mass distribution in nucleated cells to
spatial disorder strength, a measure of mass organization
within cells including the cytoskeleton (Figures 4c), to HT-29
colon cancer cell shear stiffness247 and the elastic moduli of
two breast cancer cell lines (MCF-7 and BT-474 cells)248 as
well as observe changes in the cell cytoskeleton under applied
electrical fields.249 Dynamic QPI measurements of mass
redistribution rates for MCF-7, BT-474, and HeLa cells
quantified both cell stiffness and elastic moduli during growth
(Figure 4d) and during an epithelial-to-mesenchymal cell state
transition.250 Combined, these and future studies suggest a
powerful and emerging opportunity for QPI to quantify cellular
biophysical and biomechanical properties that traditional
biochemical, molecular, and cell biology measurements alone
cannot provide.

QPI Applications in Screening and Drug Sensitivity
Measurement. There are a growing number of emerging
applications for QPI in clinical studies for which quantitative
and label-free measurements of individual cells and cell clusters
provides significant advantages. Current work is mainly at the
level of technology development, applications and validation
stages (Figure 5). QPI properties such can be used to
categorize specific cellular states (Figure 5a) and are validated
(Figure 5b) to determine viability in screening for these states.
One major direction under development for QPI screening is
measurements of cell dry mass changes in response to
therapeutic agents (Figure 5c). Changes in dry cell mass
detected by QPI has been used to measure single tumor cell
sensitivity to cancer therapeutics.251 The range of applications
shown includes evaluating mitotic inhibitors with different
mechanisms of action,252 examining the rate and extent of
cancer cell escape and regrowth following senescence
induction,253 and uncovering the response heterogeneity of a
mixed sensitive and resistant cancer cell population to specific
drug treatment.85 Because QPI can track the kinetics of dry
mass growth responses of individual cells or clusters of cells
within large populations of cells over time, heterogeneous cell
responses to therapeutics are readily identified. For example,
rare drug-resistant diffuse large B cell lymphoma (DLBCL)
cells within a population of DLBCL cells sensitive to a PI3-
kinase inhibitor, idelalisib, were identifiable by continued mass
accumulation and could, in concept, be isolated and recovered
for further studies85,251,254 Preclinical dry mass accumulation
rate studies using patient derived xenografts predicted drug
sensitivity for triple negative breast cancers, providing a
potential QPI application for drug selection in personalized
oncology253,255 (Figure 5c). A separate drug screening in
breast cancer study applied QPI to capture drug sensitivity that

was consistent with findings from current standard approaches,
as well as multiple additional physiologically relevant
parameters that characterized cell responses to therapy.256 As
discussed above, QPI measured viscoelasticity can differentiate
between epithelial and mesenchymal states,250 a state
transition that is a cardinal feature of cancer cell metastasis,
and phase correlation imaging discriminated between
quiescent and senescent cells, with potential implications for
drug resistance and tumor reemergence.230

QPI Morphological Applications in Diagnostics.
Measurements of cell morphologies and disease states provides
another emerging clinical application of QPI (Figures 5a,d).
Anatomic pathologists have long used changes in cellular
morphology and tissue architecture to diagnose disease, as
changes in morphology represent changes in cell state and
function, for example, plasma membrane blebs can indicate
dynamic cytoskeleton-regulated cell protrusions in apoptosis,
cytokinesis, and cell movement.257 Accordingly, diagnostic
applications of QPI focus on cell state to provide a diagnostic
tool with early attempts using features from QPI images to
screen for cancerous tissue.258 QPI tissue spatial correlation, a
measure of refractive index map correlation length that may
represent nanoscale cell morphology in fixed tissue samples,
provided a biomarker that distinguished between malignant
and benign breast cancer biopsy samples.259 When combined
with dry mass measurements, QPI identified and classified
different kinetic states for a population of melanoma cells in
culture.260 In applications with RBCs, morphology studies
using QPI identified Plasmodium falciparum infection of
RBCs261 and suggested the possibility that QPI measurements
of cell membrane dynamics could identify additional
pathologies that cause or accompany other human dis-
eases260,261 (Figure 5a). QPI using white light interferograms
with red, green and blue wavelengths separated electronically
helped determine morphological features of RBCs,262 as did
using DHM with data clustering and discriminant analysis.263

“Real-time” QPI measurements of blood samples have been
demonstrated, utilizing parallel computing strategies to
calculate diagnostically relevant cell parameters without storing
phase images, allowing for smaller electronic storage and data
transmission requirements, which could benefit remote
diagnoses of RBC diseases.264 QPI has also been used to
measure morphology changes in HTori thyroid cells during
treatment with plasma from a nanosecond dielectric barrier
discharge,265 changes in macrophages from chemically induced
apoptosis and dynamic phagocytosis,201 and for sperm
selection for bovine in vitro fertilization.266 SLIM and tissue
spatial correlation analysis was used to assess breast cancer
fixed tissue microarrays and showed a 94% sensitivity and 85%
specificity for cancer detection267 (Figure 5d), independent of
tissue staining quality.

ONGOING DEVELOPMENTS
Quantitative Phase Tomography. The transition from

generating 2D quantitative phase images to tomographic
images that capture the 3D structure of specimens is an
ongoing development in QPI. While 3D imaging is fairly
common with fluorescent biomarkers using confocal or
widefield microscopy and digital image processing reconstruc-
tion,268 the use of fluorescence tags has disadvantages that
include photobleaching and phototoxicity with increased
imaging time.269 Imaging based on the inherent contrast
provided by natural variation in refractive index eliminates
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these label-related problems. Tomography refers to the
stacking of 2D planes or images acquired at multiple imaging
angles to reconstruct 3D structures of specimens called
tomographs. Although the principle of interferometric
tomography was proposed in the 1960s270 and experimentally
demonstrated in the 1980s,271 tomographic image reconstruc-
tion was too computationally intensive to be routinely used for
QPI until decades later.272 Reconstruction of quantitative
phase tomography from scattering images of polystyrene beads
using Mach−Zehnder interferometry,273 and then polystyrene
foam from DHM images was demonstrated,274 followed by
measurements of the 3D refractive index and the absorbance
profile of optical fibers using phase retrieval and tomographic
reconstruction275 (Figure 6a).

Whereas 2D QPI measures the integral of Δn, the refractive
index of the sample relative to the surrounding media through
the thickness of the sample in each imaging pixel, quantitative
phase tomography maps Δn within each voxel. Advances in
tomography have focused on increased precision and accuracy
of 3D refractive index mapping using DHM assisted
tomography276 (Figure 6b). Tomography has also been
developed from phase shifting interferometry,277 and light-
emitting diode (LED) array microscopy, which forms the basis
of DPC phase reconstruction.98,278 LED array systems are
capable of an impressive 0.25 s acquisition time, made possible
with optimized sample illumination279 (Figure 6c). Another
method for acquiring tomographic images for use in image
reconstruction is by acquisition of holographic phase images at
a series of angular projections using illumination with a

rotating fiber optic, resulting in a 1 Hz imaging rate.280 Further
advances in this direction also enable high resolution image
reconstruction using low numerical aperture intensity images
as an alternative method.281 Intensity diffraction tomography
using annular LED illumination has improved imaging speed
and achieved diffraction limited resolution as well.282

A promising application of tomographic QPI to measure
subcellular structures is the interrogation of biomolecular
condensates, which are membrane-less organelles or organelle
subdomains that have been implicated in a wide range of cell
behaviors including bone metastasis283 and autophagy.284 This
process of intracellular phase separation was examined by 3D
QPI with identification confirmed by fluorescence.285 Future
applications of QPI tomography includes combinations with
other QPI data analysis methods to reveal the essential
biological mechanism(s) behind these structures. Another
promising application of QPI tomography is the measurement
of mass within multicellular specimens, such as whole
animals277 (see in vivo section, below), or 3D organoids that
are often used as in vitro models of development or disease.286

Gradient light interference microscopy developed by combin-
ing aspects of DHM, DIC microscopy and low coherence
interferometry enables 3D imaging of samples ranging from
single cells to intact embryos for measurements of internal
structures and their evolution in time.287 Optical projection
tomography uses DHM and analyzes movies of flowing
samples to acquire images at multiple angles, resulting in
reduced imaging time and a noninvasive solution for phase
measurements of RBC aggregation,288 an offshoot of which is

Figure 6. Progress in QPI tomography from applications with static optical fibers to multicellular organisms. (a) QPI tomography analysis of
cross sections of optical fibers (top). A common feature of QPI tomography is recovery of the 3D refractive index distribution, rather than
the integrated refractive index through the sample thickness, as in 2D QPI. This is shown by the refractive index distribution measured as a
line profile through the sample (bottom). Reproduced from ref 275. Copyright 2000 Elsevier. (b) QPI tomography of single cell protozoan,
Hyalosphenia papilio, with refractive index reconstructions shown as different 2D slices. Adapted from ref 276. Copyright 2006 The Optical
Society. (c) Multiplexed intensity diffraction tomography of multicellular Caenorhabditis elegans embryos. Shown are in-focus refractive
index (top row) and depth-coded projections of volumetric reconstruction (bottom row). Red and orange arrows indicate developmental
stages of the embryos. Individual developing tissues, the buccal cavity (white box), intestine (blue box), and native bacteria (blue arrow), are
visible. Reproduced with permission from ref 279. Copyright 2019 The Optical Society.
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called limited-angle holographic tomography. White light
diffraction tomography performed by deconvolution of QPI
stacks generates high-resolution QPI data of intracellular
structures.220 Quantitative oblique back-illumination micros-
copy (qOBM) enables tomography of a wide range of samples,
from thick highly scattering286 to opaque289 samples, by using
multiple scattering paths generated within the sample to create
an effective light source deep within the sample despite
illuminating the sample in epi-mode. Overall, these selected
example applications and approaches in quantitative phase
tomography show that the ability to view and quantify sample
features in 3D is very powerful with further studies codifying
metrics for comparison.290 Since quantitative phase tomog-
raphy is another QPI approach that relies heavily on
computation for generating and processing 3D data, this area
will continue to benefit from ongoing advances in computing
power and analytic software.

QPI in Tissues and In Vivo. There are ongoing efforts to
apply QPI to tissue slices and the in vivo environment to limit
the confounding effects of studying cell behavior in vitro
(Figure 7). However, there exist several roadblocks to fully
realizing this goal, including light scattering of thick samples,
phase unwrapping errors due to long optical path lengths
through thick tissues, and the small size of microscopes needed
for imaging inside living organisms. One approach is to
continue modifying techniques that have already been adapted
for in vivo imaging for phase retrieval. A key example of this
approach is the use of optical coherence tomography (OCT).
OCT and its’ high speed variants291 are low-coherence

interferometry methods that leverage low temporal coherence
to exclude scattered light outside a tissue slice of interest,
coupled with backscattering of light, to image cross-sectional
areas of tissues in situ.292,293 An early approach added phase
retrieval to OCT to enable QPI of human cheek cells294

(Figure 7a) and isolated chicken cardiomyocytes.295 Phase-
sensitive OCT has also been extended into in vivo imaging of
the human retina296 and its associated motion.297 However,
despite great improvements in phase stability, there is a still
often a need for either manual or automatic phase unwrapping
to correct for phase errors with this emerging technique.

The most definitive application of in vivo QPI has been
DHM imaging of red blood cells (RBCs) in microcapillaries
within the mesentery of live mice298 (Figure 7b). By using 2D
holograms from different angles, Sung et al. was able to
reconstruct a 3D tomogram via optical diffraction tomog-
raphy.299 This method of in vivo QPI however is constrained to
areas that are sufficiently thin or near the surface of the animal.
Another adaptive approach is to use QPI methods developed
in an in vitro setting to address issues of light scattering in thick
samples and phase unwrapping and then translate them for in
vivo imaging through miniaturization. This has led to attempts
to miniaturize certain platforms, such as diffraction phase
microscopy (DPM), into an endoscope (i.e., eDPM),300 or to
making a fiber optics based qOBM system.301 Demonstrations
of these techniques have so far been limited to ex vivo imaging.
The eDPM system has been used to measure stained white
blood cells300 and a similar holographic endoscope method
was applied to mouse esophageal tumor samples,302 whereas

Figure 7. Progression of in vivo QPI approaches. (a) Sample preparation for an in vivo technique called spectral-domain optical coherence
phase microscopy (SD-OCPM; top) which generated optical path difference maps for human epithelial check cells (bottom). Adapted from
ref 294. Copyright 2005 The Optical Society). (b) Diagram of live mouse heating stage setup for in vivo QPI (top). Representative QPI data
from a live mouse mesentery showing mouse microvasculature represented as optical phase delay maps reconstructed from holograms
(bottom). Adapted with permission under Creative Commons Attribution (CC BY) license from ref 298 . Copyright 2016 Springer Nature.
Scale bar = 10 μm. (c) Schematic of a fiber-based quantitative oblique back-illumination microscopy (qOBM) platform for imaging tumor
tissue in excised rat brain (top), thereby generating QPI images from deconvolution of intensity images (bottom). Adapted from ref 301 .
Copyright 2021 The Optical Society. Scale bar = 50 μm.
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the fiber optics qOBM imaging system has examined
gliosarcoma cells from excised and formalin-fixed rat brain
tissue301 (Figure 7c). Overall, work so far in this area points
toward a bright future of applying various in vitro quantitative
phase approaches to studies of mass regulation, biophysics, and
the building of diagnostics based on QPI measurements of cells
in vivo.

Multimodality Approaches. A key advantage of QPI is
that it is label-free and captures data on all components that
contribute to cell mass. However, a related limitation is that
QPI data are not specific for any individual component of the
cell. Therefore, a number of approaches and studies have
combined QPI with other imaging modalities to learn more
about cell structure and behavior (Figure 8). Two of the most
promising connections are the combination of QPI with
fluorescence detection through the tagging of specific
molecules and the combination of QPI with vibrational
spectroscopy, for label-free measurements of chemical
composition within the cell.

Early combinations of fluorescence detection methods with
QPI approaches303 (Figure 8a) to interrogate RBCs measured
physical and optical thickness,304 resolved substructures within
cells,305 and identified and characterized the mass distribution
of subcellular components303,306 (Figure 8). These initial
approaches demonstrated QPI identification and measurement
of different subcellular components within a cell that were
manipulated to fluoresce. Fluorescence combined with QPI
has also been used to segregate different populations of cells in
a mixed culture experiment,85 track the behavior of rare
subpopulations of primary human cells ex vivo,204 or to
determine different cell states250 concurrently with mass
accumulation and mass density measurements from niche
cell populations. Dual fluorescence plus QPI combinations
have also enabled biomechanical interrogations of cell
responses to optical tweezers307 and dual traction force and
growth measurements.308 The combination of SLIM and an
epifluorescence traction stress imaging method, Hilbert phase

dynamometry,309 was used to study mesenchymal stem cell
growth and differentiation into osteocytes and adipocytes.
Results showed that during osteogenesis and adipogenesis,
greater force is exerted by these cell types on their growth
substrates than by mesenchymal stem cells, which develop the
least force and show the lowest growth rate.308

In general, combined 3D QPI/3D fluorescence techniques
can differentiate subcellular components while rendering a map
of cell refractive index312 and identifying the refractive index of
subcellular regions.313 Combined 3D fluorescence detection
and refractive index tomography on cells with fluorescently
labeled nuclei, mitochondria, and actin enabled registration of
the refractive index profile with the labeled subcellular
components.314 Optical diffraction tomography has also been
used in combination with 2D fluorescence to validate
measurements of lipid content.312 Moving toward the
acquisition of functional data from 3D structure, studies
using combinations of refractive index tomography with
fluorescence subdiffraction microscopy enable concurrent
studies of cell biophysical properties and biochemical
functions.305,310 Further advances include high-speed correla-
tive 3D QPI/3D fluorescence techniques310 (Figure 8b),
which have evolved to enable 200 Hz imaging of 4D maps of
cell structures.315 With the addition of machine learning, more
advances are possible due to the vast amount of morphological
and molecular data collected by dual fluorescence QPI
combination modalities, thereby enabling more complex
analyses.

Another multimodal approach of interest is the combination
of QPI with molecular vibrational spectroscopy to measure
chemical composition311 (Figure 8c). Extracting chemical
composition from QPI alone has been attempted as
quantitative phase spectroscopy (QPS), but with limited
success. QPS uses phase measurements over a range of
wavelengths to estimate the component distributions in
samples. This approach has been applied to measure
hemoglobin316 or BSA317 concentrations in solution, and has

Figure 8. Examples of the opportunities available from coupling QPI with additional imaging modalities. (a) QPI of kidney cells paired with
fluorescence detection enables the identification and quantification of dry mass changes, represented by phase shifts, within subcellular
regions (right), such as the nucleus, identified by Hoechst staining (bottom left). Reproduced with permission from ref 303. Copyright 2006
The Optical Society. (b) Enhanced fast image acquisition of dual 3D fluorescence (top right) and refractive index measurements from
tomographic QPI (top left). This accelerated approach provides the necessary capture speed in image scanning to reconstruct 3D
tomograms of A549 cells for both fluorescence (bottom right) and QPI (bottom left) measurements from z-step data Adapted with
permission from ref 310. Copyright 2017 The Optical Society. (c) Molecular vibrational spectroscopy paired with QPI of COS7 cells (top
left) examined for molecular signatures, such as CH2 (top center) and peptide bending (top left), corresponding to subcellular phase shifts
within the nucleus (orange), cytoplasm (blue), relative to empty space control (gray) (bottom). Reproduced with permission from ref 311.
Copyright 2020 The Optical Society. .
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been applied to measure healthy317 and diseased318 RBCs.
This approach has also been extended to 3D tomography.319

However, using this approach to decipher more complex
cellular contents is limited by the relatively small variation in
phase delay of biomolecules in visible light. Molecular
vibrational spectroscopy techniques generate vibrational
spectra of molecules measured from their linear absorption
and inelastic light scattering.320 These vibrational spectra are
dependent on the chemical structure and environmental
interactions of the molecules and thus can provide information
on the chemical composition of materials. Raman spectrosco-
py, which is a type of vibrational spectroscopy, relies upon the
inelastic scattering of photons to determine the vibrational
modes of molecules, allowing for the detailed identification of
chemical composition. However, use of scattering spectroscopy
methods may generate an issue with limited signal in
applications with live cells. Overcoming this limitation typically
requires either high illumination power, which induces
phototoxicity, or metal probes for surface enhanced Raman,
which can foul in solution environments. Nonetheless, label-
free identification of chemical compositions within cells is an
ideal complement to the less specific biomass information
obtained with QPI.

Dual modality QPI plus molecular vibrational spectroscopy
has been applied with a mid-infrared light source to
characterize specific molecular contents with cellular mass
distributions.311 Raman spectroscopy has been applied to
characterize both the morphological dry mass and chemical
composition within cells.321 Combined Raman QPI ap-
proaches have also examined dry mass, mass density, and
protein and lipid composition under ultraviolet radiation,322

and with the help of machine learning classified normal and
cancerous tissues.323 Combining QPI with molecular vibra-
tional spectroscopy enables the examination of chemical
composition and biomass kinetics (Figure 8c) to further
dissect core biological mechanisms and processes.

Brillouin microscopy is a noninvasive, label-free microscopy
method to measure viscoelastic properties of cells and
tissues324 that has also been combined with QPI. Brillouin
microscopy uses inelastic scattering to determine the
viscoelasticity of heterogeneous materials of known density
and refractive index. Brillouin microscopy was combined with
optical coherence tomography to study biomechanical proper-
ties in tissues, including stiffness, elasticity and structural
changes in embryos.325,326 Brillouin microscopy has also been
combined with optical diffraction tomography and fluores-

Figure 9. Machine learning has been applied to all three stages of a typical QPI processing and analysis pipeline: (1) computation of phase
data, (2) labeling of phase images, and (3) feature-based cell classification. (a) Phase image reconstruction from a single overfocus or under-
focus image using deep learning and TIE algorithm. The error of phase calculation using the combined deep learning TIE method is under
0.06 π for the ‘Network+’ learning-based method using one overfocus image and the ‘Network-’ method using an under-focus image when
compared to the ground truth calculated from three images using TIE. Reproduced with permission from ref 123. Copyright 2020 Elsevier.
(b) PhaseStain is a digital staining method developed using deep learning on holographic microscopy images, to perform virtual staining of
tissues from label-free QPI images. The stained images produced are similar to histological staining observed under a brightfield microscope.
(c) A zoomed-in view comparing the liver tissue section stained using PhaseStain and Masson’s trichrome staining. Reproduced with
permission under Creative Commons Attribution (CC BY) license from ref 338. Copyright 2019 Nature. (d, e) Machine learning to classify
cell states during the epithelial-to-mesenchymal transition (EMT). M-phase, pro-apoptotic, and growth-arrested cell states occurring during
EMT can be distinguished from untreated control cells using machine learning, utilizing cell features identified from QPI. Reproduced with
permission under Creative Commons Attribution (CC BY) license from ref 260. Copyright 2017 Springer Nature.
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cence microscopy to measure the refractive index, density and
elasticity of specific fluorescently labeled structures inside
cells.327 QPI Brillouin approaches have also been used to
measure cell softening during transmigration.328

As a label-free method based on brightfield microscopy, QPI
can be added to other microscope imaging modalities beyond
fluorescence and vibrational imaging methods. For example,
quantitative label-free imaging with phase and polarization, a
combination of defocused QPI and polarization microscopy,
can measure volumetric phase, retardance and orientation,
which is useful for studying structures in cells and tissue
slices.329 There is, therefore, a broad potential future for
multimodality work in biological and potential clinical
applications of QPI.

Machine Learning. Machine learning has propelled many
recent advances in QPI, such as improving phase reconstruc-
tion for QPI images, improving segmentation and tracking for
processing QPI data, and improving data labeling and
classification (Figure 9). In terms of preprocessing, machine
learning can help improve the reliability of phase reconstruc-
tion algorithms. Most work applying machine learning to QPI
uses convolution neural network (CNN) variants, such as U-
Net.330 CNN is well suited for phase recovery as it considers
multiple pixels in the process of data condensation, unlike
perceptron models that use individual pixel input.331 For
example, in the area of phase retrieval, machine learning has
been used to reconstruct TIE results with a single intensity
image, and can eliminate errors arising at the boundaries of
images during TIE reconstructions as well as reduce the impact
of noise.123 Machine learning can also benefit wavefront
sensing.331,332 For example, a diffuser can be used to generate
random speckles that then work as a wavefront sensor, when
combined with a neural network trained on phase objects.333

Phase unwrapping is often an issue in interferometric
methods,48 and a one-step correction for phase unwrapping
errors has therefore been introduced using machine learning
methods.334 Holographic image reconstruction has also been
performed from single intensity images using machine learning,
with validation on pap smears and human tissue samples.124

Machine learning is also helpful in QPI data postprocessing
steps. Here, CNNs are the most widely used approaches as
well. Machine learning networks have been designed to
segment microscope images,335 and process cell tracking
data, counting, and characterization.336 Machine learning
algorithms on unlabeled QPI images can compute or false-
colorize staining patterns created by computer labeling of
different organelles and components within cells. For example,
machine learning can be used to identify lipid droplets in
unlabeled QPI images.337 A related machine learning
approach, called PhaseStain, was developed for label-free
staining of QPI images.338 This method was extended for real-
time staining and classification of sperm cells,339 identification
of cells from subcellular components,340 and generation of
pseudofluorescence images from label-free QPI data.338,341

The change in dry mass of subcellular structures has been
measured over time using phase imaging with computational
specificity, which segments QPI data with machine learning
approaches.342

One especially promising application of machine learning
methods for QPI studies is in the classification and
identification of cells and tissues. Classification schemes
using machine learning algorithms can help reduce the time
and labor involved in traditional pathology, while the label-free

nature of QPI simplifies data collection. Statistical classification
from QPI data was demonstrated using basic feature
recognition algorithms for the classification of microorgan-
isms.343,344 Similar classification schemes were later improved
using machine learning approaches.345,346 Machine learning
has since been used with QPI data for classifying specific cell
death pathways;347 categorizing the health and quality of
human spermatozoa for in vitro fertilization;348,349 screening
RBCs for hematologic disorders350,351 including sickle cell
disease352 and malaria;353 and identifying and classifying
microorganisms.354 In cancer studies, machine learning has
been applied to QPI data for scoring cancer cells as epithelial
or mesenchymal in origin,355 phenotypic profiling of cancer
and noncancer cell lines,356 as a diagnostic tool in pancreatic
cancer,357 and to quantify dynamic responses of melanoma
cells to therapy260 (Figure 9d,e). Machine learning with QPI in
combination with data from additional techniques helps
increase the accuracy of classification, as it increases the
number of data inputs into selected classification methods. For
example, QPI, fluorescence, and Raman spectroscopy have
been combined as inputs into a machine learning algorithm to
detect macrophage activation.358 Raman imaging and QPI
combined with machine learning has also been applied to
recognize stages of B cell acute lymphoblastic leukemia.359

Overall, machine learning is poised to play an ever-increasing
role in both the generation and interpretation of QPI data, and
has already touched upon nearly every major application of
QPI.

CONCLUSIONS AND PERSPECTIVE
QPI is an approach with a long history. However, the last two
decades have seen great leaps in both the abilities and
applications of QPI. The rapid recent development of QPI is
from impressive advances in image processing capabilities
enabled by digitalization and increasing computational power
(Figure 1a). This development and application of computa-
tional tools has substantially increased the utility and power of
QPI in its application to biomedicine and permitted the
development and commercialization of prebuilt and user-
friendly QPI platforms. Consequently, recent years have
witnessed a surging interest in QPI, coupled to a dramatic
increase in QPI enabled publications and discoveries (Figure
1b). This marked expansion of QPI applications is also being
fueled by leveraging machine learning approaches and is
increasingly impacting areas that are beginning to include
disease diagnoses and measurements of biological state
transitions. While exciting, this recent and rapid adoption of
QPI platforms and associated published studies has also
highlighted the dearth of standardization tools and practices
beyond the adaptation of polystyrene beads143 as phase
standards. Developing and circulating such tools will be critical
for reproducible studies and validation of future QPI-based
diagnostics and other applications.

Current areas of QPI utility include studies of cell size and
its regulation, cellular diagnostics and screens, and bio-
mechanics and biophysics. One key strength of QPI
approaches includes label-free classification of key cellular
behaviors such as programmed cell death pathways, differ-
entiation, cell cycle progression, and immunological responses.
Assessing these behaviors in the context of changes in biomass
density, morphology, transport, and viscoelastic properties
provides a deeper understanding of adaptations during cell or
organismal life. A second key strength is the ability to study
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single cells or individual cell clusters over long periods of time.
As techniques in single cell profiling continue development
resulting in increasing reports on molecularly distinct
subpopulations of cells, QPI provides a platform for assessing
distinct phenotypes and behaviors within these heterogeneous
populations. Further development of multimodal approaches
will be critical for merging the observations made using single
cell molecular profiling with QPI single cell phenotyping.

Finally, although there have been a large number of studies
pointing toward clinical utility of QPI, this approach is ready
for more robust validation and testing with clinical samples. As
a label-free approach that can quantify multiple physiologically
relevant parameters describing the behavior of living cells, QPI
is well positioned to work with clinical samples. QPI therefore
has the potential to enable a wide range of clinical applications
in functional and diagnostic medicine, both as an addition to
current approaches that rely on staining and as an independent
ex vivo approach. Further work is therefore needed to build on
the demonstrated capabilities of QPI to translate this
technology to clinical utility and ultimately to improve the
standard of patient care.
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VOCABULARY
Phase (of light), Property that, along with amplitude
(intensity), wavelength (color), and polarization, defines light
as an electromagnetic wave. Shifts in phase occur from a delay
in propagation speed, such as when light passes through a
sample of higher refractive index; Quantitative phase imaging
(QPI), Method in which the phase shift of light as it interacts
with matter is measured. This provides measurements of the
integrated refractive index through a sample’s optical thickness
at each imaging pixel; Interferometry, Method in which
source light is split into a sample and reference beam, then
recombined at or before a detector, generating interference
patterns. This method can be applied to acquire QPI data;
Digital holography, Method in which a hologram is captured
on a digital imaging sensor using an interferometer. The
resulting digital hologram enables reconstruction of QPI data;
Wavefront sensing, Method that measures aberrations in the
wavefront of light due to the distribution of phase shifts caused
by interaction with a sample, typically without the need for the
reference beam used in interferometry; Phase retrieval, A class
of methods in which intensity images, often with some
perturbations such as partial defocusing, chromatic aberrations,
or partial illumination, coupled with knowledge of the optical
transfer function, enables reconstruction of the distribution of
phase shifts through a sample; Quantitative phase tomog-
raphy, Method to measure the three-dimensional distribution
of phase shifts within a sample. Returns measurements of
average refractive index within each imaging voxel.
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