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Abstract

Polynucleotide phosphorylase (PNPase) is an essential mitochondria-localized exoribonu-

clease implicated in multiple biological processes and human disorders. To reveal role(s) for

PNPase in mitochondria, we established PNPase knockout (PKO) systems by first shifting

culture conditions to enable cell growth with defective respiration. Interestingly, PKO estab-

lished in mouse embryonic fibroblasts (MEFs) resulted in the loss of mitochondrial DNA

(mtDNA). The transcriptional profile of PKO cells was similar to rho0 mtDNA deleted cells,

with perturbations in cholesterol (FDR = 6.35 x 10−13), lipid (FDR = 3.21 x 10−11), and sec-

ondary alcohol (FDR = 1.04x10-12) metabolic pathway gene expression compared to wild

type parental (TM6) MEFs. Transcriptome analysis indicates processes related to axono-

genesis (FDR = 4.49 x 10−3), axon development (FDR = 4.74 x 10−3), and axonal guidance

(FDR = 4.74 x 10−3) were overrepresented in PKO cells, consistent with previous studies

detailing causative PNPase mutations in delayed myelination, hearing loss, encephalomyo-

pathy, and chorioretinal defects in humans. Overrepresentation analysis revealed alter-

ations in metabolic pathways in both PKO and rho0 cells. Therefore, we assessed the

correlation of genes implicated in cell cycle progression and total metabolism and observed

a strong positive correlation between PKO cells and rho0 MEFs compared to TM6 MEFs.

We quantified the normalized biomass accumulation rate of PKO clones at 1.7% (SD ±
2.0%) and 2.4% (SD ± 1.6%) per hour, which was lower than TM6 cells at 3.3% (SD ± 3.5%)

per hour. Furthermore, PKO in mouse inner ear hair cells caused progressive hearing loss
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that parallels human familial hearing loss previously linked to mutations in PNPase. Com-

bined, our study reports that knockout of a mitochondrial nuclease results in mtDNA loss

and suggests that mtDNA maintenance could provide a unifying connection for the large

number of biological activities reported for PNPase.

Introduction

Polynucleotide phosphorylase (PNPase) is a conserved 3’-5’ exoribonuclease that bacteria and

most eukarya express, but is absent in archae [1, 2]. In addition to phosphorolytic RNA

degrading activity, bacterial PNPase catalyzes template independent polymerization of RNA

[3, 4]. The enzymatic features of bacterial PNPase have been well studied [4–10] and recent

discoveries reveal bacterial PNPase involvement in modulating levels of multiple mRNAs and

sRNAs [4, 11–13], an etiology in cold-shock [14–16] and oxidative stress responses [17], bio-

film formation [18–20], virulence [21], and even DNA recombination, repair and mutagenesis

[22–25].

Similar to its bacterial counterpart, mammalian PNPase has several roles in RNA homeosta-

sis, and it has also been found to function within mitochondria. Constitutive PNPase knockout

(PKO) in mice is lethal at embryonic day 8, because PNPase is essential for maintaining mito-

chondrial homeostasis in all cell types [26, 27]. Mammalian PNPase exhibits enzymatic features

that are similar to bacterial PNPase with a different optimal phosphate concentration for RNA

degradation [28, 29]. PNPase localizes to both the intermembrane space (IMS) and matrix com-

partments of mitochondria, as revealed in several model systems and by multiple localization

methods [26, 27, 30, 31]. Knockdown studies have shown variable effects on the processing and

polyadenylation of mitochondrial RNA (mtRNA) that is transcribed from mitochondrial DNA

(mtDNA) [32–34]. In addition to RNASET2, which is a mitochondrial RNA degrading enzyme

[35], recent studies have established that PNPase and the hSUV3 RNA helicase form a mtRNA

degrading complex and degrade mirror-mtRNAs, which are noncoding mtRNAs that are anti-

sense and complementary to coding mtRNAs [31, 34, 36].

Also similar to bacterial PNPase, mammalian PNPase participates in many physiologic

pathways beyond mtRNA regulation. One study suggests that PNPase regulates c-Myc levels

possibly through interactions with EGFR [37], whereas another study suggests PNPase con-

trols an interferon-β (IFNβ)-induced reduction of c-Myc mRNA [38]. PNPase modulates an

IFNβ-induced decrease of mir-221 levels that results in growth inhibition in melanoma cells

[39] and it regulates nucleus encoded small non-coding RNA import into mitochondria [27,

40]. PNPase is a type-I IFN induced gene [41] and over-expression at supra-physiologic levels

affects reactive oxygen species (ROS) generation and NF-κB activation [42]. Recently, PNPase

was linked to metabolism control during somatic cell reprogramming to induced pluripotent

stem cells [43, 44]. In humans, PNPase mutations genetically link to hereditary hearing loss,

encephalomyopathy, and axonal and auditory neuropathy, gut disturbances, chorioretinal

defects, Leigh syndrome, and delayed myelination [45–50]. Combined, PNPase affects many

essential cellular processes and pathways that regulate organism physiology and pathology

without a unifying theme or underlying mechanism, which requires further investigation.

Almost all investigations to date elevate PNPase to supra-physiologic levels in gain-of-func-

tion studies or use knockdown approaches with incomplete loss of PNPase in loss-of-function

work to gain insight into mammalian PNPase activities. A few studies examined changes in

gene expression profiles with gain and loss of PNPase function using these approaches to help
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explain the plethora of impacted physiologic systems [51, 52]. However, no study eliminated

PNPase completely to evaluate the impact on global gene expression and cell function, likely

due to the essential role of PNPase for cell growth and survival under usual conditions in vivo
and in culture. Given its mitochondrial localization, roles in mtRNA regulation, and its activity

in small nucleus-encoded RNA import into mitochondria to control respiration, we reasoned

that reducing the dependence of cells on mitochondrial function first could generate a suitable

internal cell environment for stable knockout of PNPase. Here, we established complete PKO

cells by first reducing immortalized mouse embryonic fibroblast (MEF) dependence on respi-

ration. The resulting PKO cell lines enabled studies of changes in gene expression and cell

function directly due to PNPase loss. We also examined the effect of PNPase loss-of-function

in inner ear hair cells in mice, as homozygous PNPase mutation or loss links with familial

hearing loss in humans [45].

Results

PNPase knockout results in loss of mtDNA and inability to respire

Our previous attempts to generate a PKO MEF line failed because deletion of the PNPase-

encoding gene, Pnpt1, ultimately caused cell death [27]. Given its essential role in maintaining

mitochondrial homeostasis and its mitochondrial localization, we considered that PKO might

disrupt mitochondrial functions required for survival [26]. To test this idea, and because cell

lines are known to rely on mitochondria to varying extents, we sought to establish PKO MEFs

using a two-step approach. First, we generated a cell line that lacked mtDNA (rho0) using

Pnpt1fl/flMEFs isolated from our Pnpt1fl/flmouse colony. SV-40 large T-antigen immortalized

Pnpt1fl/flMEFs, designated TM6, were incubated in media containing ditercalinium chloride

and uridine for 3 weeks to eliminate the mtDNA [53]. PCR validated, respiration defective

rho0 Pnpt1fl/flMEFs were then infected with an adenovirus expressing Cre recombinase to

delete the loxP-flanked portion of exon 2 in Pnpt1, generating non-functional PNPase-encod-

ing alleles that translate out-of-frame with multiple stop codons in exons 3, 4, and 6 [27].

Using this strategy, we obtained numerous independent rho0 PKO MEF clones, indicating

that eliminating mtDNA first provides a permissive internal cell environment for the complete

loss of PNPase (data not shown).

rho0 mammalian cells are pyrimidine auxotrophs that require uridine media supplementa-

tion to grow due to an inactive dihydroorotate dehydrogenase enzyme in the mitochondrial

inner membrane, resulting from a non-functional electron transport chain (ETC) [54].

Encouraged by the generation of a PKO in rho0 MEFs, we considered whether a simple pre-

conditioning of mtDNA-containing MEFs with rho0 permissive, uridine-supplemented

media, rather than by chemical removal of mtDNA, would result in PKO MEF lines. There-

fore, we incubated Pnpt1fl/flTM6 MEFs in uridine-containing media for 3 weeks, followed by

infection with an adenovirus expressing Cre recombinase. Multiple individual PKO MEF

clones emerged from a background of dead and dying cells; these clones were isolated,

expanded, and 5 clones were PCR verified for complete loss of loxP-flanked exon 2 in the

Pnpt1 gene, as performed previously using internal and external PCR primer sets (Fig 1A)

[27]. We selected 3 PKO MEF clones, designated PKO-1, PKO-4, and PKO-6, for additional

analyses. Immunoblotting revealed undetectable PNPase protein in these 3 PKO clone lines, in

contrast with strong PNPase expression from Pnpt1fl/flTM6 and rho0 MEFs (Fig 1B). Thus,

mtDNA-containing MEFs conditioned to grow in uridine-supplemented media tolerate PKO,

whereas MEFs in standard growth media are non-permissive for PNPase loss.

To examine the impact of PKO on cell function, we first determined the effects on mtDNA

content because chemically induced loss of mtDNA enabled subsequent PKO. Surprisingly,

PNPase knockout results in mtDNA loss

PLOS ONE | https://doi.org/10.1371/journal.pone.0200925 July 19, 2018 3 / 22

https://doi.org/10.1371/journal.pone.0200925


Fig 1. PKO results in loss of mtDNA. (A) PCR to evaluate Pnpt1 (encoding PNPase) exon 2 deletion in the parental MEF line, TM6, and 5 independent PKO lines

(n = 5). Three primer sets include one to examine Pnpt1 exon 2 (in exon 2), a flanking set to capture deletion of exon 2 (span exon 2), and a control set that amplified

the 3’ end of Pnpt1 (PNPase 3’ end). (B) Representative immunoblot for PNPase protein in TM6, rho0 and 3 PKO clones. Total protein lysates were separated by

SDS-PAGE and analyzed using polyclonal antibodies that target PNPase and β-actin. (C) TaqMan quantitative PCR (qPCR) analysis of a control nucleus encoded Tfrc
gene and the mtDNA encoded Rnr1, Nd3, and Cox3 genes in TM6 and 3 PKO cell lines. This experiment was performed in biological triplicates (n = 3, ± SD). (D-F)

Respiration analysis using a Seahorse XFe96 Extracellular Flux Analyzer on the cell lines in (B). These experiments were performed in biological quintuplicates,

normalized to cell number per 103 cells. (D) Oxygen consumption rate (OCR) during mitochondrial stress, (E) basal extracellular acidification rate (basal ECAR), and

(F) basal OCR/ECAR ratios are shown (n = 5, ± SD).

https://doi.org/10.1371/journal.pone.0200925.g001
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the TaqMan qPCR assay using probes specific to Rnr1, Nd3 and Cox1 showed no signal for all

3 PKO clones, identical to the lack of mtDNA in rho0 MEFs (Fig 1C). This result suggested

that PKO MEFs lost mtDNA. Additionally, PicoGreen double-stranded DNA dye staining

using fluorescence microscopy also suggested that mtDNA was not present in PKO cells (S1

Fig). Whereas the TM6 MEF cells displayed green puncta in the cytosol marking abundant

mtDNA, rho0 and PKO MEFs lacked green cytosolic puncta, confirming the loss of mtDNA.

All 3 PKO clones and rho0 MEFs showed no mitochondrial respiration, which contrasted with

TM6 MEFs, as measured by a Seahorse XFe96 extracellular flux analyzer (Fig 1D). This result

was consistent with loss of mtDNA and resultant failure of the ETC (Fig 1C). Rather, these

PKO cells manufacture energy by substantially increasing glycolysis and show an elevated

basal extracellular acidification rate (ECAR) relative to TM6 MEFs (P value = 0.0079 for PKO-

1, PKO-6, and rho0 to TM6 comparisons, P value = 0.0159 for PKO-4 to TM6 comparison)

(Fig 1E). In cells with low or absent respiration, ECAR is a good approximation of glycolysis

and lactate excretion. A plot of the ratio of basal OCR/ECAR provides a remarkable graphic

display for the metabolic alteration caused by PKO (P value< 0.0079 for all PKO and rho0 to

TM6 comparisons) (Fig 1F). Combined, these genetic, protein, and functional data indicate

that MEFs that lose PNPase cannot respire or maintain the mitochondrial genome.

Transcriptional, growth and cell cycle profiles are similar for PKO and

rho0 cells

To determine the effect of PNPase loss on gene expression and the potential to alter cell physi-

ology, we performed RNA-Seq analyses on TM6 MEFs, rho0 cells derived from TM6 MEFs

and PKO-1 and PKO-6 MEFs. PKO-4 cells were excluded from analysis because of aneuploidy

detected by cell cycle profiling (data not shown). Principal components analysis (PCA), used

to determine sample covariance with respect to their transcriptomic features, indicated exten-

sive transcriptional variance, denoted by the first principal component (PC1), between TM6

MEF cells and the remaining cell lines (Fig 2A). Isolated PKO cells clustered away from the

parental TM6 cell line and showed variability in inter-clone gene expression with little intra-

clone variation (Fig 2A). However, PKO-1 and PKO-6 MEFs displayed similar expression sig-

natures to rho0 TM6 MEFs (Fig 2A). A rank-rank hypergeometric overlap (RRHO) analysis

calculating the significance between overlaps of averaged PKO and rho0 expression changes

with respect to TM6 indicates strong correlative overlap in expression profiles between PKO

and rho0 cells (maximum–log10(P value) > 4500) (Fig 2B). We identified a significant overlap

in up- and down-regulated transcripts within PKO and rho0 signatures and additionally

sought to identify differentially expressed genes (DEGs) in both expression profiles. Our analy-

sis identified 1,629 DEGs between rho0 and TM6 MEFs, with a false discovery rate (FDR)

adjusted P value below 0.01 and an absolute log2 fold-change above 0.5, and 1,527 DEGs

between PKO and TM6 MEFs using the same thresholds (Fig 2C). Of the DEGs expressed by

rho0 and PKO MEFs, 886 genes were in common, as anticipated due to significant overlaps in

RRHO analysis and similar cellular physiology with the loss of mtDNA (Fig 2C).

We performed Gene Ontology (GO) gene set overrepresentation analysis (ORA) for each

area represented in the Venn diagram (Fig 2C) and examined DEGs that are specific to rho0

MEFs (cluster 1) and PKO MEFs (cluster 3) and those DEGs shared between rho0 and PKO

MEFs (cluster 2). GO terms overrepresented in cluster 1 identified processes including regula-

tion of cell morphogenesis (FDR = 4.45 x 10−4), cell-cell junction assembly (FDR = 8.70 x

10−3), mitochondrial DNA replication (FDR = 0.014), and regulation of protein stability

(FDR = 0.026) (Fig 2D). Genes whose expression associates with mtDNA replication are ele-

vated in rho0 and reduced in TM6 MEFs (S2 Fig). These genes include a subunit of
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Fig 2. PKO cell gene expression patterns converge and diverge with rho0 MEFs. (A) Principal Components Analysis (PCA) of TM6, rho0, PKO-1, and PKO-6

MEFs (n = 3 biological replicates per line; 12 replicates total). Expression profiles for each sample were plotted for their PC1 and PC2 scores, providing primary and

secondary sources of variance, respectively. Samples were color-coded based on cell type. (B) Rank-rank hypergeometric overlap (RRHO) maps of the log2 fold-

change expression profiles between PKO and rho0 MEFs with respect to TM6 MEFs. Color coding represents–log10 transformed hypergeometric P values, with

higher values indicating strength of overlapping enrichment between PKO and rho0 gene lists. (C) Venn diagram of differentially expressed genes (DEGs) between

rho0 MEFs (left) and PKO clones (right) with respect to TM6 MEFs. DEGs were identified in each comparison using an absolute log2 fold-change threshold above 0.5

and a false discovery rate (FDR) adjusted Wald P value below 0.01. Clusters indicate rho0 specific (cluster 1), PKO specific (cluster 3), and shared DEGs (cluster 2).

(D) Dotplot of Gene Ontology (GO) overrepresentation analysis (ORA) of the rho0 specific, shared, and PKO specific DEG clusters. Dot size indicates the ratio of

PNPase knockout results in mtDNA loss
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ribonucleotide reductase that regulates cytosolic nucleotide pools (Rrm2b), an RNase that

removes an RNA primer in replicating mtDNA (Rnaseh1), and a pyrimidine transporter

(Slc25a33) (S2 Fig).

Amongst pathways overrepresented by PKO and rho0 MEF DEGs (cluster 2) are cholesterol

metabolic processes (FDR = 6.35 x 10−13), sterol metabolic processes (FDR = 6.35 x 10−13),

lipid biosynthetic processes (FDR = 3.21 x 10−11), and secondary alcohol synthesis

(FDR = 1.04 x 10−12), which were all reduced in both cell types (S2 Fig). Cholesterol and sterol

biosynthetic process repression is consistent with data from PNPase shRNA knockdown in

melanoma cell lines, reported previously [52].

Pathways pertaining to neuronal function are overrepresented in PKO specific cluster 3

and include axonogenesis (FDR = 4.49 x 10−3), axon development (FDR = 4.74 x 10−3), and

axon guidance (FDR = 4.74 x 10−3) (Fig 2D). We extracted specific genes belonging to the axo-

nogenesis, axon development and axon guidance pathways identified in the ORA for analysis

(Fig 3A and S1 Table). Among this list are genes involved in survival of neural cells such as

Bcl2 and Artn [55, 56], cell junction or adhesion such as Vcl and Agrn [57, 58], and cell migra-

tion such as Reln, Robo3, Sema4d, Sema5,Wnt5a, Dag1, Robo1, and Fgfr2 [59–66]. Although

this study uses MEFs, it is interesting to note that the change in these particular genes correlate

with the lack of PNPase expression relative to their TM6 and rho0 MEF counterparts, since

PNPase mutations are linked to delayed myelination, hearing loss, encephalomyopathy, gut

disturbances, and chorioretinal defects in humans [45–50]. Axonogenesis (FDR = 1.14 x 10−3)

and axon development (FDR = 2.00 x 10−4) pathways are also overrepresented in genes shared

between rho0 and PKO MEF DEGs (cluster 2). However, these axonogenesis and axon devel-

opment pathway overrepresented genes (cluster 2) differ from genes in PKO MEF-specific

cluster 3 for the same ontologies. Thus, both loss of PNPase and loss of mtDNA may contrib-

ute uniquely to neurologic pathologies in patients with PNPase mutations.

Because of the concordance in gene expression profiles between PKO and rho0 MEFs (Fig

2B), we examined cell growth, cell cycle progression, and metabolic features in these cell types.

Genes implicated in mitotic progression (KEGG: MMU04110) show a strong positive correla-

tion for rho0 and PKO relative to TM6 MEFs (Pearson Correlation Coefficient (PCC) = 0.86, P
value < 2.2 x 10−16) (Fig 4A). Furthermore, given the importance of metabolism in cell growth

and a key role for cholesterol biosynthesis in cell cycle progression, we assessed the correlation

of metabolic gene expression between PKO and rho0 MEFs [67, 68]. Total metabolic gene sets

(KEGG: MMU01100) showed similar positive correlations for PKO and rho0 expression pro-

files relative to TM6 (PCC = 0.79, P value < 2.2 x 10−16) (S3 and S4 Figs). We next assessed

whether these correlated expression profiles show phenotypic similarity by measuring growth,

or biomass accumulation, rates for TM6, rho0, and PKO MEFs using a quantitative phase

microscopy (QPM) technique called live cell interferometry (LCI) [69]. As anticipated, rho0

MEFs grew much slower than TM6 MEFs, and PKO clones accumulated biomass as slowly as

rho0 MEFs (Fig 4B). LCI quantification revealed a mean growth rate for TM6 and rho0 MEFs

of 3.3% (SD ± 3.5%) and 1.7% (SD ± 2.7%) of normalized cell biomass per hour, respectively,

with a P value of 4.7 x 10−10 (Fig 4B). PKO-1 and PKO-6 showed a mean growth rate of 1.7%

(SD ± 2.0%) and 2.4% (SD ± 1.6%) of normalized cell biomass per hour, respectively, and with

P values compared to the TM6 growth rate of 6.49 x 10−12 and 5.54 x 10−5, respectively (Fig

4B). Furthermore, cell proliferation studies supported LCI quantified growth rate profiling

data in that rho0, PKO-1 and PKO-6 cells replicated much slower than TM6 MEFs (Kruskal

genes from the selected ontology set in the DEG cluster, color indicates significance of gene set overrepresentation in the cluster (FDR adjusted P value) following

hypergeometric significance testing.

https://doi.org/10.1371/journal.pone.0200925.g002
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Wallis P value = 0.0137) (Fig 4C). Finally, cell cycle analysis by flow cytometry revealed a trend

in which PKO and rho0 MEFs have a lower proportion of cells in S phase compared to TM6

MEFs (Fig 4D). The mean percentage of the cell population in S phase is 51.6% (SD ± 1.36%)

for TM6 MEFs, 47.3% for rho0 MEFs (SD ± 6.80%), 43.1% (SD ± 1.25%) for PKO-1 cells, and

44.3% (SD ± 7.84%) for PKO-6 cells. The proportion of cells in S phase is significantly reduced

in the PKO-1 clone relative to TM6 (P value = 0.05) and trending towards a decrease between

PKO-6 clone and TM6 (P value = 0.10), supporting a decrease in S phase for PKO cells (Fig

4D). The difference in cell cycling characteristics is easier to appreciate in the flow cytometry

Fig 3. Heatmap of overrepresented neuronal function pathways in DEG cluster 3. Axonogenesis (GO:0007409),

axon guidance (GO:0007411), and axon development (GO:0061564) genes overrepresented in cluster 3. Heatmap is

hierarchically clustered based on Euclidean distance and Ward linkage. Heatmap values are plotted as the variance
stabilized transform (VST) subtracted by the gene row average mean of samples. (n = 3 biological replicates, 12 total).

https://doi.org/10.1371/journal.pone.0200925.g003
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Fig 4. PKO and rho0 MEFs have similar cell growth, cell cycle and metabolic gene expression profiles. (A) Scatterplot of mitotic gene expression changes between

PKO (y-axis) and rho0 (x-axis) MEFs with respect to TM6 MEFs (calculated as log2 fold-change) (n = 3 biological replicates per line, 12 total). Linear regression lines

were fit and Pearson (top value) and Spearman (bottom value) correlation coefficients were calculated with accompanying P values calculated using two-tailed t

PNPase knockout results in mtDNA loss
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profiles of PKO-1 and PKO-6 MEFs, which resemble rho0 MEFs, whereas the TM6 MEF flow

profile has a distinct shape from the others (Fig 4E). Thus, integrated RNA-Seq, QPM, prolif-

eration, and cell cycle analyses clearly show that PKO MEFs resemble rho0 MEFs that do not

respire.

PKO in inner ear hair cells causes progressive hearing loss

The PNPase E475G mutation results in hereditary hearing loss [45]. We therefore examined

PKO for physiological relevance by examining auditory effects in vivo using Pnpt1fl/fl x
Atoh1-Cre expressing mice (Atoh1-Cre PKO mice). Atoh1 encodes a transcription factor of the

basic helix-loop-helix family involved in hair cell differentiation, and Atoh1-Cre expression in

Pnpt1fl/flmice results in knockout of PNPase in the inner ear hair cells [70]. Auditory brain-

stem recordings of Atoh1-Cre PKO mice showed progressive hearing loss especially at higher

frequencies. Up until 4 weeks of age both control and Atoh1-Cre PKO mice showed similar

hearing capacities between 4 kHz and 16 kHz (S5 Fig). However, even at 3 weeks of age, the

hearing capacity of Atoh1-Cre PKO mice above 16 kHz was reduced compared to control

mice (S5 Fig). By week 4, the lowest level of hearing for 4 weeks of age Atoh1-Cre PKO mice in

the high frequency range at 32 kHz was above 78 db in contrast to 39 db for 3 weeks of age

control mice (P value = 0.0238) (S5 Fig). Scanning electron microscopy (SEM) images of inner

ear hair cell stereocilia show loss of cilia (yellow arrow) and stereocilia fusions (red arrow) in

the middle turn and base of the cochlea that are responsible for hearing in the middle and high

frequencies, respectively (S5 Fig). Overall, hearing impairment observed in Atoh1-Cre PKO

mice recapitulates the hearing loss observed in PNPase mutation harboring patients and

emphasizes the association of PNPase with sensorineural defects.

Discussion

We report that loss of PNPase, an RNA degrading enzyme that localizes in mitochondria,

results in unanticipated depletion of the mitochondrial genome. Transcriptome profiling of

PKO MEFs correlates significantly with rho0 MEFs and exhibits reduced expression of choles-

terol and lipid biosynthesis genes compared to control wild-type TM6 MEFs. Cell growth, pro-

liferation, and cell cycle features are similar between PKO and rho0 MEFs, suggesting a role for

PNPase in maintaining mtDNA. We speculate that PNPase loss-related changes in gene

expression programs pertaining to axon function could suggest a link with reported mutant

PNPase neuronal disease phenotypes in humans, including familial hearing loss. Modeling

PNPase loss in mouse inner ear hair cells leads to progressive auditory loss, reinforcing a

potential connection uncovered from mining gene expression profiling data presented here.

Since PNPase does not belong to any of the previously identified classes of genes associated

with mtDNA maintenance defects, it seems surprising that PKO results in mtDNA loss. Dele-

tions and mutations of genes involved in mtDNA replication and repair (POLG, TWNK,

TFAM, RNASEH1, LIG3 andMGME1), cytosolic and mitochondrial nucleotide pool regulating

and import genes (TK2,DGUOK, SUCLA2, SUCLG1, ABAT, TYMP, RRM2B,AGK, and

MPV17), along with mitochondrial dynamics genes (OPA1 and FBXL4), all result in mtDNA

significance tests. Gene sets were derived from KEGG database cell cycle ID MMU04110. (B) Growth (biomass accumulation) rates for TM6, rho0, PKO-1, and PKO-6

cells were quantified by live cell interferometry (TM6 n = 308, rho0: n = 233, PKO-1: n = 303 PKO-6: n = 364). (Median = red stripe, 95% confidence interval = pink

region ± SD = purple region. (C) Proliferation of TM6, rho0, PKO-1 and PKO-6 MEFs by manual cell counting (n = 3, ± SD). (D) Stacked barplots of phases of the cell

cycle in percentage distributions for TM6, rho0, PKO-1, and PKO-6 MEFs (n = 3, ± SD). (E) Representative flow cytometry profiles for TM6, rho0, PKO-1, and PKO-6

MEFs. DNA was stained with propidium iodide.

https://doi.org/10.1371/journal.pone.0200925.g004
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loss [71, 72]. Thus, it is intriguing to speculate on how PNPase may regulate the maintenance

of mtDNA in a cell.

We hypothesize several potential reasons why lack of PNPase results in loss of mtDNA.

Impaired import of small non-coding RNAs from the cytosol may reduce levels of nucleus-

encodedMRP RNA that is required for mtDNA replication. Accumulation of mirror mtRNAs

occurs in PNPase knockdown cells and in cells expressing dominant negative hSUV3, the

binding partner of PNPase. Therefore, it is also possible that accumulation of mirror mtRNAs

may somehow inhibit replication of mtDNA. Furthering this idea are studies that report that

loss of hSUV3 in human cells and mSUV3 +/- haploinsufficiency in mice result in decreased

mtDNA copy numbers and increased mtDNA mutations [31, 36, 73, 74]. PNPase functions in

DNA repair in bacterial systems [24] and mammalian PNPase may have a similar function in

mitochondria. We also cannot exclude that the loss of mtDNA may be a result of long-term

dysregulated mtRNA metabolism. Although the mechanism(s) for how PNPase maintains

mtDNA warrants further investigation, it nevertheless is interesting that PKO causes cells to

functionally assume a rho0 phenotype.

We note that individuals with different mutations in PNPT1 display a reduction in ETC

function in specific tissues, yet their mtDNA is mostly retained [46, 47, 75, 76]. In particular,

patient fibroblasts with heterozygous PNPT1 c.227G>A; p.Gly76Asp and c.574C>T; p.

Arg192� mutations [49] showed decreased oxygen consumption, and c.760C>A; p.Gln254Lys

and c.1528G>C; p.Ala510Pro mutations have been linked to a decrease inMT-CO1 and
MT-CO2 encoded Complex IV protein levels [46]. Homozygous mutations of c.1160A>G; p.

Gly387Arg also result in decreased Complex III and Complex IV activities in liver homoge-

nates [47]. While these patients do present with severe respiratory chain defects, these observa-

tions do not compare with the abolishment of respiration in our PKO system (Fig 1D), where

complete loss of mtDNA likely abrogates any capacity to establish a functional ETC for sup-

porting cell respiration. Additionally, the minimal yet present levels of ETC protein and ATP

production in several patients indirectly suggests that these patients still possess mtDNA [46,

76]. Unfortunately, only one study amongst the reported PNPase mutant patient analyses pro-

vide mtDNA level measurements. In homozygous PNPT1 c.1160A>G; p.Gly387Arg patient

derived fibroblasts, the mtDNA levels were decreased by 58% relative to the control, but this

extent of decrease is not considered significant due to the large variability in control mtDNA

levels [47]. PNPase protein expression levels vary amongst different PNPase mutations

expressed in assessed patient tissues [45–48, 75, 76]. We suggest that even the minimal pres-

ence of mutant PNPase in these various patients may allow for a low amount of PNPase activ-

ity that can support the maintenance of mtDNA at reduced but functional levels. Therefore,

the extent of mtDNA loss and ETC activity decrease is much more severe in the PKO MEF sys-

tem compared to mutant PNPase patients, likely due to the complete loss of PNPase protein

levels in PKO MEFs.

PNPase regulates oxidative phosphorylation during reprogramming of somatic cells to

induced pluripotent stem cells and is an essential factor for maintaining mitochondrial

homeostasis [26, 43, 44]. Understanding the specific functions of PNPase may reveal how

RNA regulation may affect cellular metabolism. Here, we established PKO MEF lines utilizing

uridine supplemented media and show that PKO cells lose their mtDNA. This brings a new

perspective to PNPase activity and suggests that mtDNA levels are important to consider when

dissecting PNPase functionality. Lastly, PNPase loss impairs neuron-relevant gene expression

even in non-neuronal cell types and the Atoh1-Cre PKO mice show reduced hearing through

auditory brainstem recording analysis. Altogether, our study describes an additional unsus-

pected function for PNPase in mtDNA maintenance, which could provide an underlying or
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unifying connection for its large number of reported activities in multiple biological systems

and contexts.

Materials and methods

Cell culture and mice

Pnpt1fl/flMEFs, named TM6 [27], were grown at 37˚C and 5% CO2 in Dulbecco’s Modified

Eagle Medium supplemented with 10% Hyclone Fetal Bovine Serum (Thermo Scientific), 1X

penicillin-streptomycin solution (Cellgro, Corning), and 50 μg/mL uridine (Sigma-Aldrich).

MEF rho0 cells were established by culturing with 750 ng/mL ditercalinium dichloride dihy-

drochloride (NCI DCTD Developmental Therapeutics Program, NSC 335153, NIH), for 3

weeks followed by single cell colony isolation. PKO MEF lines were established by transduc-

tion of TM6 MEFs with a Cre-recombinase expressing adenovirus (SignaGen Laboratories cat

# SL100707) in uridine- supplemented media, followed by isolation of single cell colonies.

Atoh1-Cre PKO mice were established by crossing Pnpt1fl/flC57BL/6J mice with Atoh1-Cre
transgenic C57BL/6J mice [70, 77]. All mice were housed in a pathogen-free animal facility at

IUPUI, and the study was approved by the University of Minnesota Institutional Animal Care

and Use Committee. Mouse experiments were designed and performed according to Animal

Research: Reporting In Vivo Experiments (ARRIVE) guidelines, developed by the National

Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs)

guidelines.

Characterization of PKO MEFs

Western blots were performed using standard molecular biology practices. PNPT 3370 anti-

body (Koehler/Teitell Labs) and β-tubulin MMS-410P (Covance) were used for immunoblot-

ting. Assessments of mtDNA quantity were performed by TaqMan qPCR assay using mouse

Rnr1 probe (Thermo Scientific Mm04260177_s1), mouse Nd3 probe (Thermo Scientific

Mm04225292_g1), mouse Cox1 probe (Thermo Scientific 4448484), mouse Tfrc probe

(Thermo Scientific 4458366) and Amplitaq Gold 360 Master Mix (Thermo Scientific

4398881). DNA was extracted from proteinase K digested and RNase A treated samples

through aqueous phase separation using phenol/chloroform/isoamyl alcohol. The resulting

DNA was suspended in TE buffer, normalized to 20 ng/μL across samples, pooled, and serially

diluted for standard curve generation in comparison to a no-template control. Biological tripli-

cates of each sample were split into technical triplicates, and subsequently loaded on a Roche

LightCycler 480 II (Roche 050152278001), with one preincubation cycle at 95˚C for 10 min,

followed by 45 amplification cycles at 95˚C for 15s, to 60˚C for 1 min. Raw cycle threshold

(Ct) values were extracted for each well, averaged across technical replicates, and ΔCt values

calculated for each experimental (Rnr1, Nd3, Cox3) and housekeeping gene (Tfrc). ΔΔCt values

were calculated for each pairwise condition replicate and 2ΔΔCt transformed to generate an

expression fold change relative to Tfrc. Expression fold changes per comparison were averaged

and plotted using GraphPad Prism 6 (GraphPad Software, Inc.). Fluorescence microscopy

images were obtained from cells treated with Mitotracker Red CMXRos (Thermo Scientific)

and PicoGreen dye (Thermo Scientific). OCR and ECAR measurements were performed as

previously described [78]. The following primers were used to check for the presence of Pnpt1
exon 2 in the genome DNA: forward primer: TATCCTCTGGGAAACTGGCA, reverse

primer: ATTCGTACTGCCCCAACAGG. The following primers were used to check for the dele-

tion of exon 2 in Pnpt1 that spans the exon 2 region: forward primer: TCGGGCACTCAGCT
ATTTGC, reverse primer: CACCAACGGCATGAATTGGG. The following primers were used to
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check for the presence of the 3’ end of Pnpt1: forward primer: ACCGCGACAATAACTGAAATC,

reverse primer: GCAGCACTGCAGTCATGTTT.

Seahorse extracellular flux analysis

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured

as previously described [78]. We plated 20,000 cells/well in a XFe96 microplate (Seahorse Bio-

science). Oligomycin (ATP synthase inhibitor) was injected at 1.5μM, FCCP (uncoupling

agent) was injected at 0.5μM followed by a secondary injection of 0.9μM, and Antimycin A

plus Rotenone (inhibitors of Complex III and I, respectively) were injected at 2μM each.

Results were normalized per 103 cells per well using the Operetta High Content Imaging Sys-

tem (PerkinElmer, Inc.).

RNA extraction

TM6, rho0 MEFs, and PKO clones were grown in biological triplicates to 70–80% confluence

and purified using TriZol Reagent (Life Technologies) or RNeasy Mini Kit (Qiagen). All sam-

ples used showed a A260/280 ratio > 2.00 (Nanodrop; Thermo Scientific). Prior to library

preparation, RNA quality control was performed using the Advanced Analytical Technologies

Fragment Analyzer (Advanced Analytical, Inc.) and PROSize 2.0.0.51 software. RNA Quality

Numbers (RQNs) were computed per sample with a final score of 10.0 indicating fully intact

total RNA per sample prior to library preparation.

RNA-Seq library preparation

Strand-specific ribosomal RNA (rRNA) depleted RNA-Seq libraries were prepared from 1 μg

of total RNA using the KAPA Stranded RNA-Seq Kit with Ribo-Erase (Kapa Biosystems,

Roche). Briefly, rRNA was depleted from total RNA samples, the remaining RNA was heat

fragmented, and strand-specific cDNA was synthesized using a first strand random priming

and second strand dUTP incorporation approach. Fragments were then A-tailed, adapters

were ligated, and libraries were amplified using high-fidelity PCR. All libraries were prepared

in technical duplicates per sample (n = 12 samples, 24 libraries total), and resulting raw

sequencing reads merged for downstream alignment and analysis. Libraries were paired-end

sequenced at 2x125bp on an Illumina HiSeq.

RNA-Seq pre-processing

PKO clones 1 and 6, rho0, and TM6 MEFs were each sequenced in biological triplicates (n = 3,

12 total samples). Raw sequencing reads were converted into fastq files and filtered for low

quality reads and Illumina sequencing adapter contamination using bcl2fastq (Illumina).

Trimmed reads were then aligned to theMus musculus transcriptome, generated using the

NCBI mm10 (NCBI/mm10/GRCm38, December 2011) genome and RefSeq gene annotation,

using RSEM 1.2.25 prepare-reference (command parameters—bowtie—bowtie2—gtf

$(BUILD)/genes.gtf $(GENOME).fa $(RSEM)) [79]. Transcript counts were estimated using

RSEM 1.2.25 calculate-expression, and collapsed to gene level counts using RSEM 1.2.25

tbam2gbam [79]. Gene-level transcript counts were extracted from the results output using

custom R/3.4.1 scripts.

Differential gene expression analysis

The resulting sample gene count matrix was size factor normalized and analyzed for pairwise

differential gene expression using R/3.4.2 Bioconductor 3.6 package DESeq2 v1.18.1.
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Expression changes were estimated using an empirical Bayes procedure to generate moderated

fold change values [80, 81]. Significance testing was performed using the Wald test, and result-

ing P values were adjusted for multiple testing using the Benjamini-Hochberg procedure [82].

DEGs were filtered using an adjusted false discovery rate (FDR) q value < 0.01 and an absolute

log2 transformed fold-change > 0.5. Variance stabilized transform (VST) values in the gene

count matrix were calculated and plotted for principal component analysis (PCA) using

DESeq2 [80, 81]. Scatterplots of gene expression fold-changes between TM6, rho0 and PKO

MEFs were performed and Pearson/Spearman correlation coefficients calculated using R/3.4.1

package ggpubr v0.1.6 (https://cran.r-project.org/web/packages/ggpubr/index.html). Genes of

interest were extracted and heat maps were prepared using R Bioconductor packages pheat-

map v1.0.8 and gplots v3.0.1 [83, 84].

Gene set overrepresentation analysis (ORA)

DEGs were extracted and analyzed for pathway/gene ontology (GO) term overrepresentation

using the R/3.4.1 Bioconductor 3.6 package clusterProfiler v3.6.0 and ReactomePA v1.22.0,

using a background gene set of all genes expressed with at least one read count in the sample

gene count matrix [85, 86]. Overrepresented Reactome/KEGG pathways and GO terms were

identified using significance testing cutoffs of P< 0.05, and an adjusted FDR< 0.25.

Rank-rank hypergeometric overlap analysis (RRHO)

To determine overlapping significance between PKO and rho0 expression patterns relative to

TM6, rank-rank hypergeometric overlap was performed using the online web server (http://

systems.crump.ucla.edu/rankrank/rankranksimple.php)) [87]. Separate gene ranking lists

were constructed according to the signed log10 transformed Wald test q value in fold change

comparisons between PKO/TM6 and rho0/TM6. Hypergeometric testing was then performed

to determine the significance of overlap between ranks in both datasets. Heat map values were

plotted as the signed log10 transformed hypergeometric P value of overlap between ranks at the

identified pixel; high values indicate enrichment of overlap, low values indicate reduced

enrichment of overlap.

Live cell interferometry (LCI)

Cells were plated into each well of an Ibidi 4 well Ph+ μ-slide (Ibidi, USA) at a density of 6

x103 cells/cm2. 24 hours later, Ibidi anti-evaporation oil (Ibidi, USA) was added to seal the liq-

uid opening of each well and loaded onto the LCI stage. All 4 wells were imaged continuously,

every 10 minutes for 24 hours with 15–20 locations per well. The LCI set up consists of a Zeiss

Axio Observer Z1 inverted microscope, an on-stage incubation chamber (Zeiss) with tempera-

ture, CO2 and humidity modulations. QPM images were captured by a SID4BIO (Phasics)

quadriwave lateral shearing interferometry camera. All cells were imaged using a 20x 0.4NA

objective and a 660nm collimated LED (Thorlabs) light source.

Cell cycle flow cytometric analysis

Cells (~5 x 105) were collected, washed once with 500 μl FACS buffer and resuspended in

200 μl hypotonic propidium iodide staining solution containing 10 mg/ml RNAse, 10% Triton

X-100, 85 mg/ml trisodium citrate and 2 mg/ml PI (Roche). Data was obtained on FACS BD

LSRII and FACS BD Fortessa flow cytometers (BD Biosciences). Cell cycle analysis was per-

formed with FlowJo 10 software using the univariate model.
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Auditory brainstem response (ABR)

ABR waveforms were collected for frequencies between 4 kHz and 32 kHz at half-octave inter-

vals, starting at supra-threshold levels and decreasing in 5 dB steps to a sub-threshold level. A

Tucker-Davis Technologies System 3 was used to generate symmetrically shaped tone bursts 1

ms in duration with 300 μs raised cosine ramps that were delivered to a calibrated magnetic

speaker. For this assay, n = 3 heterozygous control mice at 3 weeks (1 female, 2 male), n = 2

Atoh1-Cre PKO mice at 3 weeks (2 females) and n = 2 Atoh1-Cre PKO mice at 4 weeks (2

females) were analyzed. Mice were anesthetized with Avertin and scalp potentials were

recorded with subdermal electrodes, with signals amplified 20,000 times, bandpass filtered

between 0.03 and 10 kHz, digitized using a 20,000 kHz sampling rate and subjected to artifact

rejection. Stacked waveforms were compared and the lowest level of stimulation that evoked

an unambiguous ABR waveform was designated as the threshold.

Scanning electron microscopy (SEM)

Mouse cochlea were dissected and fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate

buffer with 1 mM CaCl2 by perfusing dissected cochlea through the round and oval windows

followed by incubation in the same solution at RT for 4 h. Following decalcification in 170

mM EDTA at 4˚C for 16 h, the organ of Corti was dissected and processed for SEM as

described [88]. Briefly, tissues were successively incubated in 2% each arginine, glycine, glu-

tamic acid and sucrose in water, 2% each tannic acid and guanidine-HCl in water and then 1%

osmium tetroxide. Samples were critical point dried from CO2 and sputter coated with plati-

num before viewing on a cold field emission SEM (Hitachi S4700). SEM images were taken

using 1 male Pnpt fl/+ Cre- mouse at 6 weeks of age, and 2 female Atoh1-Cre PKO mice at 6

weeks of age. Mice were anesthetized with Avertin and euthanized via cervical dislocation.

Statistical analysis

Statistical analysis performed for live cell interferometry and sequencing experiments are

described in the above specified methods and figure legends. All other experiments were ana-

lyzed using GraphPad Prism 6.07 (GraphPad Software Inc.), reporting mean ± standard devia-

tion (SD) for all conditions. P values reported for cell growth and ABR assays were calculated

using a non-parametric Kruskal-Wallis ANOVA test. Pairwise P values reported for Seahorse

extracellular flux and cell cycle distribution analyses were calculated using the non-parametric

Mann-Whitney test. All significance testing was performed with a significance cutoff of P
value < 0.05.

Accession numbers

All raw RNA-Seq reads and processed gene count matrices were submitted to the NCBI Short

Read Archive (SRA) and Gene Expression Omnibus (GEO), respectively, under GEO Acces-

sion number GSE111668.

Supporting information

S1 Fig. Immunofluorescence images of PKO cells show loss of mtDNA (related to Fig 1).

Fluorescence microscopy of TM6, rho0, and representative PKO (PKO-4) MEF cell lines with

PicoGreen staining for double-stranded DNA (left), MitoTracker Red (center), and an overlay

(right).

(TIF)
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S2 Fig. Heatmaps of select overrepresented pathways in DEG clusters (related to Fig 2D).

(A) Heat map of mtDNA replication genes (GO:0006264) overrepresented in cluster 1. (B)

Cholesterol metabolic (GO:0008203), sterol metabolic (GO:0016125), lipid biosynthetic

(GO:0008610), and secondary alcohol synthetic (GO:1902652) processes overrepresented in

cluster 2.

(TIF)

S3 Fig. PKO and rho0 MEFs show highly correlated metabolic gene expression profiles

(related to Fig 4). Metabolic gene expression changes between PKO (y-axis) and rho0 (x-axis)

MEFs with respect to TM6 MEFs (calculated as log2 fold-change) (n = 3 biological replicates

per line, 12 total). Linear regression lines were fit and Pearson (top value) and Spearman (bot-

tom value) correlation coefficients were calculated with accompanying P values calculated

using two-tailed t significance tests. Gene sets were derived from KEGG database metabolic ID

MMU00100.

(TIF)

S4 Fig. PKO and rho0 MEFs show highly correlated gene expression profiles within specific

metabolic pathways (related to Figs 3 and 4). Scatterplot of metabolic gene expression values

between PKO (y-axis) and rho0 (x-axis) MEFs with respect to TM6 MEFs (calculated as log2

fold-change) (n = 3 biological replicates per line, 12 total). Linear regression lines were fit and

Pearson (top value) and Spearman (bottom value) correlation coefficients were calculated with

accompanying significance P values calculated using two-tailed t significance tests. Gene sets

were derived from the KEGG database under the identification numbers indicated above each

plot.

(TIF)

S5 Fig. Loss of PNPase results in hearing loss. (A) Auditory brainstem response test for WT

(black) (n = 3) and Atoh1-Cre PKO mice (red) at 3 weeks (n = 2) and 4 weeks (n = 2), error

bars denotes standard error of mean. (B) SEM analysis of hair cell stereocilia (n = 2). Yellow

arrows indicate regions that lack cilia, and red arrows indicate regions of stereocilia fusion.

(TIF)

S1 Table. List of DEGs and overrepresented gene ontologies (related to Figs 2, 3, 4A, S2, S3

and S4). (A) List of DEGs identified between rho0 and TM6 MEFs. (B) List of DEGs identified

between PKO and TM6 MEFs. (C) List of PKO-specific DEGs, shared DEGs, and rho0-specific

DEGs. (D) Results of GO overrepresentation analysis (ORA) performed on DEG clusters in

(C).

(XLSX)
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