UCLA Radiology 2018 Fellows' Lectures 2018.08.20

Holden H. Wu, Ph.D.

Magnetic Resonance Research Labs Department of Radiological Sciences, University of California, Los Angeles, CA, USA

Outline

- Fat in MRI
- Fat Suppression
- Fat-Water-Separated MRI
- Fat Quantification

Fat in MRI

- ¹H MRI signal mainly from water & fat
- Bright fat signal
 - Short T₁ ~ 300 ms @ 1.5 T
 - can obscure structures of interest
 - can be mistaken for pathology
- Presence of fat
 - may indicate disease state:
 liver, cardiac, breast, body, bone, muscle, cancer, etc.

Chemical Shift of Fat

Triglycerides (fat) have a complex spectrum

main peak from methylene (-CH2-) is at $\Delta \delta \approx$ -3.5 ppm from water

$$\Delta f_{cs}[\text{Hz}] = \frac{\gamma}{2\pi} B_0 \cdot \Delta \delta[\text{ppm}] \cdot 10^{-6}$$

at B₀ = 1.5 T, $\Delta f_{cs} \approx$ -210 Hz
at B₀ = 3.0 T, $\Delta f_{cs} \approx$ -420 Hz

Bley TA et al., JMRI 2010; 31: 4-18, Fig. 1

Chemical Shift of Fat

- Dark line artifacts
 - GRE
 - bSSFP

Example: 3D GRE at 3 T

Chemical Shift of Fat

- Chemical shift artifacts
 - Cartesian

readout direction

readout direction

Chemical Shift of Fat

- Blurring artifacts
 - EPI, non-Cartesian

Example: Concentric Rings

Wu et al., MRM 2009; 61: 639-649

Fat Suppression

Fat saturation

 chemical shift selective (CHESS) saturation excite fat signal, and then spoil

Bley TA et al., JMRI 2010; 31: 4-18, Fig. 2

Fat Suppression

- Fat saturation
 - sensitive to B₀ and B₁ variations

Bley TA et al., JMRI 2010; 31: 4-18, Fig. 3

Radiology

UCLA

Fat Suppression

Example: 3D GRE with Fat-Sat Failure at 3 T

Note that B₀ and B₁ variations are greater at 3.0 T

Fat Suppression

- Water-only excitation
 - relatively insensitive to B₁ variations
 - sensitive to B₀ variations

Fat Suppression

- Short-TI inversion recovery (STIR)
 - can be insensitive to B₀ variations
 - sensitive to B₁ variations
 - limits image contrast

Bley TA et al., JMRI 2010; 31: 4-18, Fig. 5

Fat Suppression

Table 1

Most Commonly Used Techniques for Fat Suppression and Fat-Water Imaging

Method	Advantages	Disadvantages	Suggested applications
Chemically selective fat suppression	 Versatile Relatively fast Applicable to most pulse sequences 	 Sensitive to B₀ and B₁ inhomogeneities Low sequence efficiency 	 Most applications except: Head and neck Mediastinum Extremities with metal implants
Spatial-spectral pulses, water excitation	 Insensitive to B₁ inhomogeneities Versatile Relatively fast Practical to most pulse sequences except FSE 	 Sensitive to B₀ inhomogeneities Low sequence efficiency Longer excitation pulses 	 3D imaging of cartilage in knee Most applications except: Head and neck Mediastinum Extremities
STIR	 Robust to B₀ and B₁ inhomogeneities Reliable fat suppression 	 Mixed contrast Inherent T₁weighting Only works with PD and T₂W Low SNR efficiency Suppresses short T₁ species and enhancing tissue after contrast 	 Head and neck Chest Abdomen Extremities Large field of view Inhomogeneous B₀ T2/PD applications

Bley TA et al., JMRI 2010; 31: 4-18, Table 1

Radiology

UCLA

- Separate fat from water
 - based on chemical shift freq differences
- Robust fat suppression
 - improve image contrast, esp. at 3.0 T
- Accurate fat quantification
 - tissue characterization: distribution and composition

Fat-Water-Separated MR

Fat and water exhibit different MR frequencies

i.e., fat is slightly out-of-sync with water signal

voxel signal dep. on TE

Fat-Water-Separated MRI

Acquire multiple images with different fat/water sync

in phase

out of phase

Fat-Water-Separated MRI

Estimate the water and fat component in each voxel

Dixon WT, Radiology, 1984; 153: 189-194.

Fat-Water-Separated MRI

Siepmann D, et al., AJR 2007; 189: 1510-1515

Fat-Water-Separated MRI 2-Point Dixon

 $s(\mathbf{r}; \mathrm{TE}_n) = s_W(\mathbf{r}) + s_F(\mathbf{r})e^{-i2\pi\Delta f_{cs}\mathrm{TE}_n}$

- $s_0 = s_W + s_F$ "in-phase" TE
- $s_1 = s_W s_F$ "out-of-phase" TE

$$s_W = \frac{1}{2}(s_0 + s_1)$$
$$s_F = \frac{1}{2}(s_0 - s_1)$$

	in-phase TE (ms)	out-of-phase TE (ms)	
1.5 T	0, <mark>4.6</mark> , 9.2, 13.8,	<mark>2.3</mark> , 6.9, 11.5,	
3.0 T	0, <mark>2.3</mark> , 4.6, 6.9,	1 . 2 , 3.5, 5.8,	

not so simple in practice ...

Dixon WT, *Radiology,* 1984; 153: 189-194.

In practice

- other factors affect MR frequency
- fat contains multiple subcomponents
- need more than 2 measurements pts (TEs)
- need robust fat/water estimation algorithm
- extra steps for quantitative fat fraction

- Other algorithms
 - 3-point Dixon
 - Extended 2-point Dixon
 - IDEAL
 - Single-point Dixon ($\pi/2$ acquisition) $s = (s_W + is_F)$
 - Direct phase encoding (θ_0 , θ_0 + θ , θ_0 +2 θ)
 - 2PD with flexible TEs
 - Graph cut
 - Magnitude-based F/W separation
 - and more!

Knee: PDw FSE, 1.5 T, TE shifts of (-1, 0, 1) ms, IDEAL

source

water

fat

Reeder SB et al., MRM, 2004; 51: 35-45

Cardiac: bSSFP, 1.5 T, TE/TR = (0.9, 1.9, 2.9)/5.2 ms, IDEAL

source

water

fat

Reeder SB et al., MRM, 2004; 51: 35-45

Fat-Water-Separated MRI

Liver: T1w 3D VIBE, 3 T, Extended 2P-Dixon

Out-of-phase (3 T), TE = 1.3 ms

In-phase (3 T), TE = 2.6 ms

Water

Fat-Water-Separated MRI

Fat-Water Swapping

"Water"

"Fat"

can also have regional swaps

F/W MRI Sequence Design

- Can be GRE, bSSFP, SE, TSE, etc.
 - 2D or 3D
 - e.g., VIBE-Dixon, TSE-Dixon
- Need multiple TEs
 - repeat scans with different TEs
 - acquire multiple TEs each TR
 - basic Dixon MRI: 2 or 3 TEs
 - quantitative Dixon MRI: ≥ 3 TEs

F/W MRI Sequence Design

• TE values depend on

- number of readout points (resolution)
- readout bandwidth
- image FOV
- bipolar or monopolar readout
- asymmetric echo
- RF pulse (type, slab/slice thickness)

• Examples

- 1.5 T: TE = 2.3 and 4.6 ms, TR = 5 ms
- 3.0 T: TE = 1.2 and 2.3 ms, TR = 3 ms
- 3.0 T: TE = 2.3 and 3.5 ms, TR = 4 ms

UCLA Radiology

Fat Quantification

- Qualitative F/W MRI
 - separate fat from water signal
 - N = 2 or 3 TEs is common
- Quantitative F/W MRI
 - distribution / volume of fat
 - composition of fat (fat/water ratio):
 multi-peak and *T*₂* modeling
 N = 6+ TEs is recommended

Fat Quantification

Water-Fat MR Signal Equation

 $s(\mathbf{r}; \mathrm{TE}_n) = \left[s_W(\mathbf{r}) + s_F(\mathbf{r}) \sum_{j=1}^M \alpha_j e^{-i2\pi\Delta f_{cs,j} \mathrm{TE}_n}\right] \cdot e^{-\mathrm{TE}_n/T_2^*(\mathbf{r})} e^{-i2\pi\psi(\mathbf{r}) \mathrm{TE}_n}$

- T_2^* decay as TE_n increases
- fat spectrum has multiple components (peaks)
- eq'n accommodates arbitrary choice of TEs
- can assume single T_2^* and reference fat spectrum
- solve for water s_W , fat s_F , T_2^* , and field map ψ
- need more measurements $(N \ge 4)$

Fat Quantification

Signal Fat Fraction

$$\mathrm{sFF}(\mathbf{r}) = \frac{|s_F(\mathbf{r})|}{|s_W(\mathbf{r})| + |s_F(\mathbf{r})|}$$

- easy to calculate
- amount of fat "signal" in each voxel
- not necessarily amount of "fat"
- hard to reproduce with different scan parameters

Fat Quantification

Signal Fat Fraction

Bolan P, et al., JMRI 2013

Fat Quantification

Signal Equation (RF-spoiled GRE)

$$s_X(T_1, \operatorname{TR}, \theta) = \rho_X \cdot \frac{(1 - e^{-\operatorname{TR}/T_1})\sin\theta}{1 - e^{-\operatorname{TR}/T_1}\cos\theta}$$

- *s* depends on T_1 , TR, θ
- T_1 bias for sFF calculations minimize with low θ and long TR
- different equations for SE, bSSFP, etc.

Fat Quantification

Proton Density Fat Fraction

$$PDFF(\mathbf{r}) = \frac{\rho_F(\mathbf{r})}{\rho_W(\mathbf{r}) + \rho_F(\mathbf{r})}$$

- need to correct for T_1 , θ , noise effects
- potential role as an imaging biomarker

Reeder SB, et al., JMRI 2012

Liver Fat Quantification

- Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease
- Current gold standard is biopsy
- MRI fat quantification is becoming the new gold standard

Liver Fat Quantification

Reduce T_1 bias by using low flip angle

Reeder SB, et al., JMRI 2011; 34: 729-749, Fig. 5

Liver Fat Quantification

Account for T_2^* effects

Reeder SB, et al., JMRI 2011; 34: 729-749, Fig. 7

Liver Fat Quantification

Account for multiple peaks in fat spectrum

Table 1 Proton MR Spectrum of Liver Triglycerides							
Peak	In vivo ppm	Ex vivo ppm	Chemical environment	Туре	Relative magnitude		
1	5.3	5.29	-CH =CH-	Olefinic	4.7%		
		5.19	-CH-O-CO-	Glycerol			
Water	4.7	4.70	H ₂ O	_	—		
2	4.2	4.20	-CH ₂ -O-CO-	Glycerol	3.9%		
3	2.75	2.75	-CH=CH-CH2-CH=CH-	Diacyl	0.6%		
4	2.1	2.24	-CO-CH2-CH2-	α-Carboxyl	12.0%		
		2.02	-CH ₂ -CH=CH-CH ₂ -	α-Olefinic			
5	1.3	1.60	-CO-CH ₂ -CH ₂ -	β-Carboxyl	0.7		
		1.30	-(CH ₂) _n -	Methylene			
6	0.9	0.9	-(CH ₂) _n -CH ₃	Methyl	0.088		

fat peaks near water account for ~8% of fat signal

Reeder SB, et al., JMRI 2011; 34: 729-749, Table 1

Liver Fat Quantification

Account for multiple peaks in fat spectrum

With Spectral Modeling

No Spectral Modeling

fat peaks near water account for ~8% of fat signal

Reeder SB, et al., JMRI 2011; 34: 729-749, Fig. 8

Liver Fat Quantification

Hepatic PDFF as an imaging biomarker

Before treatment

After treatment

UCLA Reeder SB, et al., JMRI 2011; 34: 729-749, Fig. 13

Liver Fat Quantification

Example: Multi-echo 3D GRE in liver at 3 T (qDixon)

TR = 9.2 ms, θ = 4°, 18 sec BH scan

Liver Fat Quantification

Example: Multi-echo 3D GRE in liver at 3 T (qDixon)

logy

Free-Breathing Fat Quantification

- Cartesian acquisitions limited by motion
 Breath-hold (BH) imaging, 10-30 sec
- BH imaging limits image quality and fat quantification performance
- Many patients cannot BH

Cartesian Free-Breathing Scan

Free-Breathing Fat Quantification

- **3D Stack-of-Radial MRI**
- golden angle ordering
- bipolar multi-echo
- gradient calibration
- multi-peak F/W and R₂*
- proton density fat fraction

Armstrong T, et al., MRM 2017

Managing Motion for MRI

Free-Breathing Fat Quantification

New Techniques: FB 3D Stack-of-Radial MRI Healthy Pediatric Subject

Armstrong T, et al., Ped Rad 2018

Managing Motion for MRI

Free-Breathing Fat Quantification

New Techniques: FB 3D Stack-of-Radial MRI NAFLD Pediatric Subject

Armstrong T, et al., Ped Rad 2018

UCLA Radiology

Summary

- Fat in MRI
- Fat Suppression
- Fat-Water-Separated MRI
- Fat Quantification: PDFF

Acknowledgments

HoldenWu @ <u>mednet.ucla.edu</u>

TANK SCHOOL OF HERE

David Geffen School of Medicine

http://mrrl.ucla.edu