Basic Pulse Sequences Saturation and Inversion Recovery

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2022

Image Contrast

Image Contrast

• Human visual system is more sensitive to contrast than absolute luminance

CNR, Object Size, and Noise

• Large, high-contrast objects are easier to see in the presence of noise

CNR, Object Size, and Noise

• Small, low-contrast objects are easier to see with higher resolution

Image Contrast

Central goal in MRI is to limit image contrast to a single mechanism

PBM-219: Saturation and Inversion Recovery

Pulse Sequences

Sheet music is a timing diagram for playing the piano

A pulse sequence is a timing diagram for the MRI scanner...

MR Image Formation (review)

- 2D MR images are formed by
 - Slice selection/excitation
 - Phase Encoding
 - Frequency Encoding
- 3D MR images are formed by
 - Slab selection/excitation
 - Phase encode in z-direction
 - Phase encode in y-direction
 - Frequency encode in x-direction

- Gradient is applied in z-direction (or any direction) during RF excitation
- Only spins within the RF pulse "bandwidth" $\Delta \omega$ will be excited

- Gradient is applied in z-direction (or any direction) during RF excitation
- Only spins within the RF pulse "bandwidth" $\Delta \omega$ will be excited
- Larger gradient amplitude + same bandwidth \rightarrow thinner slice

- Gradient is applied in z-direction (or any direction) during RF excitation
- Only spins within the RF pulse "bandwidth" $\Delta \omega$ will be excited
- Larger gradient amplitude + same bandwidth \rightarrow thinner slice
- A *sinc(t)* function is often used to obtain a *rectangular* frequency profile

- Gradient is applied in z-direction (or any direction) during RF excitation
- Only spins within the RF pulse "bandwidth" $\Delta \omega$ will be excited
- Larger gradient amplitude + same bandwidth \rightarrow thinner slice
- A sinc(t) function is often used to obtain a rectangular frequency profile

Phase Encode

• Pulsing a field gradient for a short period of time results in a phase offset along the direction of the field gradient.

$$\vec{\mathbf{M}}(\vec{\mathbf{r}},t) = \begin{pmatrix} e^{-t/T_{2}(\vec{\mathbf{r}})} & 0 & 0\\ 0 & e^{-t/T_{2}(\vec{\mathbf{r}})} & 0\\ 0 & 0 & e^{-t/T_{1}(\vec{\mathbf{r}})} \end{pmatrix} \begin{pmatrix} \cos\left(\omega_{0}t + \gamma\int_{0}^{t}\vec{\mathbf{G}}(\tau)\cdot\vec{\mathbf{r}}\,d\tau\right) & \sin\left(\omega_{0}t + \gamma\int_{0}^{t}\vec{\mathbf{G}}(\tau)\cdot\vec{\mathbf{r}}\,d\tau\right) & 0\\ -\sin\left(\omega_{0}t + \gamma\int_{0}^{t}\vec{\mathbf{G}}(\tau)\cdot\vec{\mathbf{r}}\,d\tau\right) & \cos\left(\omega_{0}t + \gamma\int_{0}^{t}\vec{\mathbf{G}}(\tau)\cdot\vec{\mathbf{r}}\,d\tau\right) & 0\\ 0 & 0 & 1 \end{pmatrix} \vec{\mathbf{M}}^{0}(\vec{\mathbf{r}},t) + \begin{pmatrix} 0\\ 0\\ M_{0}\left(1 - e^{-t/T_{1}(\vec{\mathbf{r}})}\right) \end{pmatrix}$$

• Consider only the *transverse* magnetization Mxy(t) = Mx(t) + j My(t) for a phase encode gradient in the y-orientation:

Phase Encode

• Consider a square-wave gradient with magnitude Gy pulsed from t_1 to t_2

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2022

PBM-219: Saturation and Inversion Recovery

Phase Encode

• Consider a square-wave gradient with magnitude Gy pulsed from t_1 to t_2

Frequency Encode

- Using the same principle, we can apply another gradient in the x-direction, but read out the FID during this time
- Position is then encoded by frequency

$$M_{xy}(\mathbf{\bar{r}},t) = |\mathbf{\bar{M}}^{0}(\mathbf{\bar{r}},t)| e^{-t/T_{2}(\mathbf{\bar{r}})} e^{-j\omega_{0}t} e^{-j\gamma x} \int_{0}^{t} G_{x}(\tau) d\tau$$

$$\downarrow$$

$$e^{-j\gamma x G_{x}t} = e^{-j\omega t}$$

$$\downarrow$$

$$\omega(x) = x \cdot (\gamma G_{x})$$

Frequency Encode

- Using the same principle, we can apply another gradient in the *x*-direction, but read out the FID during this time
- Position is then encoded by frequency
- Data is acquired *during* application of the frequency encode gradient

k-Space

- Because all image data is encoded with respect to spatial frequency using field gradients, a 2D (or 3D) Fourier transform can be applied to acquired data in order to obtain the original image
- Spatial frequency space = k-space
- Application of the gradients at different times results in traversing through k-space, while data is only "stored" in k-space during data readout.

k-Space

- Because all image data is encoded with respect to spatial frequency using field gradients, a 2D (or 3D) Fourier transform can be applied to acquired data in order to obtain the original image
- Spatial frequency space = k-space
- Application of the gradients at different times results in traversing through k-space, while data is only "stored" in k-space during data readout.

MRI: Dipoles to Images

Pulse Sequence Definitions

Longitudinal magnetization **before** the *n*th event.

Longitudinal magnetization *after* the *n*th event.

Transverse magnetization **before** the *n*th event.

Transverse magnetization *after* the *n*th event.

Pulse Sequence Definitions

TR - Repetition Time

Duration of basic pulse sequence repeating block

At least one echo acquired per TR

TE - Echo Time

Time from excitation to the maximum of the echo Data is recorded at time TE to form an image Echo can occur as a result of a *gradient-echo* or *spin-echo*

Typical Pulse Sequence

- Pulse sequences with an inversion pulse followed by a time delay prior to RF excitation are *inversion recovery* pulses
- Allow for TI-weighting or TI-weighted magnetization preparation
- Delay between inversion and excitation pulses is known as the inversion time (TI)
- IR module followed by Host sequence (e.g. RARE, EPI, etc)

David Geffen School of Medicine

TI=200ms TI=500ms TE=12ms, TR=2000ms

TI=1000ms

- Signal Equation for IR:
 - Defining the transverse and longitudinal magnetization as:

$$M_{xy} = M_0 \sin \theta_{inv}$$

$$M_z = M_0 \cos \theta_{inv}$$

- By applying a spoiler gradient after the inversion pulse, Mxy = 0 (all that is left is longitudinal magnetization)
- Bloch equation:

$$\frac{dM_z}{dt} = \frac{M_0 - M_z}{T_1}$$

• With the solution:

$$M_{z}(t) = M_{0} \left[1 - \left(1 - \cos \theta_{inv} \right) e^{-t/T_{1}} \right]$$

- If TR is not infinitely long, then the equations for the spin echo and turbo spin echo are:
- Spin Echo (SE)

$$M_{z}(t) = M_{0} \left[1 - \left(1 - \cos \theta_{inv} \right) e^{-t/T_{1}} + e^{-TR/T_{1}} \right]$$

• Turbo spin echo (TSE) or RARE

$$M_{z}(t) = M_{0} \left[1 - (1 - \cos \theta_{inv}) e^{-t/T_{1}} + e^{-(TR - TE_{last})/T_{1}} \right]$$

TE_{last} = Last echo in echo train

B.M. Ellingson, Ph.D., Dept. of Radiological Sciences, David Geffen School of Medicine, 2022

PBM-219: Saturation and Inversion Recovery

- Following the IR pulse, the longitudinal magnetization recovers along the z-axis until being nutated by the excitation pulse.
- The available magnetization is thus:

$$M_{z}(TI) = M_{0} \left[1 - 2e^{-TI/T_{1}} \right]$$

• Magnetization becomes zero (nulled) when (for infinitely long TR)

$$TI_{null} = T_1 \ln 2$$

$$TI_{null} = T_1 \left[\ln 2 - \ln \left(\frac{-(TR)}{T_1} \right) \right]$$
 Spin

$$TI_{null} = T_1 \left[\ln 2 - \ln \left(\frac{-(TR - TE_{last})}{1 + e} \right) \right]$$

Turbo Spin Echo

Echo

- If the inversion pulse is 180 degree, this is an *inversion recovery* sequence
- If the inversion pulse is 90 degrees, this is a <u>saturation recovery</u> sequence

Saturation Recovery (SR) vs. Inversion Recovery (IR)

Saturation Condition

• The <u>Saturation Condition</u> states:

$$M_{z}^{(n)}(0_{+}) = 0, n \ge 1$$

Mz is ZERO after the event (RF pulse).

This is true if the Mxy is "gone" before the next 90° RF-pulse is applied:

No M_{xy} to convert to M_z How? TR>>T₂

What if TR<~3T₂?

M_{xy} can be converted back to M_z Corrupts/complicates image contrast Solution? Spoiler gradients to disperse M_{xy}

Steady-state solution arises if the saturation conditions are met/enforced

Saturation Recovery Contrast Optimization

$$I(\vec{r})_{TR \to TR_{opt}} \propto \text{Maximum } T_1 \text{ contrast}$$

$$TR_{opt} = \frac{\ln\left(\frac{T_{1,A}}{T_{1,B}}\right)}{\frac{1}{T_{1,B}} - \frac{1}{T_{1,A}}}$$

Inversion Recovery Contrast Optimization

$$I(\vec{r}) \propto \rho(\vec{r}) \left(1 - 2e^{-TI/T_1(\vec{r})} + e^{-TR/T_1(\vec{r})}\right)$$

Image contrast is controlled by TI and TR

Maximum contrast if
$$TR \gg T_1$$
 and,

$$TI_{opt} = \frac{\ln\left(\frac{T_{1,A}}{T_{1,B}}\right)}{T_{1,A} - T_{1,B}} T_{1,A} T_{1,B}$$

Inversion Recovery

- Greater T₁ contrast than SR
- T₁ species nulling/attenuation
 - FLAIR (Fluid Attenuated Inversion Recovery)
 - STIR (Short Tau Inversion Recovery)
- IR is better than SR for generating contrast when:
 - $\rho(A) = \rho(B)$ and $T_2(A) = T_2(B)$
 - AND
 - T₁(A) and T₁(B) are slightly different
- Quantitative T₁ mapping

Short Tau Inversion Recovery (STIR)

Short Tau Inversion Recovery (STIR)

Short Tau Inversion Recovery (STIR)

T2-Weighted TSE

T2-Weighted **STIR** TSE

FLuid Attenuated Inversion Recovery (FLAIR)

FLuid Attenuated Inversion Recovery (FLAIR)

T2-Weighted TSE

T2-Weighted **FLAIR**

PBM-219: Saturation and Inversion Recovery

- The most common method for estimating tissue TI is through the use of an inversion recovery sequence
- Involves an IR module or "preparation" prior to a "host sequence"

• For this sequence, the time-dependent longitudinal magnetization is:

$$M_{z}(t) = M_{0} \left[1 - \left(1 - \cos \theta_{inv} \right) e^{-t/T t} \right]$$

- which assumes an infinitely long TR. With finite TR, $M_z(t)$ depends on details of the host sequence.
- For Spin Echo and Turbo Spin Echo (TSE)/RARE sequences:

$$M_{z}(t) = \begin{cases} M_{0} \Big[1 - (1 - \cos \theta_{inv}) e^{-t/T1} + e^{-TR/T1} \Big] & Spin \ Echo \\ M_{0} \Big[1 - (1 - \cos \theta_{inv}) e^{-t/T1} + e^{-(TR - TE_{last})/T1} \Big] & TSE / RARE \\ & Last \ Echo \ in \ the \\ Echo \ SE \ Train \end{cases}$$

• For $\theta_{inv} = \pi$ this is complete inversion and the longitudinal magnetization becomes:

$$M_{z}(t) = M_{0} \left[1 - 2e^{-t/T1} \right]$$

• For $\theta_{inv} = \frac{\pi}{2}$ this results in saturation recovery (SR)
 $M_{z}(t) = M_{0} \left[1 - e^{-t/T1} \right]$

- To quantify T₁, a series of IR images are acquired from the same location, each with a different TI while keeping all parameters identical.
- To avoid signal saturation, a long TR must be used (TR > $4T_{Imax}$)
- Note that a "phase sensitive" IR sequence needs to be employed to discriminate negative magnetization (particularly around the null point).

$$M_{z}(t) = \begin{cases} M_{0} \Big[1 - (1 - \cos \theta_{inv}) e^{-t/T1} + e^{-TR/T1} \Big] & Spin \ Echo \\ M_{0} \Big[1 - (1 - \cos \theta_{inv}) e^{-t/T1} + e^{-(TR - TE_{last})/T1} \Big] & TSE / RARE \end{cases}$$

- To quantify T₁, a series of IR images are acquired from the same location, each iwth a different TI while keeping all parameters identical.
- To avoid signal saturation, a long TR must be used (TR > $4T_{Imax}$)
- Note that a "phase sensitive" IR sequence needs to be employed to discriminate negative magnetization (particularly around the null point).

$$R_1 = \frac{1}{T_1} = -\frac{1}{TI} \ln \left(\frac{1 - \frac{M_z}{M_0}}{\left(1 - \cos \theta_{inv}\right)} \right)$$

$$R_1 = \frac{1}{T_1} = -\frac{1}{TI} \ln \left(\frac{1}{2} \left(1 - \frac{M_z}{M_0} \right) \right) \qquad \text{for } \theta = \mathbf{\pi}$$

 Note that either the inversion time (TI) or the inversion flip angle can be changed and nonlinear regression can be used to fit RI or TI

T₁ Measurement with Saturation Recovery (SR)

- For an SR sequence, the IR prep is obtained by using $\vartheta_{inv} = \pi/2$, followed by a normal excitation $\vartheta_{ex} = \pi/2$.
- This is considered a **saturation recovery** sequence.
- Different "TI" values can then be plotted and a similar fit can be used to estimate TI

$$M_z(t) = M_0 \left[1 - e^{-t/T_1} \right]$$

Summary

- SR and IR are "modules" that can be applied to (most) host sequences
- SR/IR provides controllable T1 contrast/weighting
- SR/IR can be used to "null" or zero out tissues of interest to increase anatomical conspicuity
- Can also be used to quantify T1

