Problem 1.

Gradient Echo :	Optimal $\mathrm{TE}=5.0 \mathrm{~ms}$
	Optimal $\mathrm{TR}=140.0 \mathrm{~ms}$
Spin Echo : Optimal $\mathrm{TE}=5.0 \mathrm{~ms}$	
	Optimal $\mathrm{TR}=920.0 \mathrm{~ms}$

For optimal T1 contrast, the spin echo sequence is $6.57 \times$ longer!

Problem 2.

A.

```
\(\mathrm{f}_{0}=\gamma \mathrm{B}_{0}=(42.576 \mathrm{MHz} / \mathrm{T})^{*}(3.0 \mathrm{~T})=127.728 \mathrm{MHz}\)
\(B W=\Delta f_{0}=\gamma G_{z} \Delta z=(42.576 \mathrm{MHz} / \mathrm{T})^{*}\left(8 \mathrm{G} / \mathrm{cm}^{*} 1 \mathrm{~T} / 10,000 \mathrm{G}\right)^{*}(0.3 \mathrm{~cm})=10.2 \mathbf{~ k H z}\)
```


TBW: 16

B.
$\mathrm{f}_{0}=\mathrm{Y}\left(\mathrm{B}_{0}+\mathrm{Gz}^{\star} \mathrm{z}\right)=(42.576 \mathrm{MHz} / \mathrm{T})^{\star}\left(3.0 \mathrm{~T}+(8 \mathrm{G} / \mathrm{cm})^{\star}(1 \mathrm{~T} / 10,000 \mathrm{G})^{\star}(1 \mathrm{~cm})\right)=\mathbf{1 2 7 . 7 6 2} \mathbf{~ M H z}$ $B W=\Delta f_{0}=\gamma G_{z} \Delta z=(42.576 \mathrm{MHz} / \mathrm{T})^{*}(8 \mathrm{G} / \mathrm{cm} * 1 \mathrm{~T} / 10,000 \mathrm{G})^{*}(3 \mathrm{~mm})=\mathbf{1 0 . 2} \mathbf{~ k H z}$

C.
$\gamma_{31 \mathrm{P}}=17.235 \mathrm{MHz} / \top$
$\mathrm{f}_{0}={ }^{2} B_{0}=(17.235 \mathrm{MHz} / \mathrm{T})^{\star}(3.0 \mathrm{~T})=\mathbf{5 1 . 7 0 5} \mathbf{~ M H z}$
$B W=\Delta f_{0}=\gamma G_{z} \Delta z=(17.235 \mathrm{MHz} / \mathrm{T})^{\star}\left(8 \mathrm{G} / \mathrm{cm}^{*} 1 \mathrm{~T} / 10,000 \mathrm{G}\right)^{\star} \Delta \mathrm{z}=10.2 \mathrm{kHz}$
$\Delta z=(0.0102 \mathrm{MHz}) /(17.235 \mathrm{MHz} /)^{*}\left(8 \mathrm{G} / \mathrm{cm}^{*} 1 \mathrm{~T} / 10,000 \mathrm{G}\right)=\mathbf{0 . 7 4} \mathbf{c m}$

The slice gets thicker

Problem 3.
A.

B.

The noisy spike leads to an over exaggerated spatial frequency depending on its position.
C.

The spatial resolution is reduced by removing the high frequency information.
D.

Removing every other line leads to aliasing in the y-dimension because the effective FOV was reduced.

Problem 4.
A. Given $\Delta x \Delta k=1 / N$:

$$
\begin{aligned}
& \Delta x=1 /\left(N^{*} \Delta k\right) \\
& \text { since } \Delta k=\gamma^{\star} G^{\star} \Delta t \ldots \\
& \Delta x=1 /\left(N^{\star} \mathbf{Y}^{*} G^{*} \Delta t\right)
\end{aligned}
$$

B. Since FOV $=N^{*} \Delta x=N /\left(N^{*} \gamma^{*} G^{\star} \Delta t\right)$

```
and }\Delta\textrm{f}=\mp@subsup{\textrm{G}}{}{*}FO\mp@subsup{V}{}{*
\Deltaf = \mp@subsup{\gamma}{}{*}\mp@subsup{G}{}{*}(N/(N*}\mp@subsup{\}{}{*}\mp@subsup{G}{}{*}\Deltat)
\Deltaf=1/\Deltat
```

C. $\gamma=42.576 \mathrm{MHz} / \mathrm{T}, \mathrm{N}=128, \Delta x=2 \mathrm{~mm}$

$$
\begin{aligned}
& \mathrm{G}=20 \mathrm{mT} / \mathrm{m}: \\
& \Delta f=G^{*} N^{\star} \Delta x^{*} Y=\left(20 \mathrm{mT} / \mathrm{m}^{*} 1 \mathrm{~T} / 1000 \mathrm{mT}{ }^{*} 1 \mathrm{~m} / 100 \mathrm{~cm}\right)^{\star}(128)^{\star}(0.2 \mathrm{~cm})^{\star}(42.576 \mathrm{MHz} / \mathrm{T}) \\
& =217.99 \mathrm{kHz} \\
& \Delta t=1 / \Delta f=4.59 \mu s \\
& \mathrm{G}=40 \mathrm{mT} / \mathrm{m}: \\
& \Delta f=G^{*} N^{*} \Delta x^{*} Y=\left(40 \mathrm{mT} / \mathrm{m}^{*} 1 \mathrm{~T} / 1000 \mathrm{mT}{ }^{*} 1 \mathrm{~m} / 100 \mathrm{~cm}\right)^{\star}(128)^{*}(0.2 \mathrm{~cm})^{\star}(42.576 \mathrm{MHz} / \mathrm{T}) \\
& =435.98 \mathrm{kHz} \\
& \Delta t=1 / \Delta f=2.29 \mu s
\end{aligned}
$$

D. At 3.0T, $f_{0}=\gamma^{*} B_{0}=(42.576 \mathrm{MHz} / \mathrm{T})(3.0 \mathrm{~T})=127.728 \mathrm{MHz}$

So, 127.728×10^{6} cycles of precession are completed per second.
In dwell time, Δt, the number of rotations, $N_{\text {rot }}$ is given by:
$N_{\text {rot }} \quad=\left(127.728 \times 10^{6} \text { cycles } / \mathrm{s}\right)^{*}(\Delta t)$
for $\Delta t=4.59 \mu \mathrm{~s}:$
$=(127.728$ cycles $/ \mu \mathrm{s}$) * ($4.59 \mu \mathrm{~s}$)
$\mathrm{N}_{\text {rot }}=586$ cycles
for $\Delta t=2.29 \mu \mathrm{~s}$:

$$
\begin{aligned}
& =(127.728 \text { cycles } / \mu \mathrm{s}) *(2.29 \mu \mathrm{~s}) \\
\mathrm{N}_{\text {rot }} & =292 \text { cycles }
\end{aligned}
$$

E.

586 Cycles
Measured signal: 99.94+/-2.07
SNR : 48.32

292 Cycles
Measured signal: 100.04+/-2.94
SNR : 34.08

