Advanced Medical Imaging: <u>Spin Echo / Gradient Echo Imaging</u>

2019 Fellows' Lecture Series

Kyung Sung, Ph.D.

Magnetic Resonance Research Labs (MRRL) Department of Radiological Sciences, Bioengineering, and Physics & Biology in Medicine David Geffen School of Medicine University of California, Los Angeles T₁ & T₂ Relaxation

T₁ Relaxation

- Longitudinal or spin-lattice relaxation
 - Typically, (10s ms) < T1 < (100s ms)</p>
- T1 is long for
 - Small molecules (water)
 - Large molecules (proteins)
- T1 is short for
 - Fats and intermediate-sized molecules
- T1 increases with increasing B0
- T1 decreases with contrast agents

T1 Contrast

T₂ Relaxation

- Transverse or spin-spin relaxation
 - Molecular interaction causes spin dephasing
 - Typically, T2 < (10s ms)</p>
- Increasing molecular size, decrease T2
 - Fat has a short T2
- Increasing molecular mobility, increases T2

 Liquids (CSF, edema) have long T2s
- Increasing molecular interactions, decreases T2

 Solids have short T2s
- T2 relatively independent of B0

T2 Contrast

T₁ and T₂ Values @ 1.5T

Tissue	\mathbf{T}_1 [ms]	T ₂ [ms]
gray matter	925	100
white matter	790	92
muscle	875	47
fat	260	85
kidney	650	58
liver	500	43
CSF	2400	180

Spin Echo Imaging

Free Induction Decay

Record by computer.

Spin Echo - Contrast

How do you adjust the TR? How do you adjust the TE?

Spin Echo Contrast

 $A_{Echo} \propto \rho \left(1 - e^{-TR/T_1} \right) e^{-TE/T_2}$

Longer TR minimizes T1 contrast Short TE minimizes T2 contrast

Intermediate TR maximizes T1 contrast Intermediate TE maximizes T2 contrast

Spin Echo Contrast

 $A_{Echo} \propto \rho \left(1 - e^{-TR/T_1} \right) e^{-TE/T_2}$

Longer TR minimizes T1 contrast Short TE minimizes T2 contrast

Intermediate TR maximizes T1 contrast Intermediate TE maximizes T2 contrast

Spin Echo Parameters

	TE	TR
Spin Density	Short	Long
T ₁ -Weighted	Short	Intermediate
T ₂ -Weighted	Intermediate	Long

Spin Echo Contrast

Spin Echo: TR=6500ms (ETL=12)

Spin Echo: TR=6500ms (ETL=12)

Gradient Echo Sequences

- Spoiled Gradient Echo
 SPGR, FLASH, T1-FFE
- Balanced Steady-State Free Precession
 TrueFISP, FIESTA, Balanced FFE

- FID Decay due to
 - T2 decay
 - Spin dephasing
 - Gradients accelerate spin dephasing
- Gradients can undo gradient induced spin dephasing

- FID Decay due to
 - T2 decay
 - Spin dephasing
 - Gradients accelerate spin dephasing

 Gradients can undo gradient induced spin dephasing

Principal GRE Advantages

- Fast Imaging Applications
 - Why? Can use a shorter TE/TR than spin echo
 - When? Breath-held, realtime, & 3D volume imaging
- Flexible image contrast
 - Why? Adjusting TE/TR/FA controls the signal
 - When? Characterize a tissue for diagnosis
- Bright blood signal
 - Why? Inflowing spins haven't "seen" numerous RF pulses
 - When? Cardiovascular & angiographic applications
- Low SAR
 - Why? Imaging flip angles are (typically) small
 - When? When heating risks are a concern

Principal GRE Advantages

- Quantitative
 - Why? Multi-echo acquisition are practical.
 - When? Flow quantification & Fat/Water mapping
- Susceptibility Weighted Imaging
 - Why? No refocusing pulse.
 - When? T₂*-weighted (hemorrhage) imaging
- Reduced Slice Cross-talk
 - Why? SE hard to match slice profile of 90° & 180°
 - When? Little or no slice gap for 2D multi-slice
- More...

Principal GRE Disadvantages

- Off-resonance sensitivity
 - Why? No refocusing pulse
 - Field inhomogeneity, Susceptibility, & Chemical shift
- T₂*-weighted rather than T₂-weighted
 - Why? No re-focusing pulse
 - Spin-spin dephasing is not reversible with GRE
- Larger metal artifacts than SE
 - Why? No refocusing pulse.
 - Large field inhomogeneities aren't corrected with GRE

Spoiled Gradient Echo Contrast

Contrast depends on tissue's ρ , T₁ and T₂*.

$$A_{echo} \propto \frac{\rho \left(1 - e^{-TR/T_1}\right)}{1 - \cos \alpha e^{-TR/T_1}} \sin \alpha e^{-TE/T_2^*}$$

Contrast adjusted by changing TR, flip angle, and TE

Spoiled Gradient Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	Short	Long	Small
T₁-Weighted	Short	Intermediate	Large
T ₂ *-Weighted	Intermediate	Long	Small

T₂*-weighted Gradient Echo Imaging

TE=9ms

Susceptibility Weighting (darker with longer TE) Bright fluid signal (long T₂* is "brighter" with longer TE)

Images Courtesy of Brian Hargreaves

Gradient vs Spin Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	<5ms	>100ms	<10°
T ₁ -Weighted	<5ms	<50ms	>30°
T ₂ *-Weighted	>20ms	>100ms	<10°

Spin Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	10-30ms	>2000ms	90+180
T ₁ -Weighted	10-30ms	450-850ms	90+180
T ₂ -Weighted	>60ms	>2000ms	90+180

Gradient Echoes & Flip Angle

Spoiled GRE & Ernst Angle

$$\alpha_{Ernst} = \arccos\left(e^{-\frac{TR}{T_1}}\right)$$

Produces the largest MRI signal for a given TR and T₁

Tissue	$\mathbf{T}_1 \ [ms]$	$T_2 [ms]$
muscle	875	47
fat	260	85

Spoiled GRE & Ernst Angle

10° 20° High Muscle Signal High Fat Signal

Highest Contrast

1. $T_2^* > T_2 > T_1$

2. Long T_1 s appear bright on a T_1 -weighted image

3. Short T₂s appear dark on a T₂-weighted image

1. $T_2^* > T_2 > T_1$

2. Long T_1 s appear bright on a T_1 -weighted image

3. Short T₂s appear dark on a T₂-weighted image

Signal

- 1. $T_1(CSF) > T_1(Gray Matter)$
- 2. $T_2(Liver) < T_2(Fat)$

1. $T_1(CSF) > T_1(Gray Matter)$

2. $T_2(Liver) < T_2(Fat)$

Tissue	T 1 [ms]	T ₂ [ms]
gray matter	925	100
white matter	790	92
muscle	875	47
fat	260	85
kidney	650	58
liver	500	43
CSF	2400	180

- 1. The 90-180 pair is the hallmark of the spin echo sequence.
- 2. The 180 pulse is an inversion pulse.
- 3. Spin echoes are ultrafast sequences that provide T_1 or T_2^* weighted images.

- 1. The 90-180 pair is the hallmark of the spin echo sequence.
- 2. The 180 pulse is an inversion pulse.
- 3. Spin echoes are ultrafast sequences that provide T_1 or T_2^* weighted images.

- 1. Long TE and long TR for T2-weighted.
- 2. Short TE and short TR for T1-weighted.
- 3. Spin echoes are low SAR sequences.

- 1. Long TE and long TR for T2-weighted.
- 2. Short TE and short TR for T1-weighted.
- 3. Spin echoes are low SAR sequences.

$$A_{Echo} \propto \rho \left(1 - e^{-TR/T_1} \right) e^{-TE/T_2}$$

Longer TR minimizes T1 contrast Short TE minimizes T2 contrast

Gradient echo imaging is great for everything except:

A. T₂*-weighted imaging.

B. T₂-weighted imaging.

C. True 3D imaging.

D. Real time imaging.

Gradient echo imaging is great for everything except:

A. T₂*-weighted imaging Yes. GRE can be a T₂*-weighted sequence.
B. T₂-weighted imaging No. GRE can not be T₂-weighted
C. True 3D imaging Yes! GRE is a fast sequence
D. Real time imaging Yes! GRE is a fast sequence

A. ... is great for T_2 imaging

B. ...works well for imaging near metal implants

C. ... is a fast acquisition technique

D. ...is insensitive to off-resonance effects

- A. ...is great for T_2 imaging GRE is sensitive to T_2^* , whereas SE is sensitive to T_2
- B. ...works well for imaging near metal implants
 Metal causes large distortions for which SE is useful
- **C.** ... is a fast acquisition technique
 - Yes! The TE/TR are typically quite short compared to SE
- D. ...is insensitive to off-resonance effects.
 GRE is sensitive to B₀ inhomogeneity, chemical shift and susceptibility shifts

In Gradient Echo Imaging Always...

A. Use the highest available flip angle.

B. Calculate and use the Ernst angle.

C. Use a flip angle for maximum contrast.

In Gradient Echo Imaging Always...

A. Use the highest available flip angle.

B. Calculate and use the Ernst angle.

C. Use a flip angle for maximum contrast.

Gradient vs. Spin Echo

Which image is a gradient echo image?

Images Courtesy of Brian Hargreaves

Gradient vs. Spin Echo

Both are T1-weighted Spin Echo has higher SNR (longer TR) GRE has shorter TE (meniscus/tendon is brighter)

Images Courtesy of Brian Hargreaves

Thanks

Kyung Sung, PhD ksung@mednet.ucla.edu http://mrrl.ucla.edu/sunglab/ Turbo Spin Echo (TSE) / Fast Spin Echo (FSE)

T₂-weighted TSE

Proton Density Weighted TSE

PD vs T₂-weighted TSE

Proton Density Weighted

T₂-weighted

- Good cartilage signal
- Good cartilage/fluid contrast
- Late-Echo Blurring

Summary for TSE

- Pros:
 - Fast, high SNR
 - Less sensitive to B0 inhomogneity
- Cons:
 - T2 weighting varies in k-space
 - RF power limits speed, particularly at 3T
- Multi-echo acquisitions accelerate imaging, but single-shot methods are probably overkill