Gradient Echoes & k-space

Daniel B. Ennis, Ph.D.

Magnetic Resonance Research Labs

DEnnis@mednet.ucla.edu 310.206.0713 (Office) http://mrrl.ucla.edu

Lightning Review

MRI Hardware

Cryostat

Z-grad

▶Y-grad

►X-grad

Body Tx/Rx Coil (B₁) Main Coil (B₀)

Image Adapted From: http://www.ee.duke.edu/~jshorey

B₀ Field ON - Zeeman Splitting

Only a very small number are spin-up relative to spin-down.

School of Medicine

Excitation generates transverse magnetization (Mxy), which subsequently relaxes.

David Geffen School of Medicine Simultaneous gradients can create an arbitrary isochromat plane.

Faraday's Law of Induction

David Geffen School of Medicine

The trick is to encode spatial information and image contrast in the echo.

T₁ & T₂ Relaxation

Tissue	$\mathbf{T}_1 \; [ms]$	T ₂ [ms]
gray matter	925	100
white matter	790	92

Image contrast is all about taking a "snapshot" at the right time.

David Geffen

School of Medicine

Spin Echo - Refocusing

http://en.wikipedia.org/wiki/File:HahnEcho_GWM.gif

Spin Echo

Short TE and Long TR is proton density weighted (limited contrast).

Spin Echo: TR=6500ms (ETL=12)

Inversion Recovery + Spin Echo

Really long TIs can null CSF (FLAIR).

Basic Principles of Gradient Echoes

Main Gradient Echo Sequences

- Spoiled Gradient Echo – SPGR, FLASH, T1-FFE
- Balanced Steady-State Free Precession
 - TrueFISP, FIESTA, Balanced FFE

Principal GRE Advantages

Fast Imaging Applications

- Why? Can use a shorter TE/TR than spin echo.
- When? Breath-held, realtime, & 3D volume imaging
- Flexible image contrast
 - Why? Adjusting TE/TR/FA controls the signal.
 - When? Tissue conspicuity for diagnosis.
- Bright blood signal (i.e. in-flow enhancement)
 - Why? Inflowing spins haven't "seen" numerous RF pulses.
 - When? Cardiovascular & angiographic applications.

Low SAR

- Why? Imaging flip angles are (typically) small.
- When? When heating risks are a concern (devices, high field)

Principal GRE Disadvantages

- Off-resonance sensitivity
 - Why? No refocusing pulse.
 - Field inhomogeneity, Susceptibility, & Chemical shift
- T₂*-weighted rather than T₂-weighted
 - Why? No re-focusing pulse
 - Spin-spin dephasing is not reversible with GRE
- Larger metal artifacts than SE
 - Why? No refocusing pulse.
 - Large field inhomogeneities aren't corrected with GRE

T₂ versus T₂*

T₂ Decay

David Geffen

School of Medicine

T₂* Decay

IICI A Radiology

Basic GRE Sequence

- FID Decay due to
 - T2 decay
 - Spin dephasing

 Gradients accelerate spin dephasing

- FID Decay due to
 - T2 decay
 - Spin dephasing

Gradients accelerate
spin dephasing

 Gradients can undo gradient induced spin dephasing

Gradient Echo

.

SE vs. GRE: B₀ Inhomogeneity

Images acquired with a bad shim

- Poor B₀ homogeneity (lots of off-resonance)

Spin Echo

Gradient Echo

Images Courtesy of http://chickscope.beckman.uiuc.edu/roosts/carl/artifacts.html

Gradient Echoes & Spoiling

25

Spoiling - Why?

- Eliminates M_{xy} at end of each TR
 - Prevents cumulative errors

• Shortens the TR

- Without spoilers have to wait $5x T_2^*$
- Faster imaging
- Enhances T₁ contrast

Spoiling - How?

- Long TR
 - Choose TR 4-5x T_2^*
 - Can work for interleaved multi-slice
- Gradient spoiling
 - Applied at end of TR
 - Dephases spins within voxel
 - Variable gradient area from TR to TR
 - Spatially non-uniform
- RF spoiling
 - Cycle the phase of the RF pulse
 - Minimizes coherent signal pathways
 - Requires a phase encode rewinder

Gradient Echo + Spoiling

Realtime Imaging with Gradient Echoes

Realtime imaging requires very short TE/TR.

Quiz: Gradient Echoes - True or False?

- 1. Echoes are needed because the FID disappears too quickly.
- 2. GRE is less sensitive to off-resonance than spin echo imaging.
- 3. GRE uses a refocusing pulse to form an echo.
- 4. Gradient and RF spoiling enable faster imaging.

Gradient Echoes & Contrast

Spoiled Gradient Echo Contrast

Contrast adjusted by changing TR, flip angle, and TE.

Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol. 2004 Aug;183(2):343-51.

T₂*-weighted Gradient Echo Imaging

TE=9msTE=30msSusceptibility Weighting (darker with longer TE)Bright fluid signal (long T2* is "brighter" with longer TE)

Images Courtesy of Brian Hargreaves

Gradient vs. Spin Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	Short	Long	<10°
T ₁ -Weighted	Short	Intermediate	>30°
T ₂ *-Weighted	Intermediate	Long	<10°

Spin Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	Short	Long	90+180
T ₁ -Weighted	Short	Intermediate	90+180
T ₂ -Weighted	Intermediate	Long	90+180

GRE and SE use the same *qualitative* TEs and TRs to produce the same contrast.

Gradient vs. Spin Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	<5ms	>100ms	<10°
T ₁-Weighted	<5ms	<50ms	>30°
T ₂ *-Weighted	>20ms	>100ms	<10°

Spin Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	10-30ms	>2000ms	90+180
T ₁ -Weighted	10-30ms	450-850ms	90+180
T ₂ -Weighted	>60ms	>2000ms	90+180

GRE and SE use different *quantitative* TEs and TRs to produce the same contrast.

Gradient vs. Spin Echo

Which image is a gradient echo image?

Images Courtesy of Brian Hargreaves

Gradient vs. Spin Echo

Which image is a gradient echo image?

Both are T1-weighted Spin Echo has higher SNR (longer TR) GRE has shorter TE (meniscus/tendon is brighter)

Images Courtesy of Brian Hargreaves

Quiz: Gradient Echoes - True or False?

- 1. GRE sequences have longer TRs than SE sequences.
- 2. GRE is great for fast T1-weighted imaging.
- 3. Metal artifacts on GRE are typically small.
- 4. GRE is great for T2 contrast.

Gradient Echoes & Flip Angle

Spoiled GRE & Ernst Angle

$$\alpha_{Ernst} = \arccos\left(e^{-\frac{TR}{T_1}}\right)$$

Produces the largest MRI signal for a given TR and T₁.

Tissue	\mathbf{T}_1 [ms]	\mathbf{T}_2 [ms]
muscle	875	47
fat	260	85

Spoiled GRE & Ernst Angle

10° High Muscle Signal

High Fat Signal

60°

90°

UCLA

Radiology

Quiz: Gradient Echoes - True or False?

- 1. GRE and SE can both provide T2* contrast.
- 2. GRE and SE use the same TE and TR to produce a T1-weighted image.
- 3. SE is better for visualizing tissues with a very short T2 because of the refocusing pulses.
- 4. In GRE higher flip angles always produce brighter images.

Learning Objectives - Gradient Echoes

- 1. Understand three advantages and disadvantages of gradient echoes.
- 2. Be able to explain why "gradient reversal" helps form a gradient echo.
- 3. Describe how "spoiling" enables faster imaging.
- 4. Describe the forms of image contrast available with GRE imaging and how contrast is controlled.

Gradient Echoes & Fat

Chemical Shift - Type 1

- Fat and water have different igodolLarmor frequencies
 - ~220Hz different at 1.5T
 - ~440Hz different at 3.0T
- Spatial position is related to spin frequency in MRI.

-3.35ppm

fat

Larmor frequency

David Geffen

School of Medicine

- Fat is *more* spatially misregistered @ 3T

water

Chemical Shift – Fat (–CH₂) is ~220Hz *lower* at 1.5T

Water Spins in a Uniform Field

Water spins precess at the same Larmor frequency in a uniform B₀ field.

Water Spins in a Gradient Field

Water spins precess at *different* Larmor frequencies in a non-uniform B₀ field.

Spatial *position* is inferred from Larmor frequency. Chemical (frequency) shift produces and apparent spatial shift.

GRE & Higher Bandwidth

GRE, Fat/Water & Bandwidth

Low Bandwidth

High Bandwidth

Acquisition *bandwidth* is related to the *speed* with which an echo is acquired. If the *bandwidth* (speed) is high, then there is less time for chemical shift, less time for signal David Geffen acquisition (lower SNR), and shorter TE/TR.

Chemical Shift - Type 2

- Pixels are frequently a mixture of fat and water
- Pixel intensity is the vector sum of fat and water

The TE controls the phase between fat and water.

GRE and Fat/Water Phase

In-Phase

Opposed-Phase

Which image is the in-phase image?

Images Courtesy of Scott Reeder

Which image is the in-phase image?

In-Phase

Opposed-Phase

Images Courtesy of Scott Reeder

Gradient Echoes & Flow

Principle of In-flow Enhancement

- Partial saturation of stationary tissue
 - If TR<<T1, tissue can't fully relax each TR
- Inflow of fully relaxed spins
 - These spins haven't seen an RF pulse
- In combination high contrast is achieved

Time-of-flight uses In-flow Enhancement and MIPs to visualize the vasculature.

Principle of In-flow Enhancement

Principle of In-flow Enhancement

artery

Tissues Exposed to Many RF Pulses Get Saturated (*Darker*)

RF Pulses Excite A Slice

This is typical of most tissues in all typical MR images.

In Flowing Spins (Blood) Are Exposed To Fewer RF Pulses and Appear *Brighter*

Spatial Pre-saturation Venous Sat

Saturation bands suppress tissue signals.

Saturation bands can suppress arterial or venous flow.

Spatial Pre-saturation

no sat

arterial sat

Quiz: Gradient Echoes - True or False?

- 1. Fat and water precess at frequencies that are >1000Hz different.
- 2. Fat and water are always out of phase.
- 3. Fat and water destructively interfere when they are in phase.
- 4. In-flowing spins are bright because they "see" hundreds of excitation pulses.

Spatial Localization

Spatial Encoding

Three key steps:

- Slice selection
 - You have to pick slice!
- Phase Encoding
 - You have to encode 1 of 2 dimensions within the slice.
- Frequency Encoding (aka readout)
 - You have to encode the other dimension within the slice.

Steps required to acquire k-space data.

What is k-space?

k-space

image space

k-space is the raw data collected by the scanner. A point in *k*-space represents the presence/absence of a particular spatial frequency.

Spatial Localization

Pulse Sequence Diagram - Timing diagram of the RF and gradient events that comprise an MRI pulse sequence.

David Geffen

School of Medicine

Spatial localization requires three key steps.

Radiology

Slice Selection

UCLA Radiology

Slice selection requires RF and a gradient.

X+Z-Gradients are ON

Possible Slice

School of Medicine

Spin **Isochromat**

7

RF pulse frequency is "tuned" to slice of interest.

Phase Encoding

- Consists of:
 - Phase encoding gradient
 - Magnitude changes with each TR
- After excitation, before readout
- Adds linear spatial variation of phase
- Phase encode in
 - one direction for 2D imaging
 - two directions for 3D imaging
- Only one PE step per echo

Frequency Encoding

- Consists of:
 - Frequency encoding gradient
 - Constant for each TR
 - No simultaneous
 - RF (B₁)
 - Other gradients
 - phase encoding, slice encoding, crushers
 - Readout pre-phasing gradient
 - Prepares spin phase so peak echo amplitude occurs at middle of readout (TE)
 - AKA "readout de-phasing gradient"
- Adds linear spatial variation of frequency
- Helps form an echo

Where am I in k-space?

One phase encoded echo is acquired per TR.

Where am I in k-space?

Gradients move the acquisition through *k*-space.

How do we calculate scan time?

$T_{Scan} = TR \cdot PE \cdot N_{avg}$

- T_{Scan}=1000ms•256•1=4:16 [mm:ss]
- Assumes one echo per TR.
- MRI scanning can be *slow*.

Quiz: Spatial Localization - True or False?

- 1. Slice selection only requires an RF pulse.
- 2. Phase and frequency encoding map out the image information within a slice.
- 3. Slice-select, frequency encode, then phase encode.
- 4. GRE TRs are ~10ms, therefore MRI scanning is *very* fast.

• *k*-space is the raw data collected by the scanner.

- A point in k-space tells us about the presence/absence of a spatial frequency (pattern) in the acquired image.
- Each echo measures *many* of the spatial frequencies that comprise the object.
- k-space has units of cm⁻¹ or mm⁻¹
 - Audio signals have units of Hertz (s⁻¹)
- Gradients
 - Help extract spatial frequency information
 - Move us around in k-space
- A line of *k*-space is filled by an echo
- 2D FT of *k*-space produces the image

k-space

image space

k-space is the raw data collected by the scanner.

81

Points in *k*-space represent different patterns in an image.

82

Fourier Representation

k-space spikes

k-space

image space

A *k*-space spike creates a banding artifact.

89

Uniformly skipping lines in *k*-space causes aliasing.

91

92

Acquiring fewer high phase encodes decreases resolution.

Quiz: *k*-space - True or False? 1. *k*-space is the raw data collected by the scanner.

- 2. A point in *k*-space represents the pixel intensity in the image.
- 3. An echo corresponds to a single point in k-space.
- 4. The edges of *k*-space relate to image contrast.
- 5. A single echo fills all of *k*-space.
- High resolution imaging takes longer because we need to acquire more of k-space.

Thanks!

Daniel B. Ennis, Ph.D.

Magnetic Resonance Research Labs

DEnnis@mednet.ucla.edu 310.206.0713 (Office) http://mrrl.ucla.edu

