Basic Pulse Sequences III Gradient Echoes Daniel B. Ennis, Ph.D. Magnetic Resonance Research Labs

Class Business

Class Business

TONIGHT from 6-9pm

- 6:00-7:30pm Groups
 - Avanto
 - John Ginn, Geraldine Chee, Ryan Neph, Wenbo Gu
 - Skyra
 - Nan Wang, Yiwen Meng, Sagari Grandhi
 - Prisma
 - Sen Ma, Ning Wang, Avinash Chinchali, Eric Johnson

- 7:30-9:00pm Groups

- Avanto
 - Alborz Feizi, Paranaz Abiri, Nastaran Emaminejad, Kamal Singhrao
- Skyra
 - Zinzhou Li, Jiahao Lin, Jessica Martinez, Kanav Sarnaf
- Prisma
 - ???
- MRI Screening Form & Lab in DropBox
- BRING THE COMPLETED SCREENING FORM

Assignments

- Homework #1
 - Graded nearly done. Returned by Wednesday.
- Lab #1
 - Lab is tonight
 - Write-up due on Friday 2/5 (2 weeks)
- Homework #2
 - Available today
 - Due on Wednesday 2/3 (10 days)

Upcoming Lectures

- Mathematical Fundamentals
 - Dr. Holden Wu
 - Wednesday (1/27)
- Signal Localization I & II
 - Dr. Kyung Sung
 - Monday (2/1) and Wednesday (2/3)

Holden Wu, Ph.D.

Kyung Sung, Ph.D.

Lecture #7 Summary

Spin Echo

$$\mathbf{M}_{z'}^{(4)}(0_{-}) = \mathbf{M}_{z}^{0} \left(1 - 2e^{-(TR - TE/2)/T_{1}} + e^{-TR/T_{1}} \right)$$
 The

The I.C. for the subsequent TR.

$$A_{Echo} \propto \rho \left(1 - 2e^{-(TR - TE/2)/T_1} + e^{-TR/T_1} \right) e^{-TE/T_2}$$
Signal @ ③ for the second TR

$$A_{Echo} \propto \rho \left(1 - e^{-TR/T_1} \right) e^{-TE/T_2}$$

Signal at "③" for the second TR when TE<<TR.

Spin Echo Contrast

$$\mathbf{M}_{z'}^{(4)}(0_{-}) = \mathbf{M}_{z}^{0} \left(1 - 2e^{-(TR - TE/2)/T_{1}} + e^{-TR/T_{1}} \right)$$

This becomes the initial condition for the subsequent TR.

$$A_{Echo} \propto \rho \left(1 - 2e^{-(TR - TE/2)/T_1} + e^{-TR/T_1} \right) e^{-TE/T_2}$$

This the signal at time-point "#3" for the second TR.

If $TE \ll TR$, then

$$A_{Echo} \propto \rho \left(1 - e^{-TR/T_1} \right) e^{-TE/T_2}$$

This the signal at time-point "#3" for the second TR when TE<<TR.

Basic Principles of Gradient Echoes

Principal GRE Advantages

Fast Imaging Applications

- Why? Can use a shorter TE/TR than spin echo.
- When? Breath-held, realtime, & 3D volume imaging

Bright blood signal

- Why? Inflowing spins haven't "seen" numerous RF pulses.
- When? Cardiovascular & angiographic applications.

Low SAR

- Why? Imaging flip angles are small.
- When? When heating risks are a concern (devices, high field)

Principal GRE Advantages

Quantitative

- Why? Multi-echo acquisition are practical.
- When? Flow quantification & Fat/Water mapping

Susceptibility Weighted Imaging

- Why? No refocusing pulse.
- When? T₂*-weighted & imaging hemorrhage

Reduced Cross-talk

- Why? SE hard to match slice profile of 90° & 180°
- When? Little or no slice gap for 2D multi-slice

Principal GRE Disadvantages

Off-resonance sensitivity

- Why? Field inhomogeneity, Susceptibility, & Chemical shift

• T₂*-weighted rather than T₂-weighted

- Why? No re-focusing pulse

• Larger metal artifacts than SE

- Why? No refocusing pulse.

GRE Applications

- Primarily used for fast scanning
 - Flip angle typically <90°
 - Only short time needed for T₁ recovery
 - Short TRs (2-50ms)
 - Short TEs (2-10ms)
 - Therefore, weights T1 differences
- Varying TE can provide T2* contrast
 - Combines field heterogeneity and susceptibility weighting
- 3D volume imaging
- Cardiac/Cardiovascular imaging
- Time-of-flight and phase contrast MRA
- Sequence names
 - FLASH, FISP/true-FISP, GRASS

Signal loss from spin dephasing and T₂*.

UCLA Radiology

Basic Gradient Echo Sequence

Basic Gradient Echo Sequence

Basic Gradient Echo Sequence

Gradient Echo

• • • •

To The Board...

Gradient Echoes & Contrast

Spoiled Gradient Echo Contrast

$$\mathbf{M}_{z}^{ss} = \frac{\mathbf{M}_{0} \left(1 - e^{-TR/T_{1}}\right)}{1 - \cos \alpha e^{-TR/T_{1}}}$$

$$A_{echo} \propto \frac{\rho \left(1 - e^{-TR/T_1}\right)}{1 - \cos \alpha e^{-TR/T_1}} \sin \alpha e^{-TE/T_2^*}$$

Contrast adjusted by changing flip angle, TE and TR.

Gradient Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	Short	Long	Small
T ₁ -Weighted	Short	Intermediate	Large
T ₂ *-Weighted	Intermediate	Long	Small

Gradient Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	<5ms	>100ms	<10°
T ₁ -Weighted	<5ms	<50ms	>30°
T ₂ *-Weighted	>20ms	>100ms	<10°

T₂*-weighted Gradient Echo Imaging

TE=9ms

T₂*-weighted Gradient Echo Imaging

TE=9ms

T₂*-weighted Gradient Echo Imaging

TE=9msTE=30msSusceptibility Weighting (darker with longer TE)Bright fluid signal (long T2* is brighter with longer TE)

Gradient Echoes & Flip Angle

Spoiled GRE & Ernst Angle

$$\alpha_{Ernst} = \arccos\left(e^{-\frac{TR}{T_1}}\right)$$

Produces the largest MRI signal for a given TR and T₁.

Tissue	\mathbf{T}_1 [ms]	\mathbf{T}_2 [ms]
muscle	875	47
fat	260	85

To The Board..

Spoiled GRE & Ernst Angle

High Muscle Signal

High Fat Signal

60°

90°

To The Board...

Gradient Echoes & Spoiling

Spoiling - Why?

- Eliminates M_{xy} at end of each TR
 - Prevents cumulative errors/artifacts
- Shortens the TR
 - Faster imaging
- Enhances T₁ contrast
 - T₂-dependent signal (M_{xy}) is eliminated

Spoiling - How?

- Long TR
 - Choose TR 4-5x T_2^*
 - Can work for interleaved multi-slice
- Gradient spoiling
 - Applied at end of TR
 - Dephases spins within voxel
 - Variable gradient area from TR to TR
 - Spatially non-uniform
- RF spoiling
 - Cycle the phase of the RF pulse
 - Minimizes coherent signal pathways
 - Requires a phase encode rewinder

Basic Gradient Echo Sequence

Gradient Echo + Spoiling

Realtime Imaging with Gradient Echoes

Realtime imaging requires very short TE/TRs for rapid image acquisition.

Realtime Imaging with Gradient Echoes

Realtime imaging requires very short TE/TRs for rapid image acquisition.

Gradient vs. Spin Echo

Gradient vs. Spin Echo

- Gradient Echo
 - Fast Imaging
 - Lower SAR
 - More sensitive to field inhomogeneity
 - Reduced slice cross-talk
 - Little or no slice gap needed
 - Good for 3D volume imaging
- Spin Echo
 - Higher intrinsic SNR
 - True T₂ weighted image contrast
 - Long TRs facilitate slice interleaving

B₀ Inhomogeneity

• Images acquired with a bad shim.

Spin Echo

Gradient Echo

Images Courtesy of http://chickscope.beckman.uiuc.edu/roosts/carl/artifacts.html

Spin vs. Gradient Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	Short	Long	Small
T ₁ -Weighted	Short	Intermediate	Large
T ₂ *-Weighted	Intermediate	Long	Small

	Spin Echo Pa	rameters
Spin Density	Short	Long
T ₁ -Weighted	Short	Intermediate
T ₂ -Weighted	Intermediate	Long

Spin vs. Gradient Echo Contrast

Gradient Echo Parameters

Type of Contrast	TE	TR	Flip Angle
Spin Density	<5ms	>100ms	<10°
T ₁ -Weighted	<5ms	<50ms	>30°
T ₂ *-Weighted	>20ms	>100ms	<10°

	Spin Echo Pa	rameters
Spin Density	- 10-30ms	>2000ms
T ₁ -Weighted	10-30ms	450-850ms
T ₂ -Weighted	>60ms	>2000ms

Gradient vs. Spin Echo

Which image is a gradient echo image?

Images Courtesy of Brian Hargreaves

Gradient vs. Spin Echo

Which image is a gradient echo image?

Both are T1-weighted Spin Echo has higher SNR (longer TR) GRE has shorter TE (meniscus/tendon is brighter)

Images Courtesy of Brian Hargreaves

Acquisition Time

- Acquisition time (T_{acq}) can be calculated from the TR and the total number of repetitions.
- $T_{acq} = TR \cdot N_{ky} \cdot N_{kz} \cdot N_{avg}$
- Examples:
 - Spin Echo
 - TR=500ms
 - Matrix is 256x256, No Averages
 - ANSWER 2 min 8s
 - Gradient Echo
 - TR=10ms
 - Matrix is 256 x 256, No Averages
 - ANSWER 25.6 seconds

SE and GRE Tricks

Gradient Echoes & Fat

Water Spins in a Uniform Field

Water Spins in a Gradient Field

Water & Fat Spins in a Gradient Field

GRE & Fat/Water Frequency Low Bandwidth High Bandwidth

GRE and Fat/Water Phase

- Pixels are frequently a mixture of fat and water
- Pixel intensity is the vector sum of fat and water

The TE controls the phase between fat and water.

GRE and Fat/Water Phase In-Phase

Opposed-Phase

Which image is the in-phase image?

Images Courtesy of Scott Reeder

Which image is the in-phase image?

In-Phase

Opposed-Phase

Images Courtesy of Scott Reeder

Gradient Echoes & Fat Suppression

• Why is fat suppression/separation important?

- Fat is bright on most pulse sequences.
- But so are many other things...
 - CSF & edema
 - Flowing blood
 - Contrast enhanced tissues

Fat obscures underlying pathology

– Edema, neoplasm, inflammation

• How can fat be eliminated in GRE images?

- Fat saturation pulses
- Multi-echo acquisitions
 - Dixon/IDEAL

Gradient Echoes & Fat/Water Separation

Fat-Sat Can Be Spatially Non-Uniform

Fat-Sat Image

Images Courtesy of Scott Reeder

Gradient Echoes & Fat/Water Separation

IDEAL Water Image

IDEAL Fat Image

Images Courtesy of Scott Reeder

GRE & Fat/Water Separation - How?

UCI

Radiology

GRE & Fat/Water Separation - How?

Gradient Echoes & Fat/Water Separation

Imperfect Fat Sat

IDEAL water image

IDEAL fat image

opposed-phase

Images Courtesy of Dr. Scott Reeder

in-phase

Spin Echo 2D Slice Interleaving

Spin Echo

Slice Interleaving

Sequential 2D Imaging

Imaging Time = TR * N_{Ky} * N_{Slices}

Slice Interleaved 2D Imaging

Adapted From Bernstein's Handbook of MRI Pulse Sequences

2D Slice Interleaving

- Advantages
 - Accelerate imaging many times
- Disadvantages
 - Acceleration limited by
 - NInterleaves~TR/TE
 - SAR
 - Difficult to acquire adjacent slices
 - Hard to get good 180° slice-profile to match 90° sliceprofile for multi-slice imaging
- Applications
 - T₂ imaging
 - TR must be long
 - DWI
 - TR should be long

• Slice interleaving makes sense when TR is really long.

Spin Echo EPI
Spin Echo EPI

Spin Echo EPI

- Advantages
 - Can acquire data in a "single shot"
 - Can be used with 2D slice interleaving
 - Allows T₂^{*} weighted imaging in a breath hold
- Disadvantages
 - Single Shot EPI
 - Ghosting
 - Blur images
 - Image distortion
 - Alter image contrast
 - Multi-shot EPI
 - Slower than single shot
 - Faster than SE
- Applications
 - DWI, Perfusion, fMRI

Multi-Echo Spin Echo Imaging

How do we calculate scan time?

$T_{Scan} = TR \cdot PE \cdot N_{avg}$

- T_{Scan}=1000ms•256•1=4:16 [mm:ss]
- Assumes one echo per TR.

Spin Echo

Spin Echo

Fast Spin Echo

David Geffen

T₂ Weighting (FSE vs. SE)

TR = 2500TE = 116ETL = 16NEX = 224 slicesTime = 2:51

FSE

SE

TR = 2500 TE = 112 ETL = N/A NEX = 1 24 slices Time = 22:21

Fast Spin Echo

- Advantages
 - Turbo factor accelerates imaging
 - Can be used with 2D slice interleaving
 - Allows T₂ weighted imaging in a breath hold
- Disadvantages
 - High turbo factors (ETL>4):
 - Blur images
 - Alter image contrast
 - Fat & Water are both bright on T₂-weighted
 - Water/CSF T₂ is long
 - Repeated 180s reduce spin-spin interaction
 - This lengthens the moderate T₂ of fat
 - SAR can be high

Thanks

DANIEL B. ENNIS, PH.D. ENNIS@UCLA.EDU 310.206.0713 (OFFICE) HTTP://ENNIS.BOL.UCLA.EDU

PETER V. UEBERROTH BLDG. SUITE 1417, ROOM C 10945 LE CONTE AVENUE

