Bulk Magnetization and Nuclear Precession

P

Class Business

• Matlab available via SEASNET

<u>http://www.seas.ucla.edu/acctapp</u>

• Website up and running

- http://mrrl.ucla.edu/education/m219/
- Slides, video, code, reading, PDFs, etc.
- Code available on website
 - Review code as needed
- Meet with TAs for Matlab help.

Lecture 1 - Summary

MRI uses a superconducting electromagnet!

Copper RF Shielding Steel Magnetic Shielding

$$B = \mu I N L^{-1}$$

1.5T=4π×10⁻⁷•**508 A**•235•1 m⁻¹

 $\vec{B_0} = B_0 \vec{k}$

Homogeneity – <4ppm peak-peak variation (6µT @ 1.5T!)

Lecture #1 Learning Objectives

- List several advantages and disadvantages of magnetic resonance imaging (MRI).
- Define the essential requirements for an MRI experiment.
- Describe the basic MRI magnet (B₀) design.
- Explain the importance of superconductivity.
- Be able to discuss several B₀-related safety and room design considerations.
- Write a mathematical expression for the B₀ field and discuss spatial and temporal homogeneity.
- Explain B₀ ramping and quenching.

Questions?

Bulk Magnetization and Nuclear Precession

P

Learning Objectives

- Explain three B₀ principles and the importance of Zeeman splitting.
- Describe the importance of spin, charge, and mass to NMR.
- Define the equation of motion for an ensemble of spins.
- Differentiate free and forced precession in the laboratory and rotating frames.
- Learn to solve for the bulk magnetization dynamics under specific conditions.

Dipoles to Images

 $\vec{\mu} \\ \downarrow \\ \vec{M}$ Magnetic Moment B_0 **Bulk** Magnetization B_1 $\vec{M}_{xy}(t)$ Transverse Magnetization $G_{Encoding}$ $\vec{M}_{xy}(\vec{r},t)$ Spatially Encoded Magnetization Coil **Received Voltage** PSD S(t)Complex Signal $G_{Decoding}$ Sk-space signal Reconstruction Image \vec{r}

Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - ->1.5T
 - Z-oriented
- B₀ generates bulk magnetization (\vec{M})
 - More B₀, more

$$ec{B_0} = B_0 ec{k}$$
 Eqn. 3.5

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n$$
 Eqn. 3.26

 $\omega = \gamma B$

- B₀ forces \vec{M} to precess
 - Larmor Equation

Eqn. 3.18

Main Field (B₀) - Principles

B₀ is a strong magnetic field

$$ec{B_0} = B_0 ec{k}$$
 Eqn. 3.5

- >1.5T
- Z-oriented
- B₀ generates bulk magnetization (M)
 – More B₀, more

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n$$
 Eqn. 3.26

 $\omega = \gamma B$

- B₀ forces \vec{M} to precess
 - Larmor Equation

Eqn. 3.18

B₀ Field

Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - ->1.5T
 - Z-oriented
- B₀ generates bulk magnetization (*M*)
 – More B₀, more

 $\vec{B}_0 = B_0 \vec{k}$ Eqn. 3.5

 $ec{M} = \sum_{n=1}^{N_{total}} ec{\mu_n}$ Eqn. 3.26

 $\omega = \gamma B$

- B₀ forces \vec{M} to precess
 - Larmor Equation

Eqn. 3.18

Hydrogen

Hydrogen nuclei behave like magnetic dipoles.

Magnetic Dipole Moments

Spin + Charge \rightarrow Magnetic Moment $\rightarrow \vec{\mu}$ [J•T⁻¹ or kg•m²/s²]

"a measure of the strength of the system's net magnetic source" --http://en.wikipedia.org/wiki/Magnetic_moment

Hydrogen nuclei have magnetic dipole moments.

N_{total}=0.24x10²³ spins in a 2x2x10mm voxel But not all spins contribute to our measured signal...

Equilibrium Bulk Magnetization

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n$$

Eqn. 3.26

$$ec{M} = M_x \hat{i} + M_y \hat{j} + M_z \hat{k}$$
 Eqn. 3.36

$$\vec{M}_z^0 = |\vec{M}| = \frac{\gamma^2 \hbar^2 B_0 N_s}{4 K T_s} \qquad \mbox{Eqn. 3.39}$$

$$\vec{M}_x^0 = \vec{M}_y^0 = 0$$

Bulk magnetization at equilibrium in a B₀ field.

Zeeman Splitting

Pieter Zeeman
b. 25 May 1865
d. 9 Oct 1943

B₀ Field OFF

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = 0$$

Spins point in all directions.

B₀ Field ON

B₀ polarizes the spins and generates bulk magnetization.

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = M_z$$

B₀ Field ON

Only a very small number are spin-up relative to spin-down.

Zeeman Splitting

$$rac{N_{\uparrow}-N_{\downarrow}}{N_{total}}pproxrac{\gamma hB_{0}}{2KT}$$
 e

Eqn. 3.35

 $\gamma = 42.58 \times 10^6 \text{ Hz/T}$

- $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s} \text{ [Planck' Constant]}$
- T = 300 K (room temperature)
- $K = 1.38 \times 10^{-23} \text{ J/K} [\text{Boltzmann Constant}]$ $B_0 = 1.5 \text{T}$

$$\frac{N_{\uparrow} - N_{\downarrow}}{N_{total}} \approx \frac{42.58 \times 10^6 \cdot 6.6 \times 10^{-34} \cdot 1.5}{2 \cdot 1.38 \times 10^{-23} \cdot 300} \approx 4.5 \times 10^{-6}$$

Nuclear Spin

"The concept of spin is difficult. It was forced upon scientists by the experimental evidence." – Malcolm Levitt in Spin Dynamics

How was spin first observed?

THE SPIN, A QUANTUM MAGNET

All the animations and explanations on www.toutestquantique.fr

Otto Stern and Walther Gerlach performed the Stern–Gerlach experiment in Frankfurt, Germany in 1922.

The Standard Model

http://en.wikipedia.org/wiki/Standard_Model

Nuclear Spin - Quarks

Spin Crisis!

Spin Dynamics by Malcolm Levitt

Nuclear Spin Quantum Number (I)

- A nucleus is NMR active only if $I \neq 0$
- Nuclei with an odd mass number have *half-integral spin*
 - Spin-1/2 ¹H, ¹³C, ¹⁵N, ¹⁹F, ³¹P
 - Spin-3/2 ²³Na
 - Spin-5/2 ¹⁷O
- Nuclei with an even mass number and an even charge number have zero spin
 - $\ ^{12}C$ and $\ ^{16}O$
- Nuclei with an even mass number, but an odd charge number have *integral spin*
 - $\,^{2}H$ and ^{14}N

NMR Active Nuclei

lsotope	Spin [I]	Natural Abundance	Gyromagnetic Ratio [MHz/T]	Relative Sensitivity	Absolute Sensitivity
¹ H	1/2	0.9980	42.57	1	9.98E-01
² H	1	0.0160	6.54	0.015	2.40E-04
¹² C	0	0.9890			
¹³ C	1/2	0.0110	10.71	0.016	1.76E-04
¹⁴ N	1	0.9960	3.08	0.001	9.96E-04
¹⁵ N	1/2	0.0040	-4.32	0.001	4.00E-06
¹⁶ O	0	0.9890			
¹⁷ O	5/2	0.0004	-5.77	0.029	1.16E-05
¹⁹ F	1/2	1.0000	40.05	0.83	8.30E-01
²³ Na	3/2	1.0000	11.26	0.093	9.30E-02
³¹ P	1/2	1.0000	17.24	0.066	6.60E-02

The *relative* sensitivity is at constant magnetic field and equal number of nuclei.

– Using a factor of $\gamma^{\frac{11}{4}}I(I+1)$; ¹H is the reference standard.

The *absolute* sensitivity is the relative sensitivity multiplied by natural abundance.

P. Callaghan & http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/nuclei.htm

Gyromagnetic Ratio

- Gyromagnetic Ratio
 - Physical constant
 - Unique for each NMR active nuclei
 - Ratio of the magnetic moment to the angular momentum

$$\vec{\mu} = \gamma \vec{S}$$

- Governs the frequency of *precession*
- Gamma vs. Gamma-bar

$$\gamma = \gamma/2\pi$$

What are the implications of spin?

Spin + Mass and Spin + Charge MR

Nuclear Precession

Movie Courtesy of Donald Plewes @ U. Toronto

Spin Angular Momentum

Spin + Mass 🛥 Spin Angular Momentum 🛥 🕉 [kg·m²s-1]

 $ec{U}$ m

Spin Angular Momentum

Spin + Mass \rightarrow Spin Angular Momentum \rightarrow \vec{S} [kg·m²s⁻¹]

Magnetic Dipole Moments

Spin + Charge \rightarrow Magnetic Moment $\rightarrow \vec{\mu}$ [J•T⁻¹ or kg•m²/s²]

"a measure of the strength of the system's net magnetic source" --http://en.wikipedia.org/wiki/Magnetic_moment

Hydrogen nuclei have magnetic dipole moments.

"vector field which can exert a magnetic force on moving electric charges and on magnetic dipoles" --http://en.wikipedia.org/wiki/Magnetic_field

Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - ->1.5T
 - Z-oriented
- B₀ generates bulk magnetization (*M*)
 – More B₀, more

 $\vec{B}_0 = B_0 \vec{k}$ Eqn. 3.5

)
$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n$$
 Eqn. 3.26

- B₀ forces \vec{M} to precess
 - Larmor Equation

Spin vs. Precession

• Spin

- Intrinsic form of angular momentum
- Quantum mechanical phenomena
- No classical physics counterpart
 - Except by hand-waving analogy...
- Precession
 - Spin+Mass+Charge give rise to precession

So where does the Larmor equation come from?

Magnetic Moments & Angular Momentum $ec{ au} = ec{\mu} imes ec{B} \quad ec{S} = ec{r} imes ec{p}$ γS **U** n Spin + Charge Spin + Mass David Geffen lici a Spin + Mass and Spin + Charge INMR School of Medicine Radiology

To the board...

Equation of Motion for the Bulk Magnetization

 $\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$

Equation of motion for an ensemble of spins (isochromats) [Classical Description]

What is a general solution?

Free & Forced Precession

Free vs. Forced Precession

<u>Free Precession</u> – Precession of the bulk magnetization vector about the static magnetic field after a pulse excitation. Free precession of the transverse magnetization at the Larmor frequency is responsible for the detectable NMR signal. – Liang & Lauterbur p. 375

Forced Precession – Precession of the bulk magnetization about the excitation RF field. – *Liang & Lauterbur p. 374*

Four Special Cases...

Laboratory Frame

- Coordinate system anchored to scanner
- 1) *Free Precession* in the lab frame
- 2) Forced Precession in the lab frame

Rotating Frame

- Coordinate system anchored to spin system
- 3) Free Precession in the rotating frame
- 4) *Forced Precession* in the rotating frame
- ...all without relaxation. We assume:
 - a) Relaxation time constants are "really" long
 OR
 - b) Time scale of event is << relaxation time constant

Free Precession In The Laboratory Frame Without Relaxation

Rotations & Euler's Formula

Vectors

- A vector (\vec{v}) describes a physical quantity (e.g. bulk magnetization or velocity) at a point in space and time and has a magnitude (positive real number), a direction, and physical units.
- To define a vector we need a **basis**:

$$\hat{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• A 3D vector has components:

$$\vec{M} = M_x \hat{i} + M_y \hat{j} + M_z \hat{k}$$

2D Vectors - Euler's Formula

 Euler's formula provides a compact representation of a 2D vector using a complex exponential:

$$e^{i\phi} = \cos\phi + i\sin\phi$$

$$\vec{M}_{xy} = M_x \hat{i} + M_y \hat{j}$$

= $M_x + iM_y$
= $|\vec{M}_{xy}| \cos \phi \hat{i} + |\vec{M}_{xy}| \sin \phi \hat{j}$
= $|\vec{M}_{xy}| \cos \phi + i |\vec{M}_{xy}| \sin \phi$
= $|\vec{M}_{xy}| e^{i\phi}$

Vector components Complex components Trigonometric components Complex trigonometric components Euler's notation

Euler's formula is mathematically convenient. There is nothing explicitly *imaginary* about M_{xy}.

Rotations

- **Rotations** (R) are vector valued orthogonal transformations that preserve the magnitude of vectors and the angles between them.
- The simplest rotation matrix is the *identity* matrix:

$$\mathbf{R} = \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ therefore } \vec{v} = \mathbf{I}\vec{v}$$

• More simply, R transforms (rotates) one vector to another:

$$\vec{u} = \mathbf{R}\vec{v} \quad \underbrace{\vec{u} \quad \hat{\vec{v}}}_{\hat{i}} \\ \vec{v} \quad \hat{\vec{v}}}_{\hat{i}}$$

Rotations

 $\sum_{n=1}^{n}$ **Note**: Positive values of ϕ produce right-handed (CCW) rotations.

To the board...

Precession is left-handed (clockwise).

Free Precession In The Laboratory Frame Without Relaxation

To The Board...

Next time...

MRI Systems II – B₁

 $\begin{array}{c} \overline{\vec{\mu}} \\ \downarrow \\ \overline{\vec{M}} \\ \downarrow \\ \overline{\vec{M}} \\ \vec{M} \\ xy \end{array}$

Magnetic Moment

Bulk Magnetization

 B_0

 B_1

Transverse Magnetization

Thanks

DANIEL B. ENNIS, PH.D. ENNIS@UCLA.EDU 310.206.0713 (OFFICE) HTTP://MRI.RADSCI.UCLA.EDU

PETER V. UEBERROTH BLDG. SUITE 1417, ROOM C 10945 LE CONTE AVENUE

