## MRI Systems II - B1

## Spin+Charge $\Rightarrow$ Magnetic Moment?



Charge $=0$
Spin $=1 / 2$
Charge $=0$
Spin $=1 / 2$

Proton


Charge=+e
Spin=1/2

What about the neutron? It has no charge, but it has spin!

## Lecture \#2 Learning Objectives

- Explain three Bo principles and the importance of Zeeman splitting.
- Describe the importance of spin, charge, and mass to NMR.
- Define the equation of motion for an ensemble of spins.
- Differentiate free and forced precession in the laboratory and rotating frames.
- Learn to solve for the bulk magnetization dynamics under specific conditions.


## Lecture 2 - Summary

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu} \times \vec{B} \quad \vec{s}=\vec{r} \times \vec{p} \\
& \frac{d \vec{\mu}}{d t}=\vec{\mu} \times \gamma \vec{B} \quad \vec{M}=\sum_{n=1}^{N_{\text {total }}} \\
& \vec{\mu}_{n} \\
& M_{x}(t)=M_{x}^{0} \cos \left(\gamma B_{0} t\right)+M_{y}^{0} \sin \left(\gamma B_{0} t\right) \\
& M_{y}(t)=-M_{x}^{0} \sin \left(\gamma B_{0} t\right)+M_{y}^{0} \cos \left(\gamma B_{0} t\right) \quad d \vec{M} \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \\
& \text { Equation of Motion for the bulk magnetization. } \\
& M_{z}(t)=M_{z}^{0} \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma\left(\overrightarrow{B_{0}}\right) \\
& \vec{B}_{0}=B_{0} \vec{k}
\end{aligned}
$$

David Geffen
School of Medicine

## Lecture 2 - Summary

- Free Precession in the Laboratory Frame
- Forced Precession in the Laboratory Frame
- Coordinate system anchored to scanner
- Free Precession in the Rotating Frame
- Forced Precession in the Rotating Frame
- Coordinate system anchored to spin system
...all without relaxation.
- a) Relaxation time constants are "really" long
- b) Time scale of event is << relaxation time constant


## Dipoles to Images



## MRI Systems II - B1

## Lecture \#3 Learning Objectives

- Distinguish spin, precession, and nutation.
- Appreciate that any B-field acts on the the spin system.
- Understand the advantage of a circularly polarized RF B-field.
- Differentiate the lab and rotating frames.
- Define the equation of motion in the lab and rotating frames.
- Know how to compute the flip angle from the B1-envelope function.
- Understand how to apply the RF hard pulse matrix operator.


## B1 Field - RF Pulse

- $\mathbf{B}_{\mathbf{1}}$ is a
- radiofrequency (RF)
- $42.58 \mathrm{MHz} / \mathrm{T}(63 \mathrm{MHz}$ at 1.5 T$)$
- short duration pulse ( $\sim 0.1$ to 5 ms )
- small amplitude
- $<30 \mu \mathrm{~T}$
- circularly polarized
- rotates at Larmor frequency
- magnetic field
- perpendicular to $B_{0}$

RF Birdcage Coil

## MRI Hardware



## RF Birdcage Coil

- Most common design
- Highly efficient
- Nearly all of the fields produced contribute to imaging
- Very uniform field
- Especially radially
- Decays axially
- Uniform sphere if $\mathrm{L} \approx \mathrm{D}$
- Generates a "quadrature" field
- Circular polarization



## RF Excitation - Lab Frame



RF pulses can generate transverse magnetization ( $\mathrm{M}_{\mathrm{xy}}$ ).

## RF Excitation - Lab Frame



## RF Birdcage Coil



Birdcage coils are used to generate low SAR [W/kg] circularly polarized RF $\mathrm{B}_{1}$-fields.

## RF Birdcage Coil



In the absence of any applied RF the bulk magnetization is oriented along the $z$-axis.


Capacitors Endrings Rung

## RF Birdcage Coil

Current into page.


A current $\left(I_{1}\right)$ induces a left-handed nutation about the $\mathrm{B}_{1}$-field.

## RF Birdcage Coil



Precession from $B_{0}$ advances the spin clockwise (left hand rule).


Capacitors Endrings Rung

## RF Birdcage Coil


$B_{1}$ nutation from $I_{2}$ generates more $M_{x y}$.


## RF Birdcage Coil



$$
I_{n}(t)=I_{0} \sin \left(\omega_{R F} t-\frac{2 \pi(n-1)}{N_{\text {Rungs }}}\right) \quad \begin{aligned}
& \text { Current in the } \mathrm{n}^{\text {th }} \text { rung. } \\
& \text { Creates a CW B1-field. }
\end{aligned}
$$

## RF Birdcage Coil




Capacitors Endrings Rung

$$
I_{n}(t)=I_{0} \sin \left(\omega_{R F} t-\frac{2 \pi(n-1)}{N_{R u n g s}}\right)
$$

Current in the $\mathrm{n}^{\text {th }}$ rung. Creates a CW B1-field.

Consider reading Chp. 16.3 in Haacke.

## $B_{1}$ Inhomogeneity

$B_{1}$ Inhomogeneity: Imperfect $B_{1}$ amplitude as a function of spatial position.

## Sources:

- Hardware imperfections.
- Conductivity \& permittivity of subject/object [1].
- Wavelength effects.


Fig. 5. Signal loss due to inhomogeneous flip-angle distribution at 3T. (a) Wavelength effects result in reduced signal intensity in the abdomen (arrows). (b) This effect can in some cases be reduced by manually increasing the RF-transmitter amplitude (here by $50 \%$ ) and by applying image post-processing filters to obtain more uniform image intensities. Images courtesy of W. Horger, Siemens Medical Solutions, Germany [2]

## Resonance

## Ensemble of Precessing Spins


"The equilibrium magnetization is stationary, so even though the individual spins are precessing, there is no net emission of radio waves in equilibrium."

## Resonance

- Quantum Physics
- Electromagnetic radiation of frequency $\omega_{R F}$ carries energy that induces a coherent transition of spins from $N_{\uparrow}$ to $N_{\downarrow}$
- Classical Physics
- $\vec{B}_{1}(t)$ rotates in the same manner as the precessing spins.
- Coherently "pushes" on bulk magnetization.


## Resonance Condition (Quantum)

$$
\Delta E=E_{\downarrow}-E_{\uparrow}=\hbar \gamma B_{0} \quad E_{R F}=\hbar \omega_{R F}
$$

Zeeman Splitting
Planck's Law


$$
\begin{gathered}
\hbar \gamma B_{0}=\hbar \omega_{R F} \\
\omega_{R F}=\gamma B_{0}=\omega_{0}
\end{gathered}
$$

Resonance Condition

Resonance requires that the frequency of the RF energy
$\left(\omega_{R F}\right)$ match the frequency of precession ( $\omega_{0}$ ).

## Resonance Condition (Classical)

"Establishment of a phase coherence among these 'randomly' precessing spins in a magnetized spin system is referred to as resonance."

- Liang \& Lauterbur p. 69
$N_{\uparrow} \approx N_{\text {total }} \times\left(1+2.25 \times 10^{-6}\right)$

$N_{\downarrow} \approx N_{\text {total }} \times\left(1-2.25 \times 10^{-6}\right)$
http://www.drcmr.dk/MR


## SAR, Polarization, and $B_{1}$ Safety

## SAR Limitations

- Specific Absorption Rate
- Measure of the rate of energy absorption during exposure to a RF electromagnetic field
- Measured in units of [W/kg]
- High-field (>1.5T) imaging with high flip angles ( $>45-90^{\circ}$ ) can be challenging.

$$
\mathrm{SAR} \propto \omega_{0}^{2} B_{1}^{2} \propto B_{0}^{2} \alpha^{2}
$$

## SAR Limits

| Limit | Whole-Body Average | Head Average | Head, Trunk Local SAR | Extremities Local |
| :---: | :---: | :---: | :---: | :---: |
| IEC (6-minute average) |  |  |  |  |
| Normal (all patients) | $\begin{aligned} & 2 \mathrm{~W} / \mathrm{kg} \\ & \left(\mathrm{o} .5^{\circ} \mathrm{C}\right) \end{aligned}$ | 3.2 W/kg | $10 \mathrm{~W} / \mathrm{kg}$ | $20 \mathrm{~W} / \mathrm{kg}$ |
| First level (supervised) | $4 \mathrm{~W} / \mathrm{kg}\left(1^{\circ} \mathrm{C}\right)$ | 3.2 W/kg | $10 \mathrm{~W} / \mathrm{kg}$ | $20 \mathrm{~W} / \mathrm{kg}$ |
| Second level (IRB approval) | $4 \mathrm{~W} / \mathrm{kg}\left(>1^{\circ} \mathrm{C}\right)$ | >3.2 W/kg | >10 W/kg | >20 W/kg |
| Localized heating limit | $39^{\circ} \mathrm{C}$ in 10 g | $38^{\circ} \mathrm{C}$ in 10 g |  | $40^{\circ} \mathrm{C}$ in 10 g |
| FDA | $4 \mathrm{~W} / \mathrm{kg}$ for 15 min | $\begin{aligned} & 3 \mathrm{~W} / \mathrm{kg} \text { for } \\ & 10 \mathrm{~min} \end{aligned}$ | $8 \mathrm{~W} / \mathrm{kg}$ in 1 g for 10 min | $\begin{aligned} & 12 \mathrm{~W} / \mathrm{kg} \text { in } 1 \mathrm{~g} \\ & \text { for } 5 \mathrm{~min} \end{aligned}$ |

## Basic RF Pulse - Linear Polarized

$\vec{B}_{1}(t)=2 B_{1}^{e}(t) \cos \left(\omega_{R F} t+\theta\right) \vec{i}$
$B_{1}^{e}(t) \quad$ pulse envelope function
$\omega R F$ excitation carrier frequency
initial phase angle
$\vec{i}$

## linearly polarized

## Rect Envelope Function

$$
B_{1}^{e}(t)=B_{1} \sqcap\left(\frac{t-\tau_{p} / 2}{\tau_{p}}\right)= \begin{cases}B_{1}, & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}
$$



## Sinc Envelope Function

$$
B_{1}^{e}(t)= \begin{cases}B_{1} \operatorname{sinc}\left[\pi f_{\omega}\left(t-\tau_{p} / 2\right)\right], & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}
$$



SINC functions are used to excite a narrow band of frequencies.

## Circular vs. Linear Polarization

- Linear Polarization
- Simple, cheap
- Higher RF power
- Circular Polarization
- Generated with a quadrature RF transmitter coil
- More complex \& more expensive
- Reduced RF power deposition


## Linearly Polarized Fields

## Linear Polarization

$2 B_{1}^{e}(t) \cos \left(\omega_{R F} t\right) \hat{i}$


## Circularly Polarized Fields



## Circularly Polarized Fields

Linear Polarization
$2 B_{1}^{\epsilon}(t) \cos \left(\omega_{R F} t\right) \hat{i}$


CW Circular Polarization
$B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t\right) \hat{i}-\sin \left(\omega_{R F} t\right) \hat{j}\right]$


On-Resonance
Excitation+Heating
Modern MRI Systems
Only Use CW Circular
Polarization

CCW Circular Polarization

```
                                    \mp@subsup{B}{1}{e}(t)[\operatorname{cos}(\mp@subsup{\omega}{RF}{}t)\hat{i}+\operatorname{sin}(\mp@subsup{\omega}{RF}{}t)\hat{j}]
```



Very Off-Resonance Heating

Modern MRI Systems Don't Apply The CCW Field

## Forced Precession in the Laboratory Frame without Relaxation

## Four Special Cases...

- Free Precession in the Laboratory Frame
- Forced Precession in the Laboratory Frame
- Coordinate system anchored to scanner
- Free Precession in the Rotating Frame
- Forced Precession in the Rotating Frame
- Coordinate system anchored to spin system

O
...all without relaxation.

- a) Relaxation time constants are "really" long
- b) Time scale of event is << relaxation time constant


# Forced Precession - Lab Frame 



Forced Precession in the Laboratory Frame without Relaxation

$$
\left.\begin{array}{rl}
\frac{d \vec{M}}{d t} & =\vec{M} \times \gamma\left(\overrightarrow{B_{0}}+\overrightarrow{B_{1}}\right) \\
& =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
M_{x} & M_{y} & M_{z} \\
\gamma B_{1, x}^{e}(t) & \gamma B_{1, y}^{e}(t) & \gamma B_{0}
\end{array}\right| \\
|\mid \\
\frac{d M M_{x}}{d t}=\gamma B_{0} M_{y}-\gamma B_{1, y}^{e}(t) M_{z} \\
\frac{d M_{y}}{d t} & =-\gamma B_{0} M_{x}+\gamma B_{1, x}^{e}(t) M_{z} \\
\frac{d M_{z}}{d t} & =\gamma B_{1, y}^{e}(t) M_{x}-\gamma B_{1, x}^{e}(t) M_{y}
\end{array}\right\}
$$

Forced Precession in the Laboratory Frame without Relaxation

$$
\left.\begin{array}{c}
\frac{d M_{x}}{d t}=\gamma B_{0} M_{y}-\gamma B_{1, y}^{e}(t) M_{z} \\
\frac{d M_{y}}{d t}=-\gamma B_{0} M_{x}+\gamma B_{1, x}^{e}(t) M_{z} \\
\frac{d M_{z}}{d t}=\gamma B_{1, y}^{e}(t) M_{x}-\gamma B_{1, x}^{e}(t) M_{y}
\end{array}\right\} \text { Cou }
$$

Forced Precession in the Laboratory Frame without Relaxation

$$
\left.\begin{array}{c}
\frac{d M_{x}}{d t}=\gamma B_{0} M_{y}-\gamma B_{1, y}^{e}(t) M_{z} \\
\frac{d M_{y}}{d t}=-\gamma B_{0} M_{x}+\gamma B_{1, x}^{e}(t) M_{z} \\
\frac{d M_{z}}{d t}=\gamma B_{1, y}^{e}(t) M_{x}-\gamma B_{1, x}^{e}(t) M_{y}
\end{array}\right\},
$$

$$
\frac{d M_{z}}{d t}=-\gamma B_{1}^{e}(t) \sin \left(\omega_{R F} t+\theta\right) M_{x}-\gamma B_{1}^{e}(t) \cos \left(\omega_{R F} t+\theta\right) M_{y}
$$

## Rotating Coordinate Frame

## Laboratory Coordinates



## Rotating Frame Coordinates

- Simplifies the mathematics of MRI
- If the rotational frequency of the rotating frame ( $x^{\prime}-y^{\prime}$ ) is matched to the bulk magnetization's precessional frequency, then rotational motion of the bulk magnetization is "removed" or demodulated.
- The rotating frame's transverse ( $x^{\prime} y^{\prime}$ ) plane rotates clockwise (left-handed) at frequency $\omega$.



## Lab vs. Rotating Frame

- The rotating frame simplifies the mathematics and permits more intuitive understanding.

Laboratory Frame


Spins Precess

Rotating Frame


Observer Precesses

Note: Both coordinate frames share the same z-axis.

## Relationship Between Lab and Rotating Frames

$$
\begin{array}{ccccc} 
& \text { Rotating Frame } & & & \text { Laboratory Frame } \\
\hat{i}^{\prime} & \equiv \cos (\omega t) \hat{i}-\sin (\omega t) \hat{j} & \hat{i} & \equiv & \cos (\omega t) \hat{i}^{\prime}+\sin (\omega t) \hat{j}^{\prime} \\
\hat{j}^{\prime} & \equiv \sin (\omega t) \hat{i}+\cos (\omega t) \hat{j} & \hat{j} & \equiv & -\sin (\omega t) \hat{i^{\prime}}+\cos (\omega t) \hat{j}^{\prime} \\
\hat{k}^{\prime} \equiv & \hat{k} & \hat{k} & \equiv & \hat{k}^{\prime}
\end{array}
$$

Note: Both coordinate frames share the same z-axis.

$$
\vec{M}_{r o t} \equiv\left[\begin{array}{c}
M_{x^{\prime}} \\
M_{y^{\prime}} \\
M_{z^{\prime}}
\end{array}\right] \quad \vec{B}_{r o t} \equiv\left[\begin{array}{c}
B_{x^{\prime}} \\
B_{y^{\prime}} \\
B_{z^{\prime}}
\end{array}\right] \quad \begin{gathered}
B_{z^{\prime}} \equiv B_{z} \\
M_{z^{\prime}} \equiv M_{z}
\end{gathered}
$$

Bulk magnetization components in the rotating frame.

Applied B-field components in the rotating frame.

Note: B-field and bulk magnetization z-components are equivalent in the two frames.

## Equation of Motion



Equation of motion for an ensemble of spins (isochromats).
[Laboratory Frame]


$$
\frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma \vec{B}_{e f f}
$$

## Four Special Cases...

- Free Precession in the Laboratory Frame
- Forced Precession in the Laboratory Frame
- Coordinate system anchored to scanner
- Free Precession in the Rotating Frame
- Forced Precession in the Rotating Frame
- Coordinate system anchored to spin system
...all without relaxation.
- a) Relaxation time constants are "really" long
- b) Time scale of event is $\ll$ relaxation time constant


## To The Board...

## Mathematics of Hard RF Pulses

## Parameters \& Rules for RF Pulses

- RF pulses have a "flip angle" (a)
- RF fields induce left-hand rotations
, All B-fields do this for positive $\gamma$
- RF pulses have a "phase" ( $\boldsymbol{\theta}$ )
- Phase of $0^{\circ}$ is about the $x$-axis
- Phase of $90^{\circ}$ is about the $y$-axis


RF Flip Angle

## Flip Angle

- "Amount of rotation of the bulk magnetization vector produced by an RF pulse, with respect to the direction of the static magnetic field."
- Liang \& Lauterbur, p. 374



## Rules for RF Pulses

## $\square Q \rightarrow$ Plip Angle



## How to determine $a$ ?



Rules: 1) Specify $\alpha$
2) Use $B_{1, \text { max }}$ if we can
3) Shortest duration pulse

## How to determine $\alpha$ ?



$$
\alpha=\gamma \int_{0}^{\tau_{p}} B_{1}^{e}(t) d t
$$

$$
\tau=\frac{\alpha}{\gamma B_{1, \max }}=\frac{\pi / 2}{2 \pi \cdot 42.57 H z / \mu T \cdot 60 \mu T}=0.098 \mathrm{~ms}
$$

## RF Phase

## Bulk Magnetization in the Lab Frame



How do we mathematically account for $\alpha$ and $\theta$ ?

## Change of Basis ( $\theta$ )



$$
\mathbf{R}_{Z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## Rotation by Alpha



$$
\mathbf{R}_{X^{\prime}}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right]
$$

## Change of Basis $(-\theta)$



$$
\mathbf{R}_{Z}(-\theta)=\left[\begin{array}{ccc}
\cos (-\theta) & \sin (-\theta) & 0 \\
-\sin (-\theta) & \cos (-\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## RF Pulse Operator



$$
\begin{aligned}
\mathbf{R}_{\theta}^{\alpha} & =\mathbf{R}_{Z}(-\theta) \mathbf{R}_{X}(\alpha) \mathbf{R}_{Z}(\theta) \\
& =\left[\begin{array}{ccc}
\mathrm{c}^{2} \theta+\mathrm{s}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & -\mathrm{s} \theta \mathrm{~s} \alpha \\
\mathrm{c} \theta \mathrm{~s} \theta-\mathrm{c} \theta \mathrm{~s} \theta \mathrm{c} \alpha & \mathrm{~s}^{2} \theta+\mathrm{c}^{2} \theta \mathrm{c} \alpha & \mathrm{c} \theta \mathrm{~s} \alpha \\
\mathrm{~s} \theta \mathrm{~s} \alpha & -\mathrm{c} \theta \mathrm{~s} \alpha & \mathrm{c} \alpha
\end{array}\right]
\end{aligned}
$$

Types of RF Pulses

## Types of RF Pulses

- Excitation Pulses
- Inversion Pulses
- Refocusing Pulses
- Saturation Pulses
- Spectrally Selective Pulses
- Spectral-spatial Pulses
- Adiabatic Pulses


## Excitation Pulses

- Tip $\mathrm{M}_{\mathbf{z}}$ into the transverse plane
- Typically $200 \mu \mathrm{~s}$ to 5 ms
- Non-uniform across slice thickness
- Imperfect slice profile
- Non-uniform within slice
- Termed B1 inhomogeneity
- Non-uniform signal intensity across FOV



Small Flip Angle Pulse

## Inversion Pulses

- Typically, $180^{\circ}$ RF Pulse
- non $-180^{\circ}$ that still results in -Mz
- Invert $\mathrm{Mz}_{\mathbf{z}}$ to - $\mathrm{Mz}_{\mathbf{z}}$
- Ideally produces no MXY
- Hard Pulse
- Constant RF amplitude
- Typically non-selective
- Soft (Amplitude Modulated) Pulse
- Frequency/spatially/spectrally selective
- Typically followed by a crusher gradient



## Refocusing Pulses

- Typically, $180^{\circ}$ RF Pulse
- Provides optimally refocused MXY
- Largest spin echo signal
- Refocus spin dephasing due to
- imaging gradients
- local magnetic field inhomogeneity
- magnetic susceptibility variation
- chemical shift
- Typically followed by a crusher gradient



## Thanks



DANIEL B. ENNIS, PH.D. ENNIS@UCLA.EDU
310.206.0713 (OFFICE)

HTTP://ENNIS.BOL.UCLA.EDU

Peter V. Ueberroth BLDG.
SUITE 1417 , ROOM C 10945 LE CONTE AVENUE

