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Lecture #11 - Learning Objectives

• Understand the small tip angle approximation. 
• Appreciate that the small tip angle approximation works for 

intermediate flip angles! 
• Understand what truncation artifacts are and one way to 

reduce them.  
• Learn to describe k-space in words and mathematically. 
• Appreciate what different points in k-space represent. 
• Understand the connection between Fourier encoding and 

image acquisition. 
• Be able to describe the roll of phase and frequency encoding.
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Class Business
• Thursday (2/23) from 6-9pm 

– 6:00-7:30pm Groups 
• Avanto 

– Binru Chen, Junjie Chen, Yuhua Chen 

• Skyra 
– Jie, Qihui, Cass 

• Prisma  
– Nyasha, Fadil, Vahid 

– 7:30-9:00pm Groups 
• Avanto 

– Sara, Yara, April 

• Skyra 
– Timothy, Diana, Zhaohuan, Xingmin (?) 

• Prisma 
– Daisong, Jingwen, Fang-Chu, Timothy 

• BRING THE COMPLETED SCREENING FORM
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Class Business
• HW #1  

– 13.3±3.2 [15.75,6.5] 

• HW #2  
– 11.7±2.6 [15, 6]  

• Class Average  
– 25.5±5.5 [30.5, 12.5] 

• <20 points please see me…
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MP300

Ueberroth

MRI Lab Location



UCLA
Radiology

Lecture #13 - Learning Objectives

• Understand how to combine data from several receiver 
channels. 

• Appreciate how the final image is obtained from the sum over 
all sampled spatial frequency (Fourier) patterns. 

• Define how the field-of-view and the number of acquired data 
points impacts spatial resolution. 

• Describe the parameters that control the field of view. 
• Understand the applications of zero padding and windowed 

reconstructions. 
• Identify sources of Gibb’s ringing.



Multi-Channel Reconstruction



Coil 4Coil 3

Multiple Coil Reconstruction

Coil 2Coil 1

Each coil element (channel) has a unique sensitivity profile – ~Br (~r)
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k-space

Multiple Coil Reconstruction
MagnitudeRMS

FFT-1

jth-coil

I(~r) =

vuut
X

j

 
|Ij(~r)|2

�2
j

!

Noise variance 
- Depends on coil loading 
- Proximity to patient 
- Measured with “noise scan” 
- Weights each coil’s contribution

Image from jth coil

I(~r) ! Final magnitude image

�2
j !

Ij (~r) !



Image Reconstruction
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Image Reconstruction

I = T �1 {S}

S = T {I}

Spatial Information 
Encoding Scheme 
(Fourier Transform)

Measured 
Signal

Image 
Function

Data Consistency 
Constraint

Our task is to recover I from the measured signals.
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MR Signal Equation
The MRI Signal Equation is the…
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…2D Fourier Transform!
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The Fourier Transform

S(�k) =

Z +⇥

�⇥
I (�r) e�i2�⇥k·⇥rd�r

S(�k)
F ! I(�r)
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Z +1
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MRI Signal 
Equation

Eqn. 5.110

Eqn. 5.98

Eqn. 5.93
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Image Reconstruction

S(~kn) =
Z +1

�1
I (~r) e�i2⇡~kn·~rd~rGiven

How do we determine         ?I (~r)

MRI Signal 
Equation
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Image Reconstruction

Uniform k-space sampling

S(~kn) =
Z +1

�1
I (~r) e�i2⇡~kn·~rd~r

➠
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n

�kn = n��k, n = ...,�2,�1, 0, 1, 2, ...
o
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MRI Signal 
Equation
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Image Reconstruction

Uniform k-space sampling

S(~kn) =
Z +1

�1
I (~r) e�i2⇡~kn·~rd~r

➠

➠

One-dimensional Case

D =
n

�kn = n��k, n = ...,�2,�1, 0, 1, 2, ...
o

S [n] = S (n�kx) =

Z +⇥

�⇥
I (x) e�i2�n�k

x

·x
dx
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =

Z +⇥

�⇥
I (x) e�i2�n�k

x

·x
dx{ {
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =

Z +⇥

�⇥
I (x) e�i2�n�k

x

·x
dx{ {

➠We can show the following...(Page 191 in Lauterbur).

1X

n=�1
S[n]ei2⇡n�kx = 1

�k

1X

n=�1
I

�
x� n

�k

�

Fourier Series Periodic Extension of I(x)

Eqn. 6.9

Eqn. 6.10
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angle(F)

50

100

150

200

Image Reconstruction

• Fourier series 
• ∆k is the fundamental frequency 
• S[n] coefficient of the nth harmonic

• Periodic extension of I(x) 
• n is an integer 
• Period is 1/∆k=FOV

1X

n=�1
S[n]ei2⇡n�kx = 1

�k

1X

n=�1
I

�
x� n

�k

�

FOV
Periodic extensions of a object/function.

I

�
x� n

�k

�

x
2•FOV 3•FOV
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?
1X

n=�1
S[n]ei2⇡n�kx = 1

�k

1X

n=�1
I

�
x� n

�k

�
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?

If I(x) = 0 on |x| > FOVx/2

⇣
i.e. �k < 1

FOV
x

⌘
, then

1X

n=�1
S[n]ei2⇡n�kx = 1

�k

1X

n=�1
I

�
x� n

�k

�
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?

If I(x) = 0 on |x| > FOVx/2

⇣
i.e. �k < 1

FOV
x

⌘
, then

I(x) = �k

1X

n=�1
S[n]ei2⇡n�kx

, |x| <

1
�k

1X

n=�1
S[n]ei2⇡n�kx = 1

�k

1X

n=�1
I

�
x� n

�k

�

Eqn. 6.16

Eqn. 6.10



But     takes forever...1
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Finite Sampling

D = {n�k,�N/2  n  +N/2}
S(k) k 2 Dis measured at

I(x) = �k

N/2�1X

n=�N/2

S[n]ei2⇡n�kx

, |x| <

1
�k

Fourier 
Step-size

Number of 
Sample Points

This is the fundamental image reconstruction equation for MRI.

Eqn. 6.20



Spatial Resolution
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Human Vision System
• What resolution can we see at? 

– 4-5 cycles per millimeter unaided 
• How many “pixels” fill our visual field? 

– Order of 10e6 to 100e6

USAF Resolution Target
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Spatial Resolution
• Spatial resolution of an imaging system is the smallest 

separation δx of two point sources necessary for them 
to remain resolvable in the resultant image.

Î (x) = I (x) ⇤ h (x)

ObjectImage
Point 

Spread 
Function
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Convolution
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Spatial Resolution

2w

w

½w

h(x)

w

I (x)
Î (x)

⇤ =
Imaging
System

ˆ

I (x) = I (x) , if and only if h (x) = � (x)
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Spatial Resolution
• The resolution limit of an imaging system is the 

width (Wh) of its point spread function: 
– Wh is the full-width half-max of h(x)
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Spatial Resolution
• The resolution limit of an imaging system is the 

width (Wh) of its point spread function: 
– Wh is the full-width half-max of h(x) 

• Alternately, 
– Wh of h(x) is the width of an approximating box-function 

with the same height and area as h(x):

Wh = 1
h

max

Z +1

�1
h(x)dx
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Point Spread Function
• How do we determine the PSF, h(x)? 

– Set I(x) to be a δ-function, then 

– Recall, 

– Therefore,

Î (x) = h (x)

Î(x) = �k

N/2�1X

n=�N/2

S[n]ei2⇡n�kx

h(x) = �k

N/2�1X

n=�N/2

e

i2⇡n�kx

Î (x) = I (x) ⇤ h (x)

This is the PSF for Fourier sampling.

Eqn. 6.20 / Eqn. 8.5

Eqn. 8.6
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x x

xx

N=16, ∆k=1 N=64,∆k=1

N=16, ∆k=2 N=64, ∆k=2

Dirichlet Function

h(x) ⇡ �k

sin(⇡N�kx)
sin(⇡�kx)

= Dir (N,�)

Fourier Reconstruction PSF

Increasing the number of points (N) 
-or- 

Decreasing the FOV (increasing ∆k) 

Decreases the FWHM

Eqn. 8.7
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Fourier Reconstruction PSF

Wh = 1
h

max

Z 1
2�k

� 1
2�k

h(x)dx =
1

N�k

Fourier Pixel Size 
(∆xF)

Limits over a 
single period

Eqn. 8.8
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Fourier Reconstruction PSF

Wh = 1
h

max

Z 1
2�k

� 1
2�k

h(x)dx =
1

N�k

Wh =
1

N�k
=

FOV

N

Fourier Pixel Size 
(∆xF)

Limits over a 
single period
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Fourier Reconstruction PSF

Wh = 1
h

max

Z 1
2�k

� 1
2�k

h(x)dx =
1

N�k

Note, we can’t reduce Wh and N simultaneously, therefore 
– An increase in spatial resolution (decrease in Wh) 

requires an increase in N or ∆k (decrease in FOV)  
– A decrease in spatial resolution (increase in Wh) requires 

a decrease in N or ∆k (increase in FOV) 

Wh =
1

N�k
=

FOV

N

Fourier Pixel Size 
(∆xF)

Limits over a 
single period
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Finite Sampling
Wh =

1
N�k

=
FOV

N



Field of View
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Sampling Theorem
• A space signal g(x) is space-limited if:  

– g(x)=0 for |x|>FOV/2 
• A space signal g(x) is band-limited if:  

– its frequency spectrum is zero for |k|>kmax
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Sampling Theorem
• A space signal g(x) is space-limited if:  

– g(x)=0 for |x|>FOV/2 
• A space signal g(x) is band-limited if:  

– its frequency spectrum is zero for |k|>kmax 
• If g(x) is: 

– Space-limited to |x|<FOV/2 
– Band-limited  to |k|<kmax
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Sampling Theorem
• A space signal g(x) is space-limited if:  

– g(x)=0 for |x|>FOV/2 
• A space signal g(x) is band-limited if:  

– its frequency spectrum is zero for |k|>kmax 
• If g(x) is: 

– Space-limited to |x|<FOV/2 
– Band-limited  to |k|<kmax 

• Then,

�x =
1

N�k

pixel size for

FOV
x

= N�x

FOV
x

=
1

�k
x

k
max

= N�k



UCLA 
Radiology

FOV
x

F
O

V
y

Field of View

• The object repeats because... 
• The Fourier summation series repeats, but 
• We know the signal is space-limited, 
• Therefore we truncate it.
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�k
x

=
1

FOV
x

= �|G
x

|�t

�ky =
1

FOVy
= ��GyTpe

FOV
x

F
O

V
y

Field of View

FOV constraints during readout.

FOV constraints during phase encoding.

Eqn. 5.123

Eqn. 5.123
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�k
x

=
1

FOV
x

= �|G
x

|�t

�ky =
1

FOVy
= ��GyTpe

�t =
1

�|G
x

|FOV
x

�Gy =
1

�TpeFOVy

FOV
x

F
O

V
y

Field of View

Eqn. 5.124

Eqn. 5.123



Zero Padding
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Zero-Padding

• Append zeros to k-space data before FFT 
– Append symmetrically about k-space 

• Why? 
– If N=2n, then the radix-2 FFT can be used. 
– Increases the “digital” resolution 
– Reconstruction with correct aspect ratio
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Asymmetric Resolution
Low-Res Data

➠

64x64
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Asymmetric Resolution
Low-Res Data

➠

64x64
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Asymmetric Resolution
Low-Res Data Asymmetric Res

➠ ➠

64x64 32x64

Pixels are square, but they shouldn’t be.
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Asymmetric Resolution
Low-Res Data Asymmetric Res

➠ ➠

64x64 32x64

S
tre

tc
he

d
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Asymmetric Resolution
Low-Res Data Asymmetric Res Zero-Padded

➠ ➠ ➠

64x64 32x64 64x”64”

S
tre

tc
he

d



Gibb’s Ringing
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Gibb’s Ringing
• Spurious ringing around sharp edges 
• Max/Min overshoot is ~9% of the intensity 

discontinuity 
– Independent of the # of recon points 
– Frequency of ringing increases as # of recon points 

increases 
• Ringing becomes less apparent 

• Result of truncating the Fourier series model as 
a consequence of finite sampling 

• Can reduce by: 
– Acquiring more data 
– Filtering the data which reduces oscillations in the PSF
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Shepp-Logan
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Gibb’s Ringing
32          64         128         256

32 

64 

128 

256
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Gibb’s Ringing
32          64         128         256

32 

64 

128 

256
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Zero-Pad
32          64         128         256

32 

64 

128 

256



Windowed Reconstruction
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Windowed Reconstruction

Î(x) = �k

N/2�1X

n=�N/2

S (n�k) e

i2⇡n�kx

Fourier reconstruction
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Windowed Reconstruction

Î(x) = �k

N/2�1X

n=�N/2

S (n�k)w

n

e

i2⇡n�kx

k-space 
filter/window 

function

Î(x) = �k

N/2�1X

n=�N/2

S (n�k) e

i2⇡n�kx

Fourier reconstruction

Windowed Fourier 
reconstruction

Eqn. 6.21
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Windowed Reconstruction
Î (x) = I (x) ⇤ h (x)

ObjectImage
Point 

Spread 
Function
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Windowed Reconstruction
Î (x) = I (x) ⇤ h (x)

h(x) = �k

N/2�1X

n=�N/2

w

n

e

i2⇡n�kx

Point Spread Function for a windowed Fourier reconstruction.

Set This To
�-function
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Hamming Filter - 1D
w(n) ,

⇢
0.54 + 0.46 cos(2⇡ n

N ) �N/2  n  N/2� 1

0 otherwise

-N/2          0          N/2-1
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Windowed Reconstruction
FWHM PSF for a Hamming windowed Fourier reconstruction.

Wh �
1

N�k

Wh =

0

@
N/2�1X

m=�N/2

(wm/w0) �k

1

A
�1

In general wm≤w0, therefore

Hamming windowed Fourier reconstruction suppresses ringing, 
but reduces effective spatial resolution.
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Windowed Reconstruction

⇤

⇤

=

=

Hamming 
Weighted PSF

Fourier Recon PSFTrue Object

True Object

Fourier Recon

Hamming Windowed 
Fourier Recon

I (x) h (x)
Î (x)
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Hamming Filter - 2D

W (n) , w(n)⌦ w(n)
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Hamming Filter

=

➠

FFT

➠

FFT

•Dot 
Multiply
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Zero-Pad
32          64         128         256

32 

64 

128 

256
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Hamming Window & Zero-Pad
32          64         128         256

32 

64 

128 

256
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Thanks

Daniel B. Ennis, Ph.D. 
ennis@ucla.edu 
310.206.0713 (Office) 
http://ennis.bol.ucla.edu 

Peter V. Ueberroth 
Bldg. 
Suite 1417, Room C 
10945 Le Conte Avenue


