Quantitative Cardiovascular Flow Imaging

Daniel B. Ennis, Ph.D.

Magnetic Resonance Research Labs

Encoding Motion

Coherent Motion

- Coherent at a scale ≥pixel
- Spin (tissue) displacement and velocity
- Example: Phase Contrast MRI (PC-MRI)
- Incoherent Motion
 - Incoherent at a scale <pixel
 - Spin perfusion and diffusion
 - Example: Diffusion Weighted MRI (DWI)

PC-MRI Overview

Encode velocity into image phase

Phase Contrast MRI

• PC-MRI can quantify blood flow:

- Peak velocity [cm/s]
- Transvalvular forward flow [mL]
 - Regurgitant volumes [mL]
- Pulmonary-Systemic Flow Ratio
 - Q_P/Q_S
- Right-Left Lung Flow Ratio
 - Q_{RPA}/Q_{LPA}

What is the peak aortic velocity?

Is the pulmonary to systemic flow ratio (Q_p/Q_s) normal?

David Geffen UCLA School of Medicine What is the right/left lung flow split?

SIGNIFICANCE

- The evaluation of CHD patients is enhanced by accurate quantification of blood flow:
 - Peak velocity
 - Transvalvular forward flow
 - Regurgitant volumes
 - Q_p/Q_s and Right/Left lung flow
- CHD patients require frequent monitoring of cardiac functional status
 - Lifetime of radiological exams
 - Elevated cumulative exposure to ionizing radiation

SIGNIFICANCE

- Catheterization
 - Disadvantages:
 - Ionizing radiation
 - Invasive
 - Indirect quantification of flow
- Echocardiography
 - Disadvantages:
 - Limited acoustic windows
 - Vessel angulation relative to the transducer
 - Complex cardiovascular anatomy in CHD patients

SIGNIFICANCE

- PC-MRI is useful for measuring flow in CHD patients
 - Non-invasive
 - Direct quantification of velocity & flow
 - Reduced lifetime radiation exposure
- Higher accuracy and clinical confidence in PC-MRI
 - More effective management of patients with CHD

Phase Contrast Applications

- Quantify blood flow
 - Peak velocity & volume of flow,
 - Shear stress
- Measure CSF flow
- Cardiac motion estimation

Phase Contrast

Magnitude Image

Phase Image

Phase Contrast Analysis

Phase Contrast Analysis

$$\dot{V}(t) = Q(t) = \sum_{i=1}^{n_{ROI}} \vec{v}_i(t) \cdot \vec{A}_i(t)$$

Volume Flow Rate [mL/s]

Phase Contrast Analysis

How do we acquire cardiac movies?

t_{Segment}=TR•N_{ky}=8ms•6=48ms

Radiology

UCLA

Radiology

UCLA

Radiology

The Principle of Velocity Encoding

M_{xy} and Images are Complex $M_{xy}(\vec{r}, \rho, T_1, T_2) = |M_{xy}(\vec{r}, \rho, T_1, T_2)|e^{i\phi}$ Transverse Magnetization Magnitude Phase

> Fourier Sampling -and-Signal Equation

$$I(\vec{r}, \rho, T_1, T_2) = |I(\vec{r}, \rho, T_1, T_2)| e^{i\phi}$$

Complex Image

Magnitude Image

Phase Image

Phase from many things...

ϕ_{CS}	Chemical Shift [1]	Can be minimized.
ϕ_{Sus}	Susceptibility [2]	Can be corrected.
$\phi_{\delta B_0}$	Inhomogeneity [2]	Can be corrected. $\int \phi_{off}$
$\phi_{Maxwell}$	Maxwell terms [3]	Can be corrected.
ϕ_{Eddy}	Eddy currents [4]	Can be minimized.
$\phi_{velocitu}$	Applied gradients [5]	Encode velocity!

 $\phi = \phi_{off} + \phi_{velocity}$

[1] Middione MRM 2013 [2] Bernstein JMRI 1991 [3] Bernstein MRM 1998 [4] Chernobelsky JCMR 2007 [5] Pelc Mag. Res. Qtr. 1991

How do gradients encode velocity?

• Phase arises from a gradient according to:

$$\phi_{\vec{G}}(\vec{r},t) = \gamma \int \vec{G}(t) \cdot \vec{r}(t) dt$$

Stronger and longer gradients produce more phase

Spin's position history

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a_0}t^2 + \dots$$

Taylor series expansion...

To The Board...

Chapter 11

Magnetic Field Gradients

11.1 Phase From A Gradient

Gradients can be functions of time as can the position of a spin. The Larmor frequency for a spin in the presence of superposed B_0 and gradient fields in the Labtoratory frame is:

$$\omega(t) = \gamma [B_0 + \vec{G}(t) \cdot \vec{r}(t)] \tag{11.1.1}$$

Similarly, in the rotating frame we find:

$$\omega(t) = \gamma \vec{G}(t) \cdot \vec{r}(t) \tag{11.1.2}$$

The phase accorded to the bulk magnetization in the presence of a magnetic field gradient is:

$$\phi_G(\vec{r},t)|_{t_0}^{t_1} = \int_{t_0}^{t_1} \omega(t)dt = \gamma \int_{t_0}^{t_1} \vec{G}(t) \cdot \vec{r}(t)dt$$
(11.1.3)

In general, the position of a spin as a function of time can be written as a Taylor series expansion where we assume orders of motion higher than acceleration are negligible:

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a_0}t^2 + \dots$$
(11.1.4)

When Eqn. 11.1.4 is substituted into Eqn. 11.1.3 it becomes apparent that the phase imparted on the bulk magnetization by a gradient is:

$$\phi_G(\vec{r},t)|_{t_0}^{t_1} = \gamma \int_{t_0}^{t_1} \vec{G}(t) \cdot (\vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a_0}t^2)dt$$
(11.1.5)

Therein the dependence on terms of an order higher than acceleration (\vec{a}_0) have been dropped and it is apparent that there exists a series of terms of the form $\vec{G}(t)t^n$, which accords with the definition of the gradient moments (\vec{M}_n) :

$$\vec{M}_{n} = \frac{\gamma}{n!} \int_{t_{0}}^{t_{1}} \vec{G}(t) t^{n} dt$$
(11.1.6)

Consequently Eqn. 11.1.5 can be written using Eqn. 11.1.6 as follows:

$$\phi_G(\vec{r},t)|_{t_0}^{t_1} = \sum_{n=0} \vec{M}_n \frac{d^n \vec{r}}{dt^n}$$
(11.1.7)

No Compensation

Spin phase (Φ_G) accumulates from position, velocity, and acceleration.

Position Compensation

Spin phase (Φ_G) accumulates from acceleration.

How do gradients encode velocity?

Taken together

$$\phi_G(\vec{r},t) = \gamma \int \vec{G}(t) \cdot \left[\vec{r_0} + \vec{v_0}t + \frac{1}{2}\vec{a_0}t^2\right] dt$$

For 2D through-plane velocity measurements: $\phi = \phi_{off} + \gamma M_{0,z} \cdot r_{0,z} + \gamma M_{1,z} \cdot v_{0,z}$ Off-resonance Position Encoding Velocity Encoding $M_{1,z} = \int_0^t G_z(t) t dt$

Design M₁ to control

velocity sensitivity. UCLA Radiology

$$M_{0,z} = \int_0^{\cdot} G_z(t) dt$$
Design Moto be zero

Theory – Flow Encoding

Magnitude

Phase

 $\phi_{FE} = \phi_{off} + \gamma M_{1,z} \cdot v_z$

Flow Compensation

$$\phi_{FC} = \phi_{off}$$

Spin phase (Φ_{FC}) **only** accumulates from **off resonance**.

Theory – Flow Compensation

Magnitude

Phase

 $\phi_{FC} = \phi_{off}$

Theory - Echo Combining

Do we phase difference the data? Not exactly....

Adapted from Bernstein's Handbook of MRI Pulse Sequences (p. 560)

Phase images can be reconstructed on [-π,+π]
 VENC defines the velocity that produces a phase shift of ±π

Phase Contrast

$$\text{VENC} = \frac{\pi}{|\gamma \Delta M_1|}$$

- VENC typically has units of [cm/s]
- HIGH VENC
 - Low sensitivity
 - Smaller gradient waveform
 - "Unlikely" to phase wrap
- LOW VENC
 - High sensitivity
 - Larger gradient waveforms
 - "Likelv" to phase wrap

Phase Wrapping

Phase Wrapping - VENC Too Low

No Phase Wrapping – VENC Just Right

How do we build the sequence?

Spoiled GRE Sequence

Flow Compensated Echo

Flow Compensated Echo

Flow Encoded Echo

$M_0=0$ (*m*) TE $M_1 \propto 1/VENC$ (*m*) TE

PC-MRI Sequence

Need to acquire two echoes, therefore temporal resolution decreased.

Radiology

Δ

PC-MRI Sequence

• The TE & TR are extended to accommodate:

- Flow compensation
- Flow encoding
- Two TRs are needed to measure phase
 - Corrects for background off-resonance
 - Requires twice as much scan time

Eddy Currents

Phase from many things...

ϕ_{CS}	Chemical Shift [1]	Can be minimized.
ϕ_{Sus}	Susceptibility [2]	Can be corrected.
$\phi_{\delta B_0}$	Inhomogeneity [2]	Can be corrected. $\int \phi_{off}$
$\phi_{Maxwell}$	Maxwell terms [3]	Can be corrected.
ϕ_{Eddy}	Eddy currents [4]	Can be minimized.
$\phi_{velocitu}$	Applied gradients [5]	Encode velocity!

 $\phi = \phi_{off} + \phi_{velocity}$

[1] Middione MRM 2013 [2] Bernstein JMRI 1991 [3] Bernstein MRM 1998 [4] Chernobelsky JCMR 2007 [5] Pelc Mag. Res. Qtr. 1991

What velocity should I measure in a stationary phantom?

1.5T Avanto - VENC=100cm/s

+10cm/s

0cm/s

-10 cm/s

1.5T Avanto - VENC=150cm/s

What is the problem?

Aortic Velocity

Aortic Velocity

Aortic Velocity

Eddy Current Artifacts: Phase Contrast

$$\phi_1 = \phi_{v_1} + \phi_{off_1} + \phi_{e_1} \qquad \bigwedge$$
$$\phi_2 = \phi_{v_2} + \phi_{off_2} + \phi_{e_2} \qquad \bigwedge$$
$$\phi_{off_1} = \phi_{off_2} \dots \text{but } \phi_{e_1} = -\phi_{e_2}$$
$$\delta\phi = \phi_{v_1} - \phi_{v_2} + 2\phi_e$$

Eddy Current Origins: Hardware

Image Adapted From: http://www.ee.duke.edu/~jshorey

Eddy Current Origins: Diagram

The gradient coil induces currents in nearby structures while *slewing*.

Eddy Current Gradient Distortion

Slewrate Waveform

Actual Gradient Waveform

Eddy Current Origins: Mathematics

$$V_e = \oint_{\vec{A}} \frac{\partial G}{\partial t} \cdot d\vec{A}$$
 Faraday's Law
Lenz's Law

$$I_0(t) = I_f \left(1 - e^{-\frac{Rt}{L}}\right)$$
 Ohm's Law

$$I_e(t) = I_0(t_r) e^{-Rt/L}$$
 Source-Free

$$R_L \text{ Circuit}$$

$$B_e(t) \propto I_e(t)$$
 Eddy Current
Induced Field

Induced Field

Eddy Current Compensation

- Hardware
 - Shielded Gradient Coils
 - Waveform Pre-emphasis
- Pulse Sequence
 - Slewrate de-rating
 - Twice Re-focused Spin Echo
- Reconstruction
 - Measure & Subtract (PC)
 - Predict & Subtract

4D Flow

3 Directional encoding

- 4 separate velocity encodes

Y

S. Kecskemeti et al., JMRI 2012

Harloff et al, Perspectives in Medicine, 2012

- Potential parameters from 4D flow acquisition
 - Flow
 - Pressure gradients (stenoses)
 - Wall shear stress
 - Pulse wave velocity
 - Turbulent kinetic energy
 - Reflux
 - Resistance Index
 - Vorticity/helicity
 - Pulsatility

. . .

Wåhlin, et al AJNR 2013.

Van Ooij, et al Annals BioEgr 2014

Wentland, et al. Cardiovasc Diagn Ther 2014

Lantz, et al J Biomech 2013

Requirements

4-5 velocity encoding acquisitions ╋ 20+ timeframes ╉ 3D acquisition with large FOV long scan times (1 hour +) or accelerate A LOT

Parameter Selection
For any MRI protocol always ask yourself: Why is *that* value chosen for *that* parameter?

VENC Selection

VENC~1.2•v_{Max}=150cm/s

Phase Wrapping Larger M₁ Higher Sensitivity

No Phase Wrapping Intermediate M₁ Longer TE/TR (3.2/5.6ms) Shorter TE/TR (2.4/4.8ms) Intermediate Sensitivity Choose VENC to be ~1.2 the expected maximum velocity.

VENC=900cm/s

No Phase Wrapping Smaller M₁ Shorter TE/TR (2.3/4.6) **Lower Sensitivity**

Radiology

Chemical Shift Effects

Middione MRM 2013

Phase Contrast - Effect of Bandwidth

High Bandwidth

David Geffen School of Medicine Blood Wall Fat Blood+Fat Wall+Fat

Phase Contrast - Effect of TE

Dav UCLA Scho

David Geffen School of Medicine Blood Wall Fat Blood+Fat Wall+Fat

How to pick BW and TE?

Intermediate/high BW mitigates chemical shift errors.

In-phase TE mitigates chemical shift errors.

More important at 3T where off-resonance of fat is ~440Hz.

Readout Bandwidth

220Hz/Pixel=±21.1kHz

814Hz/Pixel=±78.1kHz

 $1532Hz/Pixel=\pm 147.1kHz$

~1 Pixel Chemical Shift Longer TE/TR (4.2/9.0) Higher SNR

~0.25 Pixel Chemical Shift Intermediate TE/TR (2.4/4.8) Intermediate SNR

~0.14 Pixel Chemical Shift Shorter TE/TR (2.3/4.3) Lower SNR

Intermediate/high BW mitigates chemical shift errors. More important at 3T where off-resonance of fat is ~440Hz.

Flip Angle

FA=60°

Poor Blood SNR Low SAR

Excellent Blood SNR Low SAR

Saturated Blood Signal High SAR

Choose a flip angle greater than the Ernst angle due to in-flow effects.

Spatial Resolution

2.5mm x 2.5mm in-plane

1.7mm x 1.7mm in-plane

1.0mm x 1.0mm in-plane

Shorter breath holds Larger voxels Higher SNR Intermediate breath holds Intermediate voxels Intermediate SNR Longer breath holds Smaller voxels Lower SNR

Radiology

High spatial resolution needed for volume estimates.

Temporal Resolution

80ms/frame

40ms/frame

10ms/frame

Lower Temporal ResolutionIntermediate Temp. Res.High Temporal Resolution(80ms, VPS=8)(40ms, VPS=4)(10ms, VPS=1)Shorter Breath Holds (7s)Intermediate Breath Hold (14s)Long Breath Hold (56s)

High temporal resolution needed for v_{Max} estimates.

Parallel Imaging

No Acceleration

~2x Acceleration

Lower S/T Resolution Long Breath Holds Higher SNR Intermediate S/T Resolution Intermediate Breath Holds Intermediate SNR

~8x Acceleration

High S/T Resolution Short Breath Holds Low SNR & Artifacts

2x acceleration widely used for 2D PC-MRI.

PC-MRI Summary

- PC-MRI useful for estimating:
 - Peak velocity
 - Volumes of flow
 - Myocardial motion
- The protocol *must* be optimized for the application.
- Routine correction of eddy currents is important.
- Without attention to detail quantitative inaccuracies can foment clinical disinterest.

Diffusion Weighted Imaging

Random velocities + big bipolar = random phase = dephasing

= signal loss

Signal loss is proportional to diffusion (directional measure like PC-MRI) so in the simplest terms: Play a big M1 gradient, signal loss = diffusion

DWI

ADC

Figure 15. Acute stroke of the posterior circulation in a 77-year-old man. (a) Diffusionweighted MR image ($b = 1000 \text{ sec/mm}^2$) shows bilateral areas of increased signal intensity (arrows) in the thalami and occipital lobes. (b) ADC map shows decreased ADC values in the same areas (arrows). These findings are indicative of acute ischemia.

Srinivasan A, et al. State-of-the-art imaging of acute stroke. Radiographics 2006;26 Suppl 1:S75-95.

Thanks

Thanks

Daniel B. Ennis, Ph.D. ennis@ucla.edu 310.206.0713 (Office) http://ennis.bol.ucla.edu

Peter V. Ueberroth Bldg. Suite 1417, Room C 10945 Le Conte Avenue

David Geffen School of Medicine UCLA Radiology