# Bulk Magnetization and Nuclear Precession 

Lecture \#2 - January 10th, 2018

## Class Business

- Matlab available via SEASNET
- http://www.seas.ucla.edu/acctapp
- Website up and running
- http://mrrl.ucla.edu/education/m219/
- Slides, video, code, reading, PDFs, etc.
- Code available on website
- Review code as needed
- Meet with TAs for Matlab help.


## Lecture 1 - Summary

MRI uses a superconducting electromagnet!


Copper RF Shielding Steel Magnetic Shielding

$$
B=\mu I N L^{-1}
$$

$1.5 \mathrm{~T}=4 \pi \times 10^{-7} \cdot 508 \mathrm{~A} \cdot 235 \cdot 1 \mathrm{~m}^{-1}$

$$
\vec{B}_{0}=B_{0} \vec{k}
$$

Homogeneity - <4ppm peak-peak variation (6 6 T @ 1.5T!)

## Questions?

# Bulk Magnetization and Nuclear Precession 

Lecture \#2 - January 10th, 2018

## Lecture \#2 Learning Objectives

- Write down three equations describing the $B_{0}$ principles.
- Explain the importance of Zeeman splitting.
- Describe the importance of spin, charge, and mass to NMR.
- Write down the equation of motion for an ensemble of spins.
- Differentiate between free and forced precession in the laboratory and rotating frames.
- Solve for the bulk magnetization dynamics during free precession in the laboratory frame without relaxation.

Main Field ( $\mathrm{B}_{0}$ ) - Principles

## Dipoles to Images



## Main Field ( $\mathrm{B}_{0}$ ) - Principles

- $\mathrm{B}_{0}$ is a strong magnetic field

$$
\vec{B}_{0}=B_{0} \vec{k}
$$

Eqn. 3.5

- Polarizer
- >1.5T
- Z-oriented
- Bo generates bulk magnetization ( $\vec{M}$ )
- More Bo, more


Eqn. 3.26

- Bo forces $\vec{M}$ to precess $\omega=\gamma B$


## Bo Field



## Main Field ( $B_{0}$ ) - Principles

- $\mathrm{B}_{0}$ is a strong magnetic field
- Polarizer
- >1.5T
- Z-oriented
- Bo generates bulk magnetization $(\vec{M})$
- More Bo, more

$$
\vec{M}=\sum_{n=1}^{N_{\text {total }}} \vec{\mu}_{n}
$$

Eqn. 3.26

- Bo forces $\vec{M}$ to precess

- Larmor Equation


## Hydrogen



Hydrogen nuclei behave like magnetic dipoles.

## Magnetic Dipole Moments

Spin + Charge $m$ Magnetic Moment $=\vec{\mu}\left[\mathrm{J} \cdot \mathrm{T}^{-1}\right.$ or $\left.\mathrm{kg}^{\circ} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}\right]$
"a measure of the strength of the system's net magnetic source" --http://en.wikipedia.org/wiki/Magnetic_moment


$\vec{\mu}$


## Bulk Magnetization


$N_{\text {total }}=0.24 \times 10^{23}$ spins in a $2 \times 2 \times 10 \mathrm{~mm}$ voxel
But not all spins contribute to our measured signal...

## Equilibrium Bulk Magnetization

$$
\begin{aligned}
& \vec{M}=\sum_{n=1}^{N_{\text {total }}} \vec{\mu}_{n} \\
& \vec{M}=M_{x} \hat{i}+M_{y} \hat{j}+M_{z} \hat{k} \\
& \vec{M}_{z}^{0}=|\vec{M}|=\frac{\gamma^{2} \hbar^{2} B_{0} N_{s}}{4 K T_{s}} \\
& \vec{M}_{x}^{0}=\vec{M}_{y}^{0}=0
\end{aligned}
$$

## Zeeman Splitting



## Bo Field OFF



$$
\vec{M}=\sum_{n=1}^{N_{t o t a l}} \vec{\mu}_{n}=0
$$



Spins point in all directions.

## Bo Field ON



David Geffen
School of Medicine


Bo polarizes the spins and generates bulk magnetization.

## Bo Field ON



Only a very small number are

UCLA

## Zeeman Splitting



$$
\begin{gathered}
N_{\uparrow}=\text { Spin-Up State, Low Energy } \\
N_{\downarrow}=\text { Spin-Down State, High Energy }
\end{gathered}
$$

David Geffen

## Zeeman Splitting

$$
\begin{gathered}
\frac{N_{\uparrow}-N_{\downarrow}}{N_{\text {total }}} \approx \frac{千 h B_{0}}{2 K T} \\
\nleftarrow=42.58 \times 10^{6} \mathrm{~Hz} / \mathrm{T} \\
h=6.6 \times 10^{-} 34 \mathrm{~J} \cdot \mathrm{~s} \text { [Planck' Constant] } \\
T=300 \mathrm{~K}(\text { room temperature }) \\
K=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \text { [Boltzmann Constant] } \\
B_{0}=1.5 \mathrm{~T} \\
\frac{N_{\uparrow}-N_{\downarrow}}{N_{\text {total }}} \approx \frac{42.58 \times 10^{6} \cdot 6.6 \times 10^{-34} \cdot 1.5}{2 \cdot 1.38 \times 10^{-23} \cdot 300} \approx 4.5 \times 10^{-6}
\end{gathered}
$$



## Quantum Spin Thought Experiment



THE SPIN,
A QUANTUM MAGNET


To where are classical magnets deflect, if sent in with a range of orientations?

## Quantum Spin Thought Experiment



To where are quantum spins deflect, if sent in with a range of orientations?

## How was spin first observed?

## THE SPIN, <br> A QUANTUM MAGNET

All the animations and explanations on www.toutestquantique.fr

Otto Stern and Walther Gerlach performed the Stern-Gerlach experiment in Frankfurt, Germany in 1922.

## The Standard Model



## Nuclear Spin - Quarks

Neutron


Charge=0
Spin=1/2

Proton


Charge=+e
Spin=1/2

# Spin Crisis! 

## Nuclear Spin Quantum Number $(I)$

- A nucleus is NMR active only if $\mathrm{I} \neq 0$
- Zero Spin - Even mass number and even charge number
- ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$
- Half-integral Spin - Odd mass number
- Spin-1/2 - ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}$
- Spin-3/2-23Na
- Spin-5/2 - 170
- Integral Spin - Even mass number and odd charge number
- 2 H and ${ }^{14} \mathrm{~N}$



## NMR Active Nuclei

| Isotope | Spin [I] | Natural Abundance | Gyromagnetic <br> Ratio [MHz/T] | Relative Sensitivity | Absolute Sensitivity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{1} \mathrm{H}$ | 1/2 | 0.9980 | 42.57 | 1 | 9.98E-01 |
| ${ }^{2} \mathrm{H}$ | 1 | 0.0160 | 6.54 | 0.015 | 2.40E-04 |
| ${ }^{12} \mathrm{C}$ | 0 | 8 Filename: PAM_Lec02_Relative_Sensitivity.m$\frac{8}{8}$ Calculate the relative and absolute sensitivity. |  |  | --- |
| ${ }^{13} \mathrm{C}$ | 1/2 | \% Calculate the relative and absolute sensitivity.\%\% DBE@UCLA 2016.01 .04 |  |  | 1.76E-04 |
| ${ }^{14} \mathrm{~N}$ | 1 | $\begin{aligned} & \% \% \text { Define some constants } \\ & \text { GMR_1H=42.57e6; \% Gyromagnetic ratio for } 1 \mathrm{H}[\mathrm{~Hz} / \mathrm{T}] \\ & \text { GMR_2H=6.54e6; \% Gyromagnetic ratio for } 2 \mathrm{H}[\mathrm{Hz/T}] \end{aligned}$ |  |  | 9.96E-04 |
| ${ }^{15} \mathrm{~N}$ | 1/2 | $\begin{array}{ll}\text { SPN_1H=0.5; } & \% \text { Spin for } 1 H \\ \text { SPN } 2 H=1.0 ; & \% \text { Spin for } 2 H\end{array}$ |  |  | 4.00E-06 |
| 160 | 0 |  |  |  | --- |
| 170 | 5/2 |  |  |  | 1.16E-05 |
| 19F | 1/2 |  |  |  | 8.30E-01 |
| ${ }^{23} \mathrm{Na}$ | 3/2 |  |  |  | 9.30E-02 |
| ${ }^{31} \mathrm{P}$ | 1/2 | $\%$ Calculate the absolute sensitivity AS2H=(RS_2H*NA_2H) |  |  | 6.60E-02 |

The relative sensitivity is at constant magnetic field and equal number of nuclei.

- Using a factor of $\gamma^{\frac{11}{4}} I(I+1) ;{ }^{1} \mathrm{H}$ is the reference standard.

The absolute sensitivity is the relative sensitivity multiplied by natural abundance.

## NMR Active Nuclei

| Isotope | Spin [I] | Natural <br> Abundance | Gyromagnetic <br> Ratio [MHz/T] | Relative <br> Sensitivity | Absolute <br> Sensitivity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{1} \mathrm{H}$ | $1 / 2$ | 0.9980 | 42.57 | 1 | $9.98 \mathrm{E}-01$ |
| ${ }^{2} \mathrm{H}$ | 1 | 0.0160 | 6.54 | 0.015 | $2.40 \mathrm{E}-04$ |
| ${ }^{12} \mathrm{C}$ | 0 | 0.9890 | --- | --- | --- |
| ${ }^{13} \mathrm{C}$ | $1 / 2$ | 0.0110 | 10.71 | 0.016 | $1.76 \mathrm{E}-04$ |
| ${ }^{14} \mathrm{~N}$ | 1 | 0.9960 | 3.08 | 0.001 | $9.96 \mathrm{E}-04$ |
| ${ }^{15} \mathrm{~N}$ | $1 / 2$ | 0.0040 | -4.32 | 0.001 | $4.00 \mathrm{E}-06$ |
| ${ }^{16} \mathrm{O}$ | 0 | 0.9890 | --- | --- | --- |
| ${ }^{17} \mathrm{O}$ | $5 / 2$ | 0.0004 | -5.77 | 0.029 | $1.16 \mathrm{E}-05$ |
| ${ }^{19} \mathrm{~F}$ | $1 / 2$ | 1.0000 | 40.05 | 0.83 | $8.30 \mathrm{E}-01$ |
| ${ }^{23} \mathrm{Na}$ | $3 / 2$ | 1.0000 | 11.26 | 0.093 | $9.30 \mathrm{E}-02$ |
| ${ }^{31} \mathrm{P}$ | $1 / 2$ | 1.0000 | 17.24 | 0.066 | $6.60 \mathrm{E}-02$ |

The relative sensitivity is at constant magnetic field and equal number of nuclei.

- Using a factor of $\gamma^{\frac{11}{4}} I(I+1) ;{ }^{1} \mathrm{H}$ is the reference standard.

The absolute sensitivity is the relative sensitivity multiplied by natural abundance.

## Gyromagnetic Ratio

- Gyromagnetic Ratio [MHz/T]
- Physical constant
- Unique for each NMR active nuclei
- Ratio of the magnetic moment to the angular momentum

$$
\vec{\mu}=\gamma \vec{S}
$$

- Measured empirically
- Governs the frequency of precession
- Gamma vs. Gamma-bar



## What are the implications of spin?

## Nuclear Precession

## Spin Angular Momentum

Spin + Mass $m=$ Spin Angular Momentum $=\vec{S}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2} \mathrm{~s}^{-1}\right]$


Hydrogen nuclei have spin angular momentum.

## Spin Angular Momentum

Spin + Mass $m=$ Spin Angular Momentum $=\vec{S}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2} \mathrm{~s}^{-1}\right]$


Hydrogen nuclei have spin angular momentum.

## Magnetic Dipole Moments

Spin + Charge $m$ Magnetic Moment $=\vec{\mu}\left[\mathrm{J} \cdot \mathrm{T}^{-1}\right.$ or $\left.\mathrm{kg}^{\circ} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}\right]$
"a measure of the strength of the system's net magnetic source" --http://en.wikipedia.org/wiki/Magnetic_moment


$\vec{\mu}$


## B-Field


"vector field which can exert a magnetic force on moving electric charges and on magnetic dipoles"
--http://en.wikipedia.org/wiki/Magnetic_field

## Magnetic Dipole in a B-Field



Bo exerts a torque on the ${ }^{1} \mathrm{H}$ magnetic dipole moment.

## Main Field ( $\mathrm{B}_{0}$ ) - Principles

- $\mathrm{B}_{0}$ is a strong magnetic field
- Polarizer
- >1.5T
- Z-oriented
- Bo generates bulk magnetization ( $\vec{M}$ )
- More Bo, more


Eqn. 3.26

- Bo forces $\vec{M}$ to precess $\quad \omega=\gamma B$

Eqn. 3.18

- Larmor Equation


## Spin vs. Precession

- Spin
- Intrinsic form of angular momentum
- Quantum mechanical phenomena
- No classical physics counterpart
- Except by hand-waving analogy...
- Precession
- Spin+Mass+Charge give rise to precession


## Spin vs. Precession

${ }^{1} \mathrm{H}$ has intrinsic $\operatorname{Spin}(R)$<br>$\omega_{0}=\gamma B_{0} \quad$ Free Precession ( $P$ )<br>Combined with...<br>$\omega_{1}=\gamma B_{1} \quad$ Nutation $(\mathbb{N})$<br>- Forced Precession



## So where does the Larmor equation come from?

## Magnetic Moments \& Angular Momentum

$$
\vec{\tau}=\vec{\mu} \times \vec{B} \quad \vec{S}=\vec{r} \times \vec{p}
$$



Spin + Charge

UCLA
Radiology

## Equation of Motion for the Bulk Magnetization

## $\frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B}$

Equation of motion for an ensemble of spins (isochromats)
[Classical Description]

## What is a general solution?

The equation of motion describes the bulk magnetization "behavior" in the presence of a B-field.

To the board...

## Free \& Forced Precession

## Free vs. Forced Precession

Free Precession - Precession of the bulk magnetization vector about the static magnetic field after a pulse excitation. Free precession of the transverse magnetization at the Larmor frequency is responsible for the detectable NMR signal.

- Liang \& Lauterbur p. 375

Forced Precession - Precession of the bulk magnetization about the excitation RF field.

- Liang \& Lauterbur p. 374


## Four Special Cases...

- Laboratory Frame
- Coordinate system anchored to scanner
- 1) Free Precession in the lab frame
- 2) Forced Precession in the lab frame
- Rotating Frame
- Coordinate system anchored to spin system
- 3) Free Precession in the rotating frame
- 4) Forced Precession in the rotating frame
- ...all without relaxation. We assume:
- a) Relaxation time constants are "really" long

OR

- b) Time scale of event is << relaxation time constant


## Free Precession In The Laboratory Frame Without Relaxation

Rotations \& Euler's Formula

## Vectors

- A vector ( $\vec{v}$ ) describes a physical quantity (e.g. bulk magnetization or velocity) at a point in space and time and has a magnitude (positive real number), a direction, and physical units.
- To define a vector we need a basis:

$$
\hat{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \hat{j}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \hat{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- A 3D vector has components:

$$
\vec{M}=M_{x} \hat{i}+M_{y} \hat{j}+M_{z} \hat{k}
$$

## 2D Vectors - Euler's Formula

- Euler's formula provides a compact representation of a 2D vector using a complex exponential:

$$
e^{i \phi}=\cos \phi+i \sin \phi
$$

$$
\begin{aligned}
\vec{M}_{x y} & =M_{x} \hat{i}+M_{y} \hat{j} \\
& =M_{x}+i M_{y} \\
& =\left|\vec{M}_{x y}\right| \cos \phi \hat{i}+\left|\vec{M}_{x y}\right| \sin \phi \hat{j} \\
& =\left|\vec{M}_{x y}\right| \cos \phi+i\left|\vec{M}_{x y}\right| \sin \phi \\
& =\left|\vec{M}_{x y}\right| e^{i \phi}
\end{aligned}
$$



Vector components
Complex components
Trigonometric components
Complex trigonometric components Euler's notation

Euler's formula is mathematically convenient.

## Rotations

- Rotations (R) are vector valued orthogonal transformations that preserve the magnitude of vectors and the angles between them.
- The simplest rotation matrix is the identity matrix:

$$
\mathrm{R}=\mathrm{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \text { therefore } \vec{v}=\mathrm{I} \vec{v}
$$

- More simply, R transforms (rotates) one vector to another:


## Rotations



## Free Precession In The Laboratory Frame Without Relaxation



To the board...

## Free Precession In The Laboratory Frame Without Relaxation




To The Board...

## Matlab Example - Free Precession

```
% This function returns the 4x4 homogenous coordinate expression for
% precession for a particular gyromagnetic ratio (gamma), external
% field (B0), and time step (dt).
SYNTAX: dB0=PAM_B0_op(gamma,B0,dt)
INPUTS: gamma - Gyromagnetic ratio [Hz/T]
    B0 - Main magnetic field [T]
    dt - Time step or vector [s]
OUTPUTS: dB0 - Precessional operator [4x4]
DBE@UCLA 01.21.2015
function dB0=PAM_B0_op(gamma,B0,dt)
if nargin==0
    gamma=42.57e6; % Gyromagnetic ratio for 1H
    B0=1.5; % Typical B0 field strength
    dt=ones(1,100)*1e-6; % 100 1\mus time steps
end
dB0=zeros(4,4,numel(dt)); % Initialize the array
for n=1:numel(dt)
    dw=2*pi*gamma*B0*dt(n); % Incremental precession (rotation angle)
    % Precessional Operator (left handed)
    dB0(:,:,n)=[ cos(dw) sin(dw) 0 0;
        -sin(dw) cos(dw) 0 0;
\begin{tabular}{lll}
0 & 0 & 1 \\
0 & 0
\end{tabular}
end
return
```


## Matlab Example - Free Precession

```
%% Filename: PAM_Lec02_B0_Free_Precession.m
%
% Demonstrate the precession of the bulk magnetization vector.
%
% DBE@UCLA 2017.12.20
```

\%\% Define some constants
gamma=42.57e6; \% Gyromagnetic ratio for 1 H [MHz/T]
$\mathrm{B} 0=1.5$; $\quad$ B0 magnetic field strength [T]
$\mathrm{dt}=0.1 \mathrm{e}-9$;
\% Time step [s]
\% Number of time points to simulate
\% Time vector [s]
$t=0: d t:((n t-1) * d t)$;
M0=[sqrt(2)/2 0 sqrt(2)/2 1]';
$M=z e r o s(4, n t) ;$
$\mathrm{M}(:, 1)=\mathrm{MO}$; $\quad$ \% Define the first time poir
\% Initialize the magnetizati
\%\% Simulate precession of the bulk magnetization vector
$\mathrm{dB} 0=$ PAM_B0_op $($ gamma, B0,dt); \% Calculate the homogenous
for $n=2: n t$
$M(:, n)=d B 0 * M(:, n-1) ;$
end
$\%$ Plot the results
figure; hold on;
$\mathrm{p}(1)=\mathrm{plot}(\mathrm{t}, \mathrm{m}(1,:))$;
\% Plot the Mx component
$\mathrm{p}(2)=\mathrm{plot}(\mathrm{t}, \mathrm{M}(2,:))$;
\% Plot the My component
$\mathrm{p}(3)=\operatorname{plot}(\mathrm{t}, \mathrm{M}(3,:))$;
\% Plot the Mz component
\% Increase plot thickness


## Lecture 2 - Summary

$$
\begin{aligned}
& \vec{\tau}=\vec{\mu} \times \vec{B} \quad \vec{S}=\vec{r} \times \vec{p} \\
& \vec{\tau}=\vec{\mu} \times \vec{m}=\vec{r} \times \vec{p} \quad \vec{l} \\
& \mathbb{N t o t a l}_{t} \\
& M_{x}(t)=M_{x}^{0} \cos \left(\gamma B_{0} t\right)+M_{y}^{0} \sin \left(\gamma B_{0} t\right) \\
& M_{y}(t)=-M_{x}^{0} \sin \left(\gamma B_{0} t\right)+M_{y}^{0} \cos \left(\gamma B_{0} t\right) \quad d \vec{M} \\
& M_{z}(t)=M_{z}^{0} \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma\left(\overrightarrow{B_{0}}\right)
\end{aligned}
$$

## Next time...

## MRI Systems II - B1

$B_{0}$
$B_{1}$

## Thanks



DANIEL B. ENNIS, PH.D.
ENNIS@UCLA.EDU
310.206 .0713 (OFFICE)

HTTP://MRI.RADSCI.UCLA.EDU

PETER V. UEBERROTH BLDG.
SUITE $1417, R O O M C$
10945 LE CONTE AVENUE

