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Outline

• MRI Signal Equation 


• MR Image Reconstruction 

- Fourier transform 

- Sampling considerations

- Zero padding (interpolation)

- Windowed recon to reduce Gibb’s ringing 

- Multi-channel (coil) reconstruction 
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MRI Signal Equation
The MRI Signal Equation is the…
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The Fourier Transform
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Image Reconstruction
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Image Reconstruction

Uniform k-space sampling
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Image Reconstruction

Uniform k-space sampling

S(~kn) =
Z +1
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I (~r) e�i2⇡~kn·~rd~r
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One-dimensional Case
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =

Z +⇥
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Image Reconstruction

This is what we measure!
➠ ➠

This is what we want!

S [n] = S (n�kx) =

Z +⇥

�⇥
I (x) e�i2�n�kx·xdx{ {

➠We can show the following...(Page 191 in Lauterbur).
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Fourier Series Periodic Extension of I(x)

Eqn. 6.9

Eqn. 6.10
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Image Reconstruction

• Fourier series

• ∆k is the fundamental frequency

• S[n] coefficient of the nth harmonic

• Periodic extension of I(x)

• n is an integer

• Period is 1/∆k=FOV
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Sampling Considerations



Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at



Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?

If I(x) = 0 on |x| > FOVx/2
⇣
i.e. �k <

1
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Infinite Sampling

D = {n�k,�1 < n < +1}
S(k) k 2 Dis measured at

Can I(x) be recovered from its periodic extension?

If I(x) = 0 on |x| > FOVx/2
⇣
i.e. �k <
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Eqn. 6.16

Eqn. 6.10



But     takes forever...1



Finite Sampling

D = {n�k,�N/2  n  +N/2}
S(k) k 2 Dis measured at

I(x) = �k

N/2�1X

n=�N/2

S[n]ei2⇡n�kx, |x| < 1
�k

Fourier

Step-size

Number of

Sample Points

This is the fundamental image reconstruction equation for MRI.

Eqn. 6.20



Sampling Considerations

kx

ky

Review Lecture 9/10 Spatial Localization II
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Zero Padding



Zero-Padding

• Append zeros to k-space data before FFT

- Append symmetrically about k-space


• Why?

- If N=2n, then the radix-2 FFT can be used

- Increases the “digital” resolution; interpolates 

pixels in image space

- Reconstruction with correct aspect ratio

- Starting point for iterative reconstructions; or a 

reference for comparisons



Asymmetric Resolution
Low-Res Data

➠

64x64



Asymmetric Resolution
Low-Res Data

➠

64x64



Asymmetric Resolution
Low-Res Data Asymmetric Res

➠ ➠

64x64 32x64

Pixels are square, but they shouldn’t be.



Asymmetric Resolution
Low-Res Data Asymmetric Res
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Asymmetric Resolution
Low-Res Data Asymmetric Res Zero-Padded

➠ ➠ ➠
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Windowed Reconstruction to 
Reduce Gibb’s Ringing 



Gibb’s Ringing
• Spurious ringing around sharp edges


• Max/Min overshoot is ~9% of the intensity discontinuity

- Independent of the # of recon points

- Frequency of ringing increases as # of recon points 

increases


• Ringing becomes less apparent


• Result of truncating the Fourier series model as a 
consequence of finite sampling


• Can reduce by:

- Acquiring more data

- Filtering the data to reduce oscillations in the PSF



Shepp-Logan Phantom



Gibb’s Ringing
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Gibb’s Ringing
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Zero-Pad
32          64         128         256
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Windowed Reconstruction
Î(x) = �k

N/2�1X

n=�N/2

S (n�k) ei2⇡n�kx

Fourier reconstruction



Windowed Reconstruction

Î(x) = �k

N/2�1X

n=�N/2

S (n�k)wnei2⇡n�kx

k-space

filter/window


function

Î(x) = �k
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Fourier reconstruction

Windowed Fourier 
reconstruction

Eqn. 6.21



Windowed Reconstruction
Î (x) = I (x) ⇤ h (x)

ObjectImage
Point


Spread

Function



Windowed Reconstruction
Î (x) = I (x) ⇤ h (x)

h(x) = �k

N/2�1X

n=�N/2

wnei2⇡n�kx

Point Spread Function for a windowed Fourier reconstruction.

Set This To
�-function



Hamming Filter - 1D
w(n) ,

⇢
0.54 + 0.46 cos(2⇡ n

N ) �N/2  n  N/2� 1
0 otherwise

-N/2          0          N/2-1



Windowed Reconstruction
FWHM PSF for a Hamming windowed Fourier reconstruction.

Wh �
1

N�k

Wh =

0

@
N/2�1X

m=�N/2

(wm/w0) �k

1

A
�1

In general wm≤w0, therefore

Hamming windowed Fourier reconstruction suppresses ringing, 
but reduces effective spatial resolution.



Windowed Reconstruction

⇤

⇤

=

=

Hamming

Weighted PSF

Fourier Recon PSFTrue Object

True Object

Fourier Recon

Hamming Windowed

Fourier Recon

I (x) h (x) Î (x)



Windowed Reconstruction

• Fourier transform properties 

- Convolution in the image domain  

is equivalent to  
multiplication in the frequency domain  
(and vice versa) 



Hamming Filter - 2D
W (n) , w(n)⌦ w(n)



Hamming Filter

=

➠

FFT

➠

FFT

•Dot

Multiply



Zero-Pad
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Hamming Window & Zero-Pad
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Multi-Channel (Coil) 
Reconstruction



8-Channel Head Coil

Each coil element (channel) has a unique sensitivity profile – 

Coil-1

Coil-2

Coil-3 Coil-4 Coil-5 Coil-6

Coil-7

Coil-8

~Br (~r)



Coil 4

Coil 3

4-Channel Cardiac Coil

Coil 2

Coil 1

Each coil element (channel) has a unique sensitivity profile – ~Br (~r)



Coil 4Coil 2

4-Channel Cardiac Coil
Coil 3Coil 1

Each coil element (channel) has a unique sensitivity profile – ~Br (~r)



k-space

Multi-Coil Reconstruction
MagnitudeRMS

FFT-1

jth-coil

I(~r) =

vuut
X

j

 
|Ij(~r)|2

�2
j

!

Noise variance

- Depends on coil loading

- Proximity to patient

- Measured with “noise scan”

- Weights each coil’s contribution

Image from jth coil

I(~r) ! Final magnitude image

�2
j !

Ij (~r) !



Thanks!

• Next: fast imaging, advanced recon
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