Image Reconstruction

Parallel Imaging / Coil Compression / k-t Sampling

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2018.05.24

Class Business

- Final project abstract / presentation
- Office hours
 - Instructors: Fri 10-12 noon
 - email beforehand would be helpful

Today's Topics

- Parallel Imaging
 - SMASH review
 - Auto-SMASH
 - GRAPPA
- Coil compression
- k-t BLAST / k-t SENSE

SMASH Review

 The linear combination of coil sensitivities looks like sinusoids:

$$e^{-i2\pi(m\Delta k_y)y} = \sum_{j=0}^{L-1} a_{j,m} C_j(y)$$

• Once we have $a_{j,m}$,

$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y}e^{-2\pi (m\Delta k_y)y}dy$$

$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y}\sum_{j=0}^{L-1} a_{j,m}C_j(y)dy$$

SMASH Review

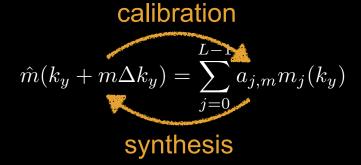
$$\hat{m}(k_y + m\Delta k_y) = \int_y m(y)e^{-i2\pi k_y y} \sum_{j=0}^{L-1} a_{j,m} C_j(y) dy$$

$$\hat{m}(k_y + m\Delta k_y) = \sum_{j=0}^{L-1} a_{j,m} \int_y C_j(y) m(y) e^{-i2\pi k_y y} dy$$

$$\hat{m}(k_y + m\Delta k_y) = \sum_{j=0}^{L-1} a_{j,m} m_j(k_y)$$

Auto-SMASH

Estimate a_{j,m} directly

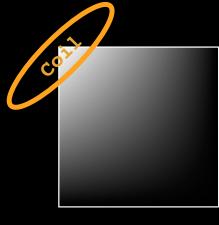


• Solve for $a_{j,m}$ from calibration data & synthesize the missing data with $a_{j,m}$

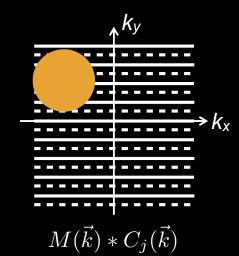
Parallel Imaging (GRAPPA)

GRAPPA

- Coil sensitivities are
 - local in image space
 - extended in k-space

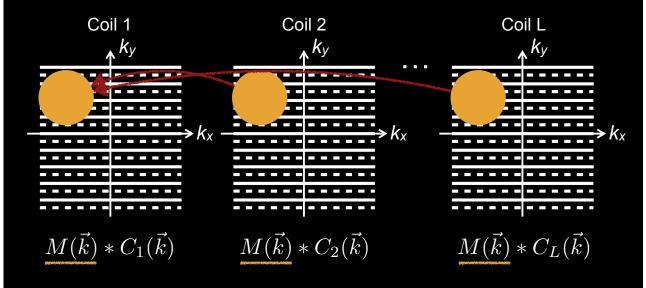


$$m(\vec{x})C_j(\vec{x})$$



GRAPPA

Missing information is implicitly contained by adjacent data



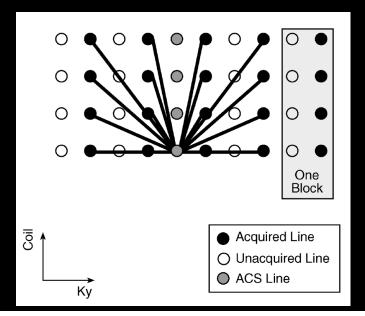
GRAPPA Reconstruction

 How do we find missing data from these samples?

$$\hat{m}_k(k_x,k_y) = \sum_{i,j,k} \underline{a_{i,j,k}} \cdot \underline{m_k(k_x+i\Delta k_x,k_y+j\Delta k_y)}$$
 missing data for each coil
$$\text{weights} \quad \text{neighborhood data}$$
 for each coil

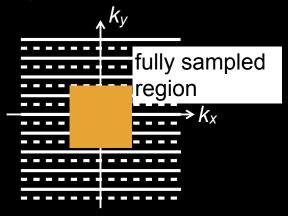
Auto-Calibration

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$



Auto-Calibration

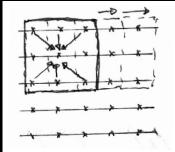
- Assume there is a fully sampled region
- We have samples of what the GRAPPA synthesis equations should produce



Invert this to solve for GRAPPA weights

Auto-Calibration

- Calibration area has to be larger than the GRAPPA kernel
- Each shift of kernel gives another equation



Here, 3x3 kernel, 5x5 calibration area gives 9 equations

Auto-Calibration

$$\hat{m}_k(k_x, k_y) = \sum_{i,j,k} a_{i,j,k} \cdot m_k(k_x + i\Delta k_x, k_y + j\Delta k_y)$$

Write as a matrix equation

GRAPPA Coefficients

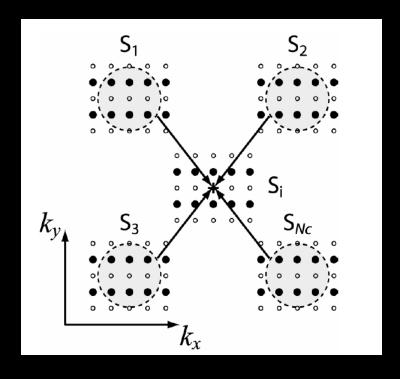
$$M_{k,c} = M_A \cdot a_k$$
 Calibration Neighborhood

Data Data

GRAPPA weights are:

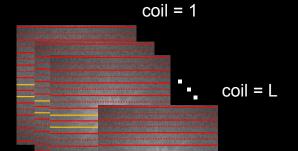
$$a_k = (M_A^* M_A + \lambda I)^{-1} M_A^* M_{k,c}$$

GRAPPA - Synthesis



Auto-Calibration Parallel Imaging

ACS



ACS (Auto-Calibration Signal) lines

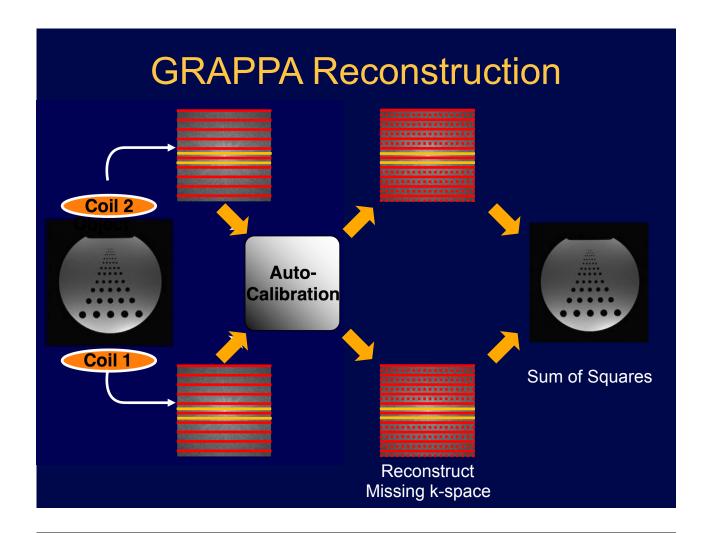
$$\sum_{l=1}^{L} S_{l}^{ACS}(k_{y} - m\Delta k_{y}) = \sum_{l=1}^{L} n(l, m) S_{l}(k_{y})$$

GRAPPA formula to reconstruct signal in one channel

$$S_{j}(k_{y}-m\Delta k_{y})=\sum_{l=1}^{L}\sum_{b=0}^{N_{b}-1}n(j, b, l, m)S_{l}(k_{y}-bA\Delta k_{y})$$

A: Acceleration factor n(j,b,l,m): GRAPPA weights

Griswold et al. MRM, 47(6):1202-1210 (2002)

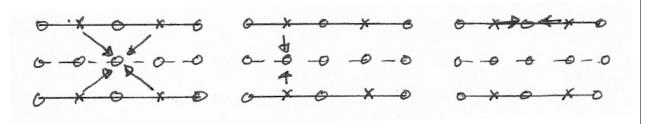


GRAPPA

- Compute GRAPPA weights from calibration region
- Compute missing k-space data using the GRAPPA weights
- Reconstruct individual coil images
- Combine coil images

Considerations of GRAPPA

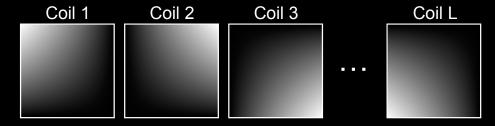
- Calibration region size
- GRAPPA kernel size
- Sample geometry dependence



Coil Compression

Coil Compression

Array coil sensitivities



- Each coil sees a local region
- Not clear how much acceleration is possible
 - g-factor hits a wall at 3-4 in 1D, why?
 - What is the fundamental dimensionality?

Eigen Coils

Make a matrix of vectorized sensitivity maps

$$\begin{pmatrix} & \cdot & & \cdot & & \cdot & \\ & \cdot & & \cdot & & \cdot & \\ & \cdot & & \cdot & & \cdot & \\ & C_1(\vec{x}) & C_2(\vec{x}) & C_3(\vec{x}) & \\ & \cdot & & \cdot & & \cdot & \\ & \cdot & & \cdot & & \cdot & \\ & \cdot & & \cdot & & \cdot & \\ & \cdot & & \cdot & & \cdot & \end{pmatrix}$$

 The matrix C*C shows the correlation between channels

Eigen Coils

Compute the eigen decomposition of C*C

$$C^*C = BDB^*$$

- B is a unitarty matrix of eigenvectors

$$D = \left(\begin{array}{ccc} \lambda_1 & & 0 \\ & \lambda_2 & \\ & & \cdot \\ 0 & & \lambda_L \end{array}\right)$$

Diagonal matrix of eigenvalues

Eigen Coils

- B*C*CB = D
- C' = CB
 - λ_i tells you how much energy is in each eigen coil channel
 - These eigen coils drop off rapidly, telling how many independent channel you have

MATLAB Demo

```
load brain_mcoil.mat

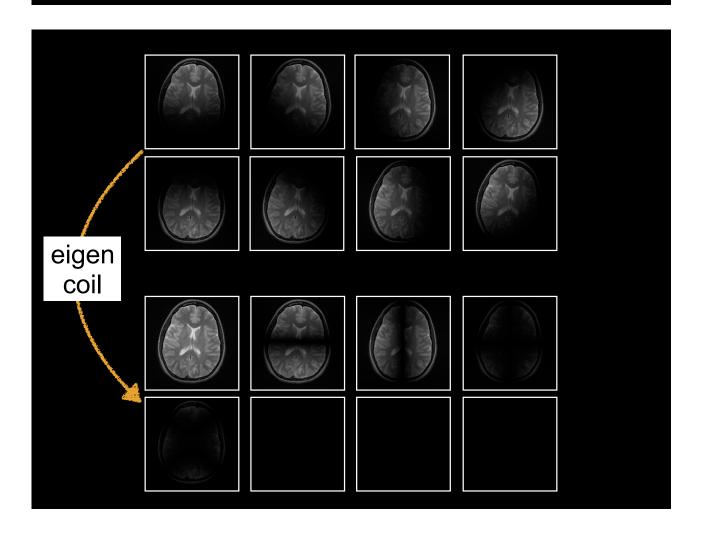
[nx, ny, nc] = size(im);

C = reshape(im,nx*ny,nc);

[B, D] = eig(C'*C);

C_hat = C*B;

C_hat = reshape(C_hat,nx,ny,nc);
```



Coil Compression

- Use the eigen coil basis to reduce the size of your parallel imaging reconstruction
- M is a matrix of the vectorized aliased data, compute

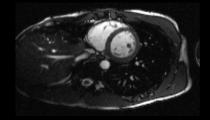
M' = MB

- the data rotated into the eigen coil space
- only keep the colums of M' that have significant eigen coils
- Reconstruct using eigen coils C'

k-t Acceleration

Information redundancy

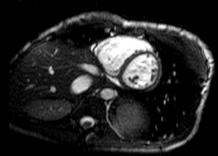
"loss-less" compression



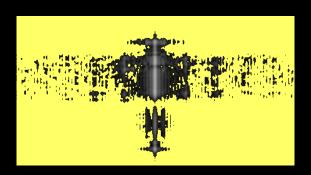
800 kBytes

Principles

x-t space

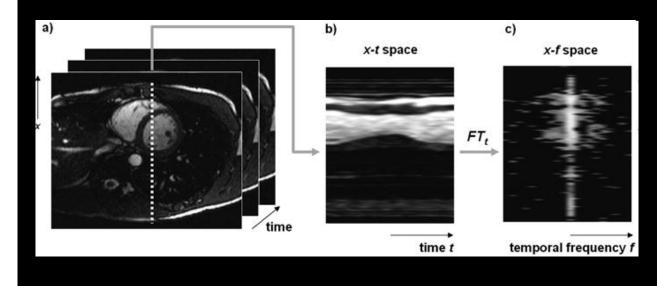


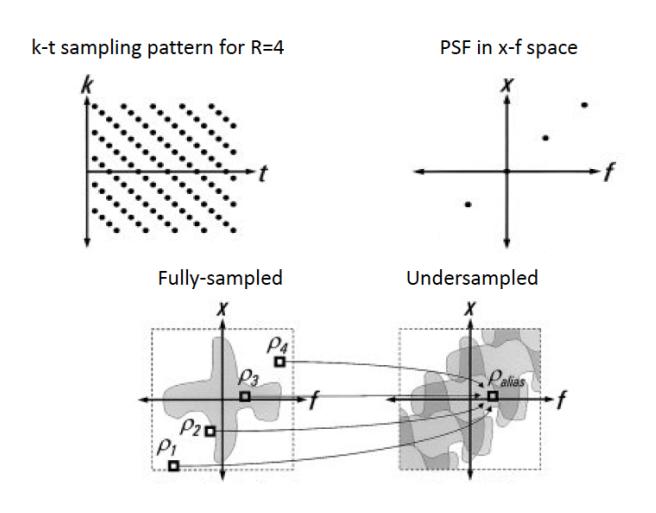
x-f space

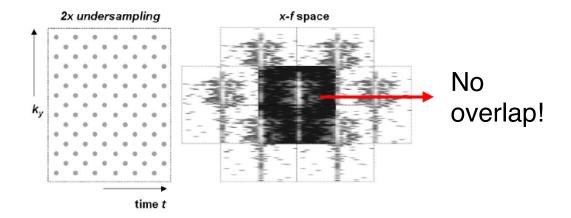


Principles

• Spare representation in x-f space

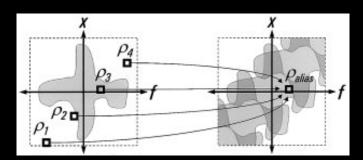






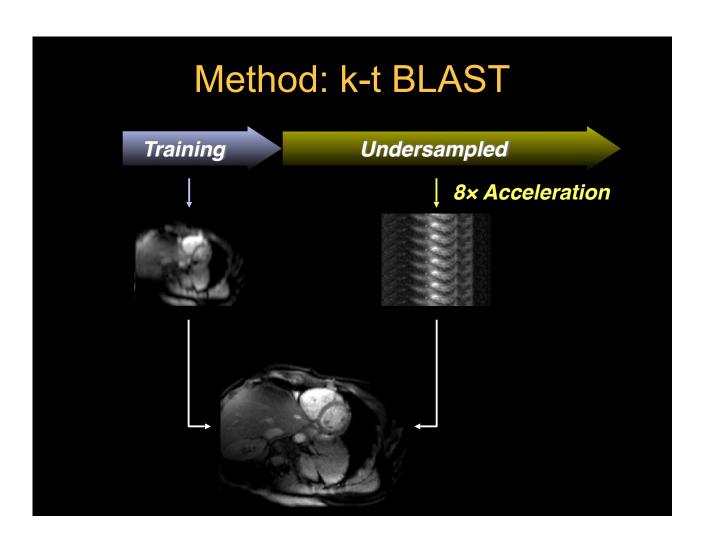
k-t BLAST

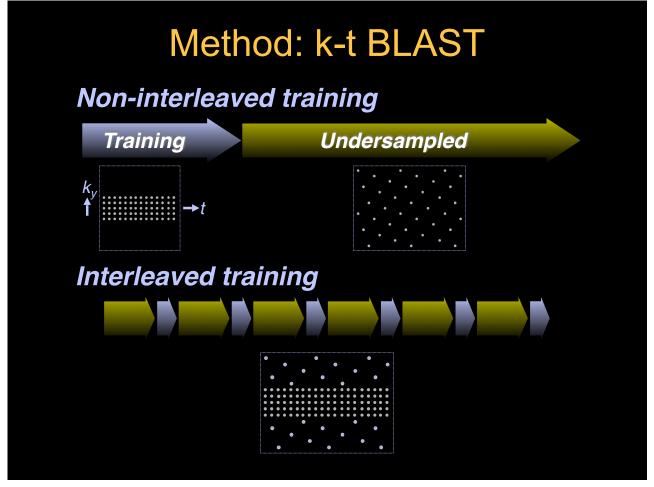
- Exploit the reduced signal overlap in x-f space produced by interleaved k-t sampling
- Reconstruction: unfold the x-f representation



What about if we have a estimation of signal magnitudes in the x-f domain?

Tsao J et al. MRM 50: 1031-1042. 2003

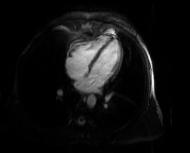


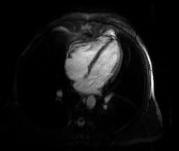


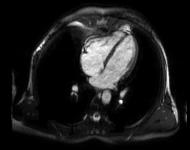
Method: k-t BLAST / k-t SENSE

k-t BLAST 1 coil

k-t BLAST Multi-coil



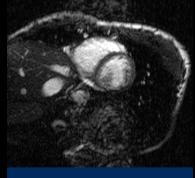


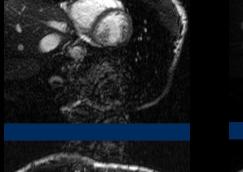


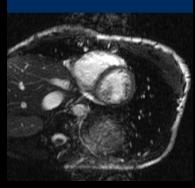
8x acceleration

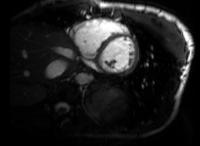
Flexible tradeoff for arbitrary number of coils

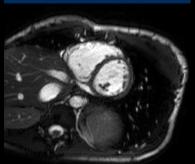
View sharing











8× k-t SENSE 5 coils

Thanks!

- Next time
 - Compressed Sensing

Kyung Sung, PhD ksung@mednet.ucla.edu http://kyungs.bol.ucla.edu