
1	

M219 Principles and Applications of MRI (Winter 2022)
Homework Assignment #0 (zero point)
This assignment is not graded nor due.

This assignment is meant to provide an introduction to basic Matlab coding and
functions that can form the basis for subsequent assignments in M219. If you have used
Matlab before, then this assignment will likely prove relatively straightforward. If you
have no familiarity with Matlab, then take this assignment seriously and work through
the solutions. It is designed to give you some skills that you will need later in the course.

1. M-files
Matlab enables saving the code you write as either a script or a function in the
form of an m-file with a name like [filename].m. A script is simply a list of
commands that are run in sequence when the file is called from the Matlab
command prompt. A script does not accept input variables, nor does it produce
output variables. A function requires a function declaration and can accept input
variables and can produce output variables. To get going try the following after you
open the Matlab application:

>> edit M219_Homework00_mfile.m

You’ll be asked “Do you want to create it?” Yes! The Matlab editor will appear with
an empty file. Type (or copy and paste) the following (not the line numbers):

1 % This is a comment. This code is not executed.

2 % I promise to comment all of my code.

3
4 apple=1 % This defines a variable named 'apple' and sets it equal to one.
5 orange=2; % This defines a variable named 'orange' and sets it equal to two.
6 % The semi−colon suppresses output to the command prompt.

Return to the Matlab command prompt and type the following, which will run your
m-file script:

>> M219_Homework00_mfile

You should see the value of apple, but not orange returned to the command
space. Note the importance of the “;” in Matlab. Note: To run this file you need to
be either in the same directory as the saved location of the m-file or you need to
add the path of the file to Matlab. Not sure what that means? Try,

>>help path
>>help cd

In fact, for every function that is part of the Matlab language “help [function-name]”
will provide useful information. Google is your friend.

2	

2. Scalars, Vectors, and Matrices
In the previous Matlab script we defined two scalar variables. We can also easily
define vectors and matrices. Remember that the dimensionality of vectors and
matrices is really important. A vector that is 1x3 is not equivalent to one that is
3x1. Furthermore, if we multiply vectors and matrices, then their inner dimensions
must match. Try creating the following script:

1 % This function creates scalars, vectors, and matrices and performs some

2 % simple operations.
3
4 speed 1=1; % A simple scalar
5 speed 2=2; % A simple scalar
6
7 vel vec 1=[1 2 3] % A row vector
8 vel vec 2=[4; 5; 6] % A column vector
9
10 matrix 1=[1 2; 3 4; 5 6] % A 3x2 (rows x columns) array
11
12 matrix 2=eye(3) % T he identity matrix.
13
14 new vec1=speed 1.*velocity 1 % Performs dot−multiplication
15 new vec2=speed 2.*velocity 1 % Performs dot−multiplication
16
17 vel mat1=vel vec 1*matrix 1 % The inner dimensions must match [1 x 3]*[3 x 2]
18 % vel mat2=vel vec 2*matrix 1 % This will not compute though...
19
20 vel mat2=new vec2*matrix 2 % This returns the new vec2 vector...
21 % This is just multiplying by "one"

3. Functions

So far we have only used Matlab scripts, whereas we can also use functions.
Functions are a specific kind of script that enable calling the code in the function
from another function (or script) to obtain a new output given a provided input.
Let’s try to create a very basic function that calculates the intersection of two lines
using their slopes and y intercepts, and then plots the result. Pay special attention
to the plotting component here. You’ll be plotting homework results a lot this
quarter, and matlab plots take some tweaking to look nice.

1 function [intersection] = lin intersect(m1, b1, m2, b2, varargin)

2 %Returns the intersection of two lines based on their slopes and intercepts
3 % Inputs:
4 % m1: [1x1] double − the slope of line 1
5 % b1: [1x1] double − the y intercept of line 1
6 % m2: [1x1] double − the slope of line 2
7 % b2: [1x1] double − the y intercept of line 2
8 %
9 % Optional arguments:
10 % plot flag: [1x1] double − 1 if we want to plot outputs, 0 otherwise

3	

11 %
12 % Outputs:
13 % intersection: the x and y coordinates of the intersection
14
15 % Below is an if statement. If the conditions specified after the if/elseif
16 % statements are true, the lines of code following will be executed.
17 % Otherwise, the lines of code after "else" will be run. Notice we use '=='
18 % not '=' to compare if values are the same. We could also use
19 % ≥, ≤, <, or >, to test for other relationships, but we won’t here.
20
21 if nargin == 4 % no optional argments are entered
22 plot_flag = 1; % defaults to plotting the output
23 elseif nargin == 5 % one optional argument was entered
24 plot_flag = varargin{1}; % takes the value of the fifth argument
25 else
26 warning('Initializing with default values.')
27 m1 = 2; m2 = -5; b1 = -10; b2 = 20; plot_flag = 1;
28 end
29
30 if m1 == m2 && b1 == b2 %check if both slopes and y intercepts are the same
31 warning('These lines are the same! They always intersect.')
32 intersection = [nan,nan];
33 elseif m1 == m2 %check if only the slopes are the same
34 warning('These lines are the parallel! They never intersect.')
35 intersection = [nan,nan];
36 else %Calculate the intersection!
37
38 x_int = (b2-b1)./(m1-m2);
39 y_int = m1.*(x_int)+b1;
40
41 % This returns the
42 intersection = [x_int, y_int];
43 end
44
45 if plot_flag == 1 % optional argument that allows plotting
46 %% Preparing to plot the lines
47 % create an array of x values +- 10 units from the intersection spaced
48 % by .1
49 if ~isnan(intersection(1)) % checks if there is a valid intersection
50 xmin = intersection(1) - 10;
51 xmax = intersection(1) + 10;
52 else
53 xmin = -20 ; xmax = 20;% if not, defaults to [-20, 20]
54 end
55 x_range = xmin:.1:xmax;
56 % return the y value at each of the sampled x values
57 y1 = m1.*x_range+b1;
58 y2 = m2.*x_range+b2;
59
60 %% Plotting the lines

4	

61 figure % This creates a new figure
62 plot(x_range,y1,'linewidth',3); % This plots our sampled x and y values
63 %for line 1
64 hold on % This keeps the next plot command from deleting the old graph
65 plot(x_range,y2,'linewidth',3); % This plots our second line
66
67 % Plot the intersection we found as a black square with MarkerSize = 10
68 plot(intersection(1), intersection(2), 'ks', 'MarkerSize',10,...
69 'MarkerFaceColor','k');
70
71 % Set the limits of our graph
72 xlim([min(x_range),max(x_range)]);
73 ylim([min([y1 y2]),max([y1,y2])]);
74
75 % Create a legend for our data
76 legend('Line 1','Line 2','Intersection');
77
78 % Now some labels for our axes
79 xlabel('X Values (unitless)');
80 ylabel('Y Values (unitless)');
81 title('Intersection of Two Lines');
82
83 % The graph could still look a little neater. Let's modify the plot
84 % appearance (gcf is get current figure, gca is get current axis)
85 set(gcf,'Color','w');
86 set(gca,'Color','w','XColor','k','YColor','k','FontSize', 12, 'Box',...
87 'on', 'LineWidth', 3.0);
88 set(get(gca,'Title'),'Color','k','FontSize',18,'FontWeight','bold');
89 set(get(gca,'Xlabel'),'FontSize',16,'FontWeight','bold');
90 set(get(gca,'Ylabel'),'FontSize',16,'FontWeight','bold');
91 %set(gcf,'Color','k');
92 grid on
93
94 hold off
95
96 else
97 end
98 end

We can call this function in a new matlab script.

1 % This script runs the function lin intersect. Try playing around with

2 % different input values, and running lin intersect directly from the
3 % command line. You're highly encouraged to insert breakpoints (mentioned
4 % below) into the function lin intersect to see how things progress line by
5 % line.
6
7 m1 = 2; %the slope of our first line
8 m2 = 4; %the slope of our second line

5	

9 b1 = 2; %the y intercept of our first line
10 b2 = 8; %the y intercept of our second line
11 plot flag = 1; % Plotting the results? 1 if yes, 0 if no.
12 intersection = lin intersect(m1,b1,m2,b2,plot flag);
13 % note, because we have commented lin intersect well, we can type
14 % "help lin intersect and see how to run it
15
16 %% Debugging
17
18 %If for any reason we ran into issues while running lin intersect, we could
19 %use a "breakpoint". We can open lin intersect in matlab, select the line
20 %before the code breaks, and select breakpoint−>Set. This will place a red
21 %dot on the line where the breakpoint is featured and stop the code
22 %mid−execution at that location so we can investigate the issue. We can
23 %remove the breakpoint and re−run the function later if we think we have it
24 %right.
25
26 %We can also put breakpoints anywhere in our code, run it, and then use the
27 %"step" button to go execute the code line by line as we check the outputs
28 %we are getting.
29
30 %% Printing our plot

31 % We've created another function that prints the output graph to a
32 % directory we specify. In this case it is the working directory.
33
34 pathname = [pwd,'/'];
35 print2desktop(pathname,'lin intersect output graph');

To print the output graph to the current directory, try using this code:
1 function print2desktop(path,name,size)

2
3 if nargin<3

4 size = [10,6];

5 end

6
7 if nargin<2

8 name='newfig';

9 end

10
11 set(gcf,'InvertHardCopy','off'); % keep the colors as they are on screen

12 set(gcf,'Units','Inches'); % If this is left as 'normalized'

13 % 'OuterPosition' and 'Position' interfere

14
15 set(gcf,'PaperUnits','Inches');

16
17 set(gcf,'PaperSize',size); % Set the paper size to match the position

18 set(gcf,'PaperPosition',[0 0 size]); % Match the paper position to the position

19 set(gcf,'PaperOrientation','portrait');

6	

20 set(gcf,'PaperPositionMode','auto');

21
22 print(gcf,'−dpng','−r300','−opengl',[path name '.png']);

23
24 disp([path name '.png"']);

4. Images

We can use matlab to load, manipulate, and view images. Let’s try doing so
below:

1 % We can load an image in matlab with the following commands
2
3 %We are loading a default image stored in matlab. Ordinarily we would have
4 %to provide the full path to the image, or if it was stored in our
5 %workspace, use ./filename
6 img path = 'ngc6543a.jpg'; % specify the path of the image.
7
8 % %Or we could select our own image using this code. Uncomment it and try
9 % it for yourself on any image you have on your computer.
10 %
11 % [fname pathname] = uigetfile();
12 % img path = fullfile(pathname,fname);
13
14 %reads the image
15 my img = imread(img path);
16 % note we now have a 650x650x3 uint8 variable in our workspace. This is the
17 % image size [650x600] and rgb values
18
19 %We can also now show the image
20 figure
21 imshow(my img);
22
23 %However, for M219 , we'll frequently be using a different image
24 %format: dicom (.dcm) and a different loading command
25
26 % Again are loading a default image stored in matlab. Ordinarily we would
27 % have to provide the full path to the image, or if it was stored in our
28 %workspace, use ./filename
29 image info = dicominfo('CT−MONO2−16−ankle.dcm'); % gets the header info
30 my dicom = dicomread(image info);
31 figure, imshow(my dicom,[]);
32
33 % we could alternatively use a method that auto−scales our data using a
34 % colormap of our choice as the second argument, or a default one if none
35 % is specified.
36 figure, imagesc(my dicom)
37
38 % We can perform an incredible variety of operations on the image that
39 % we've loaded in. The sky is the limit here, and the matlab help function

7	

40 % and the mathworks website are your friends. Check out "basic for loops"
41 % to see a simple example.

5. For Loops

Let’s try using a for loop to manipulate images. Here we’re going to load a matlab
default dicom image and loop through to change all indices with values greater
than 1000 to 0 (black).

1 % We might also decide to use for loops to investigate images.

2
3 %We are loading a default image stored in matlab. Ordinarily we would have
4 %to provide the full path to the image, or if it was stored in our
5 %workspace, use ./filename
6 image info = dicominfo('CT−MONO2−16−ankle.dcm'); % gets the header info
7 my dicom = dicomread(image info);
8 figure, imshow(my dicom,[]);
9
10 % Perhaps we want to find all elements of "my dicom" that are greater than
11 % 1000, and replace them with zero (black)
12
13 % initialize a new image that is the same as the old one to start
14 my dicom new = my dicom;
15
16 % We are going to use a nested for loop here. We loop through every element
17 % of the first dimension of "my dicom new" using "i"
18 for i = 1:size(my dicom new,1)
19 % We loop through each element of the second dimension of
20 % "my dicom new" using "j"
21 for j = 1:size(my dicom new,2)
22 if my dicom new(i,j) > 1000 % check if the current element is
23 % larger than 1000
24 my dicom new(i,j) = 0; % if so, replace it with zero
25 end
26 end
27 end
28 figure, imshow(my dicom new,[]);
29
30 % However, we could have done this fa ster without for loops
31 my dicom new2 = my dicom;
32 replacement inds = find(my dicom > 1000);
33 my dicom new2(replacement inds) = 0;
34
35 figure, imshow(my dicom new,[]);

If you’re new to matlab, hopefully you’ve picked up a few skills that will prove useful this
quarter. Remember, there is a ton of documentation regarding using matlab (i.e.
the ”help” command and googling things on the mathworks website). If you’re stuck on
a coding problem, try that first.

