MRI Signal Equation, Basic Image Reconstruction

M219 Principles and Applications of MRI Holden H. Wu, Ph.D. 2022.02.07

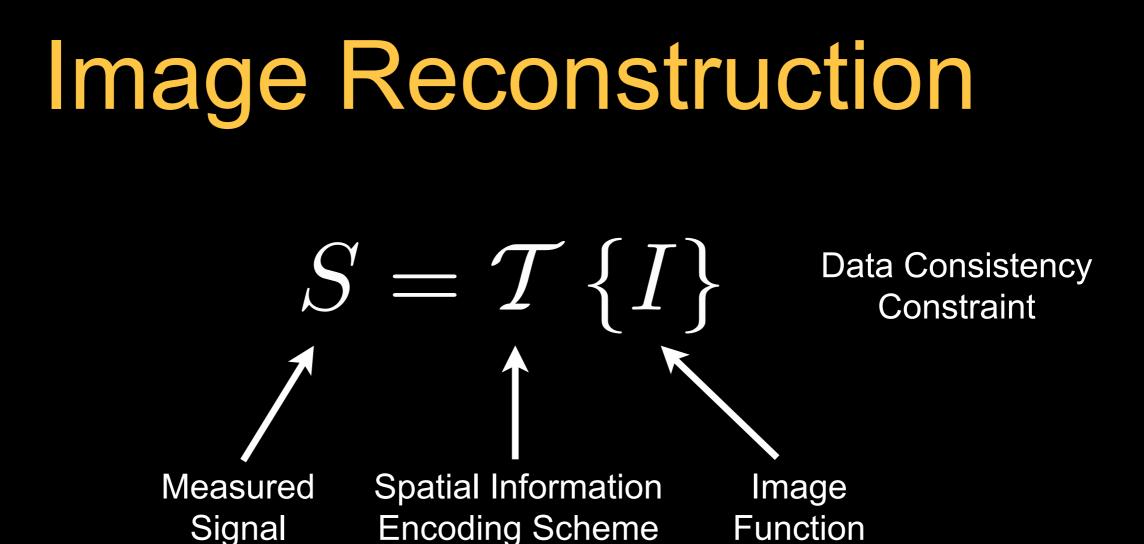
Department of Radiological Sciences David Geffen School of Medicine at UCLA

Class Business

- Syllabus and materials
 - https://mrrl.ucla.edu/pages/m219_2022

Outline

- MRI Signal Equation
- MR Image Reconstruction
 - Fourier transform
 - Sampling considerations
 - Zero padding (interpolation)
 - Windowed recon to reduce Gibb's ringing
 - Multi-channel (coil) reconstruction



 $I = \mathcal{T}^{-1} \{S\}$

(Fourier Transform)

MRI Signal Equation

$$s(t) = \iint_{x,y} \vec{M}_{xy}^0(\vec{r}) \cdot e^{-i\Delta\omega(\vec{r})t} \mathrm{d}\vec{r}$$

The MRI Signal Equation is the...

$$s\left(t\right) = \iint_{x,y} \vec{M}_{xy}^{0}\left(x,y\right) \cdot e^{-i\Delta\omega(x,y)t} \mathrm{d}x \mathrm{d}y \quad \dots \text{2D Fourier Transform!}$$

$$\Delta \omega(x,y) = \gamma G_x \cdot x + \gamma G_y \cdot y \qquad \qquad \text{Gradients define } \Delta w$$

$$k_x(t) = \frac{\gamma}{2\pi} G_x t \qquad k_y(t) = \frac{\gamma}{2\pi} G_y t \qquad \qquad \text{k-space is convenient...}$$

$$s\left(k_x(t), k_y(t)\right) = \int \int_{x,y} \underbrace{\vec{M}_{xy}^0\left(x, y\right)}_{I\left(\vec{r}\right)} \cdot e^{-i2\pi[k_x(t)x + k_y(t)y]} \mathrm{d}x \mathrm{d}y$$

The Fourier Transform

$$S(\vec{k}) = \int_{-\infty}^{+\infty} I(\vec{r}) e^{-i2\pi \vec{k} \cdot \vec{r}} d\vec{r}$$

MRI Signal Equation

$$S(\vec{k}) \xleftarrow{\mathcal{F}} I(\vec{r})$$

$$S(k_x) = \int_{-\infty}^{+\infty} I(x) e^{-i2\pi(k_x x)} dx$$
 1D

$$S(k_x, k_y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x, y) e^{-i2\pi(k_x x + k_y y)} dx dy$$
 2D

$$S(k_x, k_y, k_z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x, y, z) e^{-i2\pi(k_x x + k_y y + k_z z)} dx dy dz \quad 3D$$

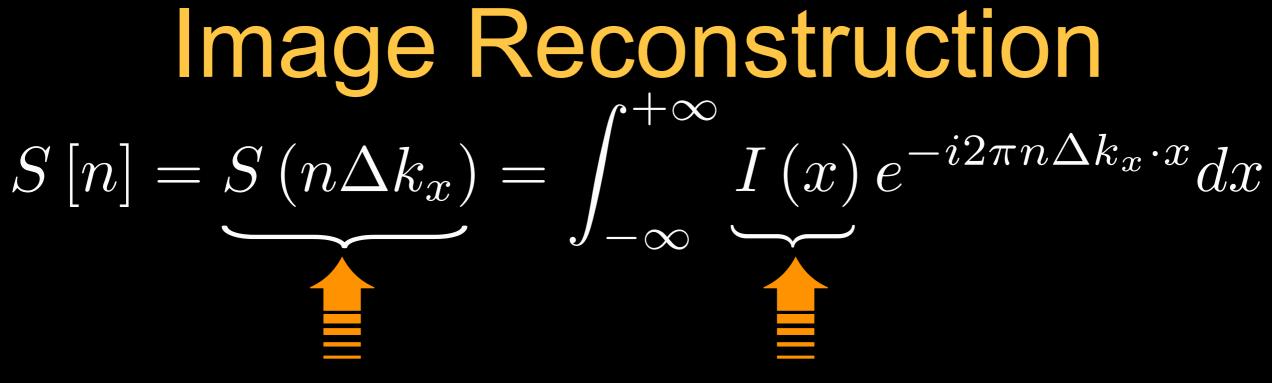
Given $S(\vec{k}_n) = \int_{-\infty}^{+\infty} I(\vec{r}) e^{-i2\pi \vec{k}_n \cdot \vec{r}} d\vec{r}$ MRI Signal Equation

How do we determine $I(\vec{r})$?

Image Reconstruction $S(\vec{k}_n) = \int_{-\infty}^{+\infty} I(\vec{r}) e^{-i2\pi \vec{k}_n \cdot \vec{r}} d\vec{r} \text{ MRI Signal}_{\text{Equation}}$

$$\mathcal{D} = \left\{ \vec{k}_n = n\Delta \vec{k}, n = \dots, -2, -1, 0, 1, 2, \dots \right\}$$

One-dimensional Case



This is what we measure!

This is what we want!

Image Reconstruction

$$S[n] = S(n\Delta k_x) = \int_{-\infty}^{+\infty} I(x) e^{-i2\pi n\Delta k_x \cdot x} dx$$
Eqn. 6.9
This is what we measure! This is what we want!
We can show the following...(Page 191 in Lauterbur).

$$\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I(x - \frac{n}{\Delta k}) \text{ Eqn. 6.10}$$
Fourier Series Periodic Extension of I(x)

n

Image Reconstruction

$$\sum_{n=-\infty}^{\infty} S[n] e^{i2\pi n \Delta kx}$$

- Fourier series
- Δk is the fundamental frequency
- *S*[n] coefficient of the nth harmonic

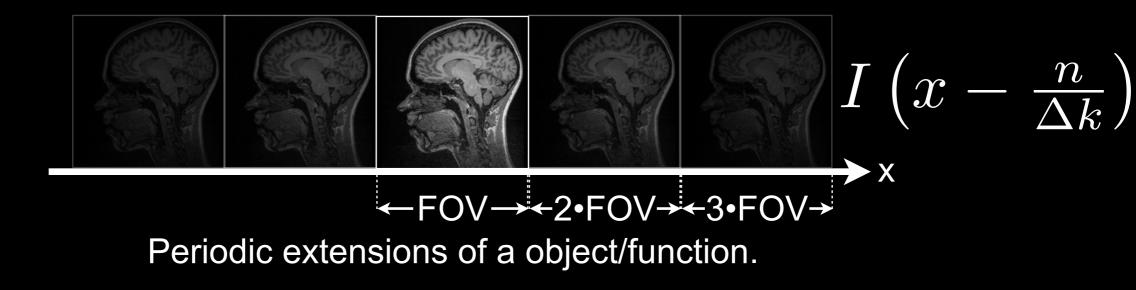
- Periodic extension of *I*(*x*)
- *n* is an integer

 $= \frac{1}{\Delta k} \sum I\left(x - \frac{n}{\Delta k}\right)$

 ∞

 $n = -\infty$

• Period is $1/\Delta k$ =FOV



Sampling Considerations

Infinite Sampling

 $S(k) \text{ is measured at } k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Infinite SamplingS(k) is measured at $k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Can I(x) be recovered from its periodic extension? $\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I\left(x - \frac{n}{\Delta k}\right)$ Infinite SamplingS(k) is measured at $k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Can I(x) be recovered from its periodic extension? $\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I\left(x - \frac{n}{\Delta k}\right)$

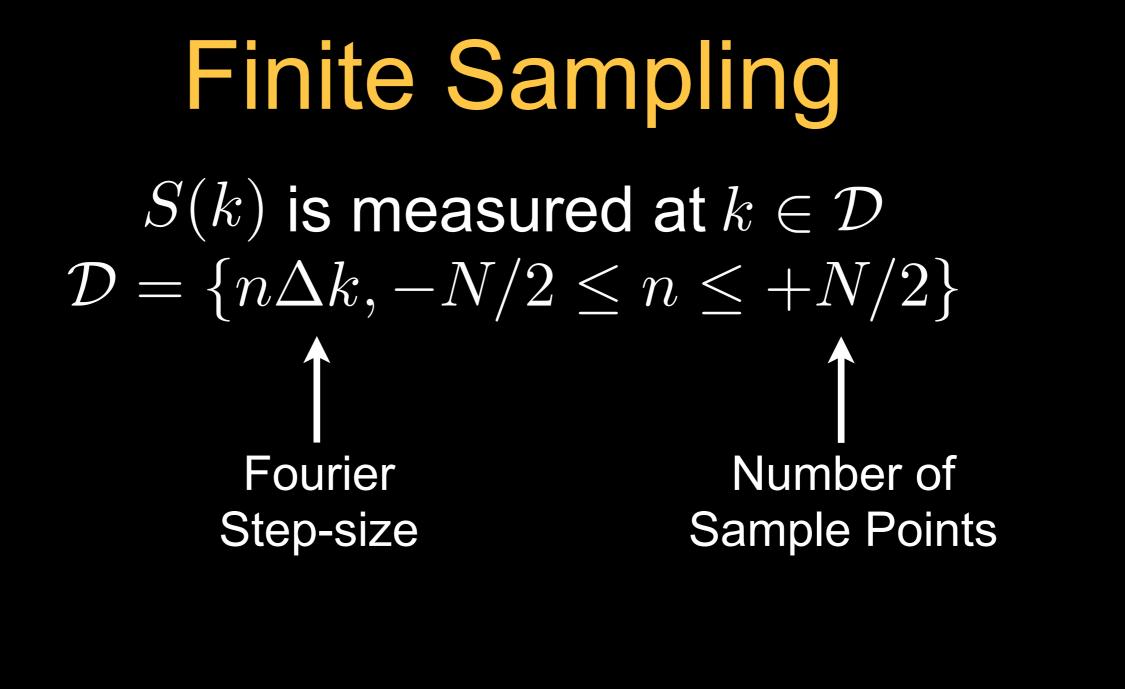
If I(x) = 0 on $|x| > FOV_x/2\left(i.e. \Delta k < \frac{1}{FOV_x}\right)$, then

Infinite SamplingS(k) is measured at $k \in \mathcal{D}$ $\mathcal{D} = \{n\Delta k, -\infty < n < +\infty\}$

Can I(x) be recovered from its periodic extension? $\sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx} = \frac{1}{\Delta k} \sum_{n=-\infty}^{\infty} I\left(x - \frac{n}{\Delta k}\right) \quad \text{Eqn. 6.10}$

If
$$I(x) = 0$$
 on $|x| > FOV_x/2\left(i.e. \ \Delta k < \frac{1}{FOV_x}\right)$, then
 $I(x) = \Delta k \sum_{n=-\infty}^{\infty} S[n]e^{i2\pi n\Delta kx}, \ |x| < \frac{1}{\Delta k}$ Eqn. 6.16

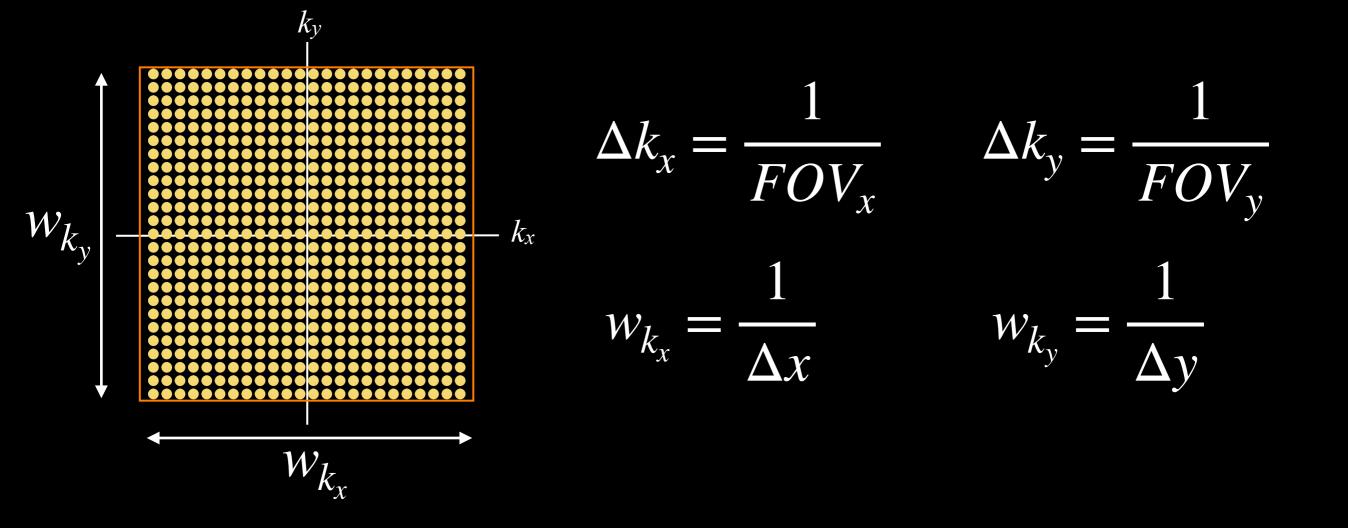
But ∞ takes forever...



$$I(x)=\Delta k\sum_{n=-N/2}^{N/2-1}S[n]e^{i2\pi n\Delta kx}, \ |x|<rac{1}{\Delta k}$$
 Eqn. 6.20

This is the fundamental image reconstruction equation for MRI.

Sampling Considerations



Review Sampling Theorem

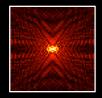
Review Lecture 9/10 Spatial Localization II

Zero Padding

Zero-Padding

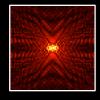
- Append zeros to k-space data before FFT
 - Append symmetrically about k-space
- Why?
 - If N=2ⁿ, then the radix-2 FFT can be used
 - Increases the "digital" resolution; interpolates pixels in image space
 - Reconstruction with correct aspect ratio
 - Starting point for iterative reconstructions; or a reference for comparisons

Low-Res Data



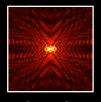
64x64

Low-Res Data



64x64

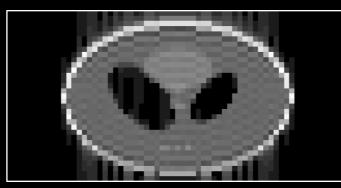
Asymmetric Res



Low-Res Data

64x64

32x64



Pixels are square, but they shouldn't be.

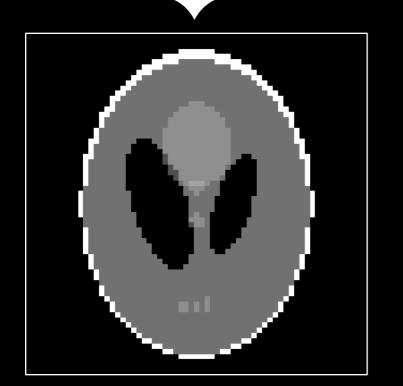
Asymmetric Res

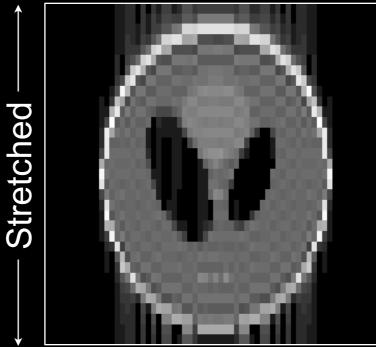


Low-Res Data

64x64

32x64

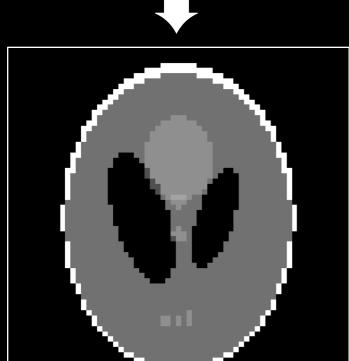


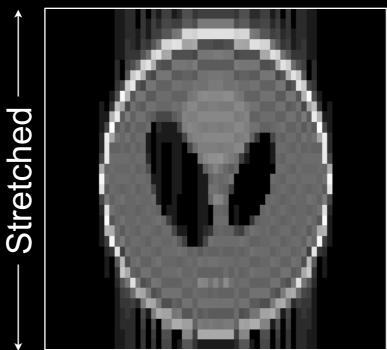


Low-Res Data Asymmetric Res Zero-Padded

64x64

32x64



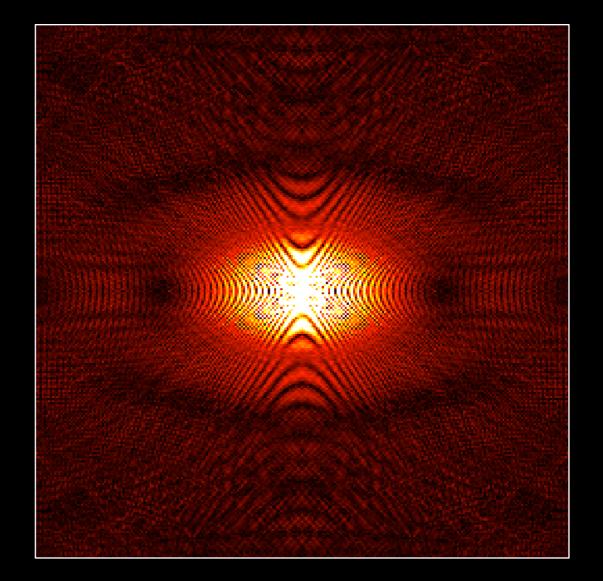


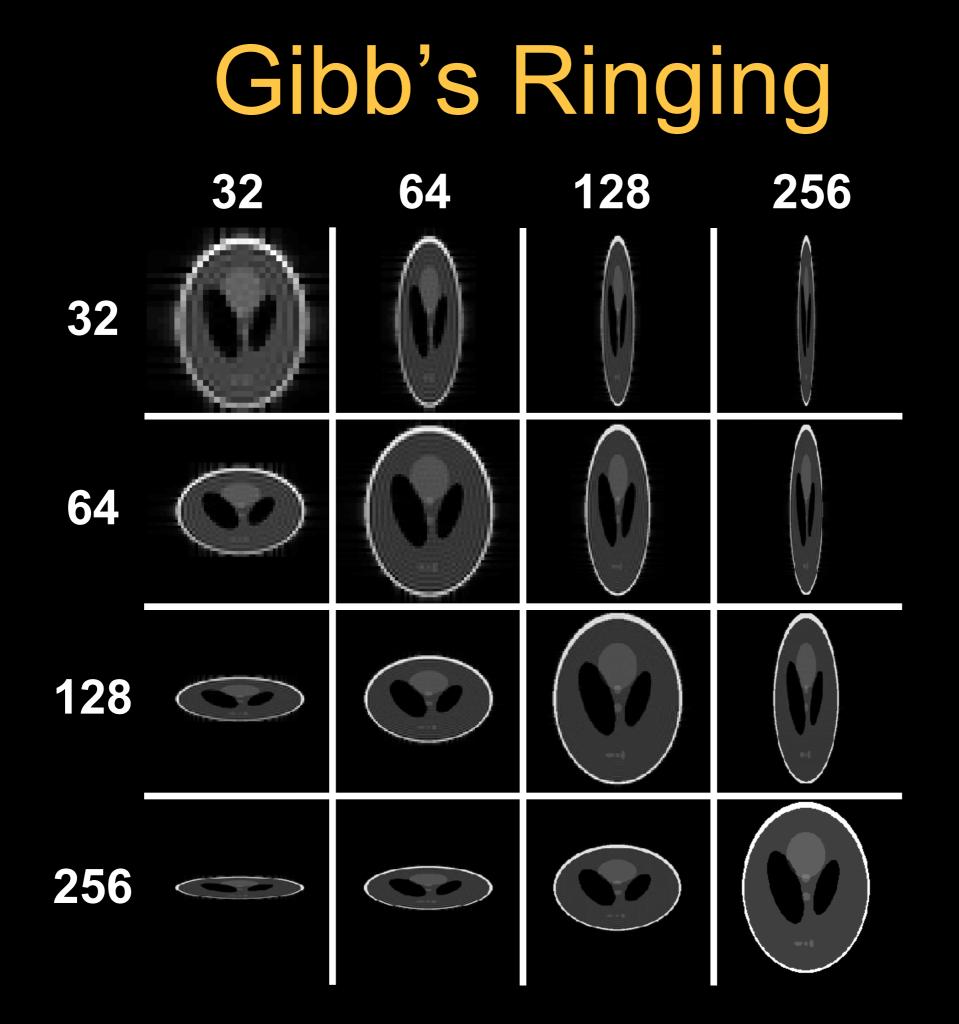
Windowed Reconstruction to Reduce Gibb's Ringing

Gibb's Ringing

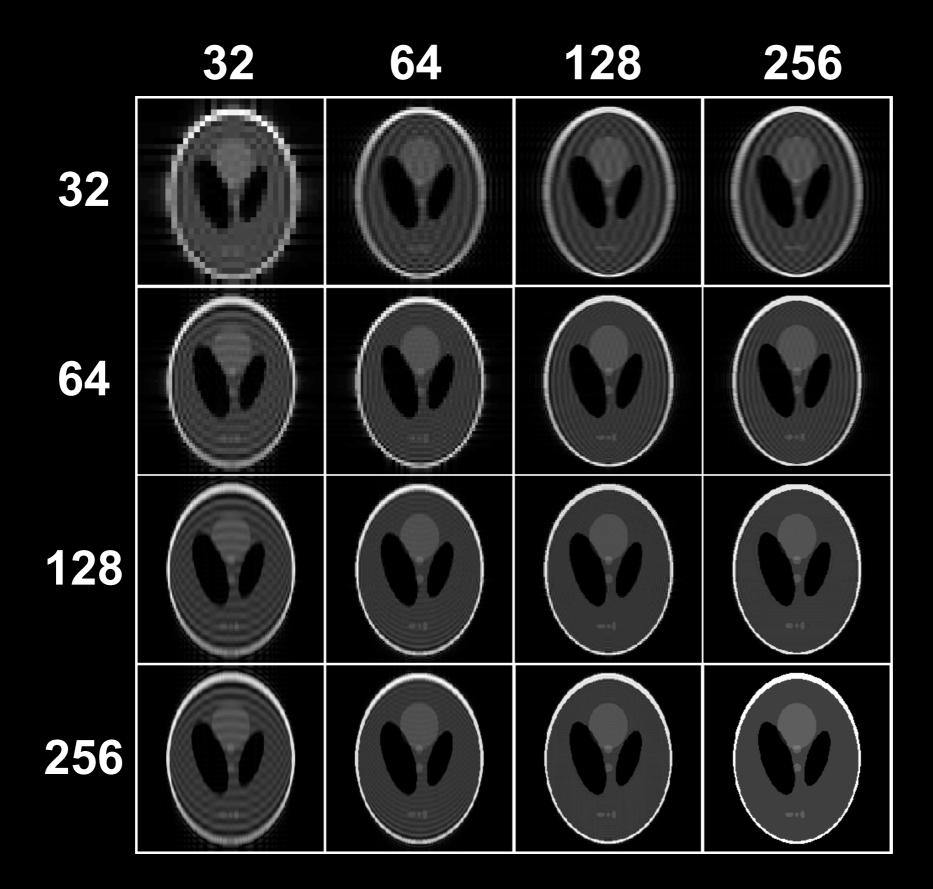
- Spurious ringing around sharp edges
- Max/Min overshoot is ~9% of the intensity discontinuity
 - Independent of the # of recon points
 - Frequency of ringing increases as # of recon points increases
 - Ringing becomes less apparent
- Result of truncating the Fourier series model as a consequence of finite sampling
- Can reduce by:
 - Acquiring more data
 - Filtering the data to reduce oscillations in the PSF

Shepp-Logan Phantom





Zero-Pad



Windowed Reconstruction

$$\hat{I}(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S(n\Delta k) e^{i2\pi n\Delta kx}$$

Fourier reconstruction

Windowed Reconstruction

$$\hat{I}(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S(n\Delta k) e^{i2\pi n\Delta kx}$$

Fourier reconstruction

$$\hat{I}(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S(n\Delta k) w_n e^{i2\pi n\Delta kx}$$

$$\text{Eqn. 6.21}$$

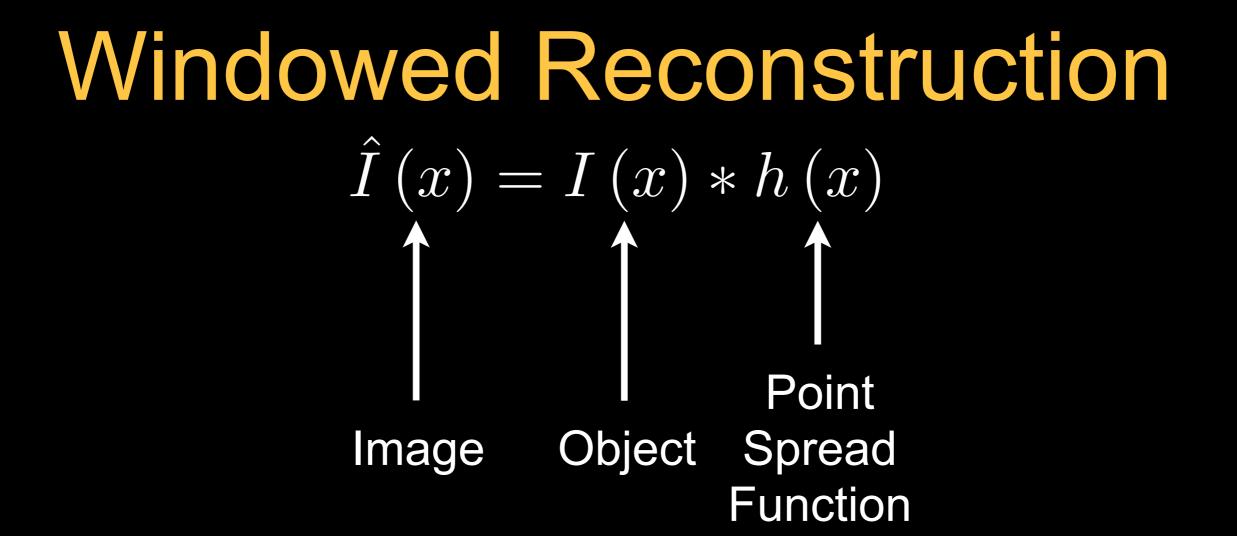
$$\text{Windowed Fourier}$$

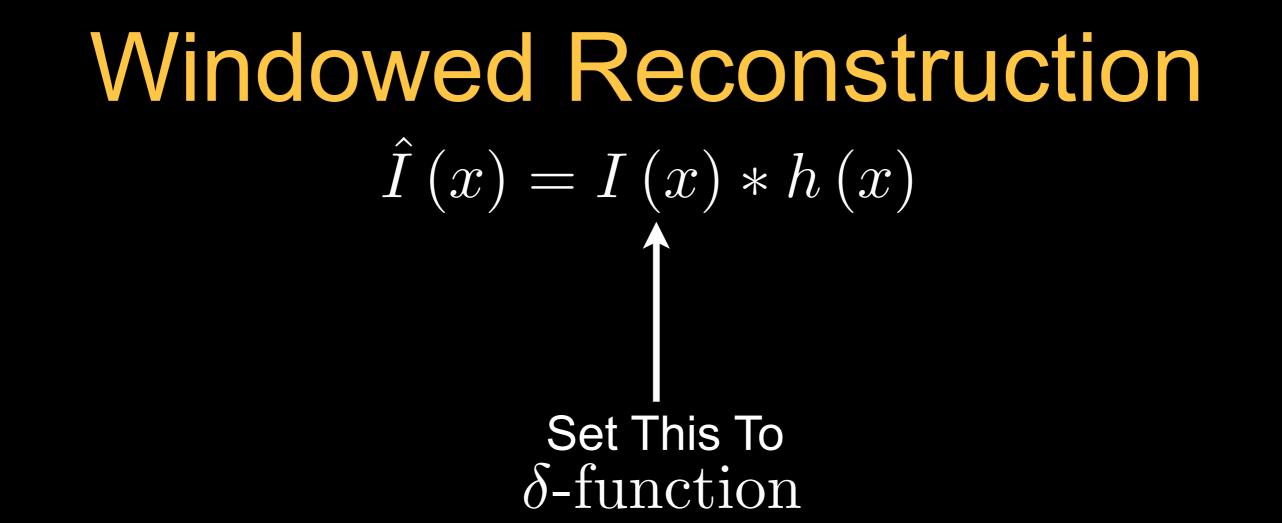
$$\text{reconstruction}$$

$$k\text{-space}$$

$$\text{filter/window}$$

$$\text{function}$$

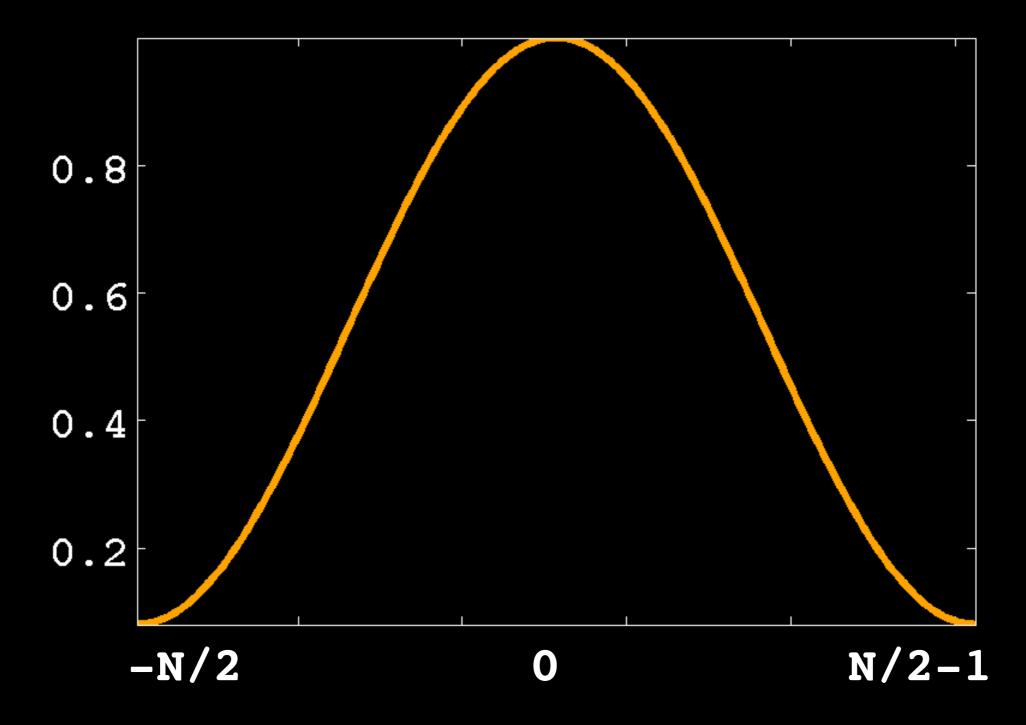




Point Spread Function for a windowed Fourier reconstruction.

$$h(x) = \Delta k \sum_{\substack{n=-N/2}}^{N/2-1} w_n e^{i2\pi n \Delta kx}$$

Hamming Filter - 1D $w(n) \triangleq \begin{cases} 0.54 + 0.46\cos(2\pi\frac{n}{N}) & -N/2 \le n \le N/2 - 1 \\ 0 & \text{otherwise} \end{cases}$



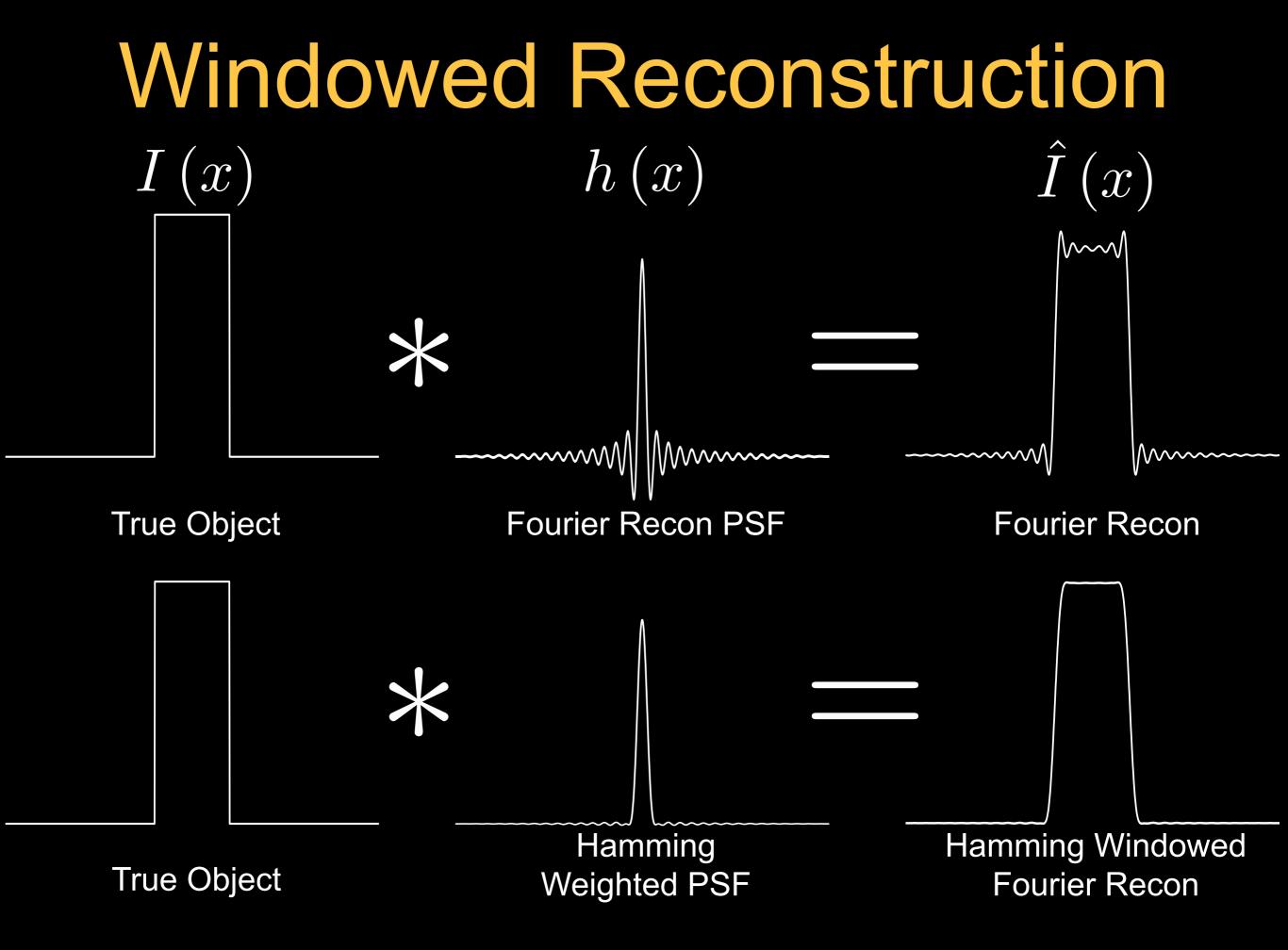
Windowed Reconstruction

FWHM PSF for a Hamming windowed Fourier reconstruction.

$$W_h = \left(\sum_{m=-N/2}^{N/2-1} \left(w_m/w_0\right) \Delta k\right)^{-1}$$

In general
$$w_m \leq w_0$$
, therefore $W_h \geq rac{1}{N\Delta k}$

Hamming windowed Fourier reconstruction suppresses ringing, but reduces effective spatial resolution.



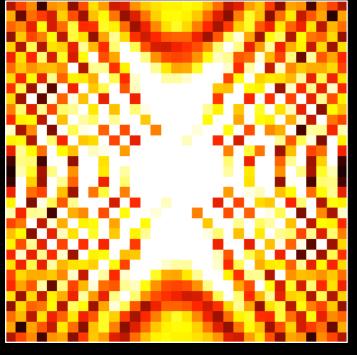
Windowed Reconstruction

Fourier transform properties

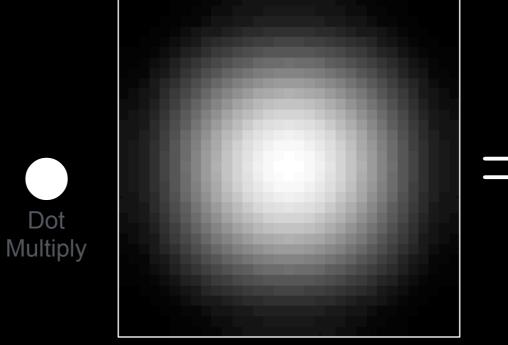
 Convolution in the image domain is equivalent to multiplication in the frequency domain (and vice versa)

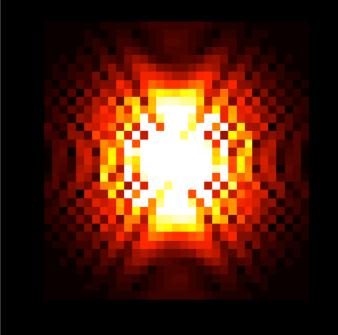
Hamming Filter - 2D $W(n) \triangleq w(n) \otimes w(n)$

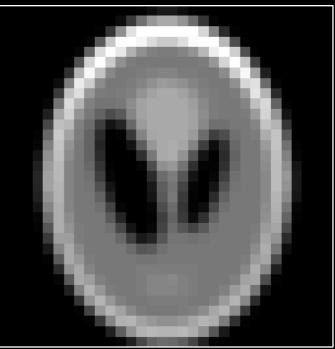
Hamming Filter



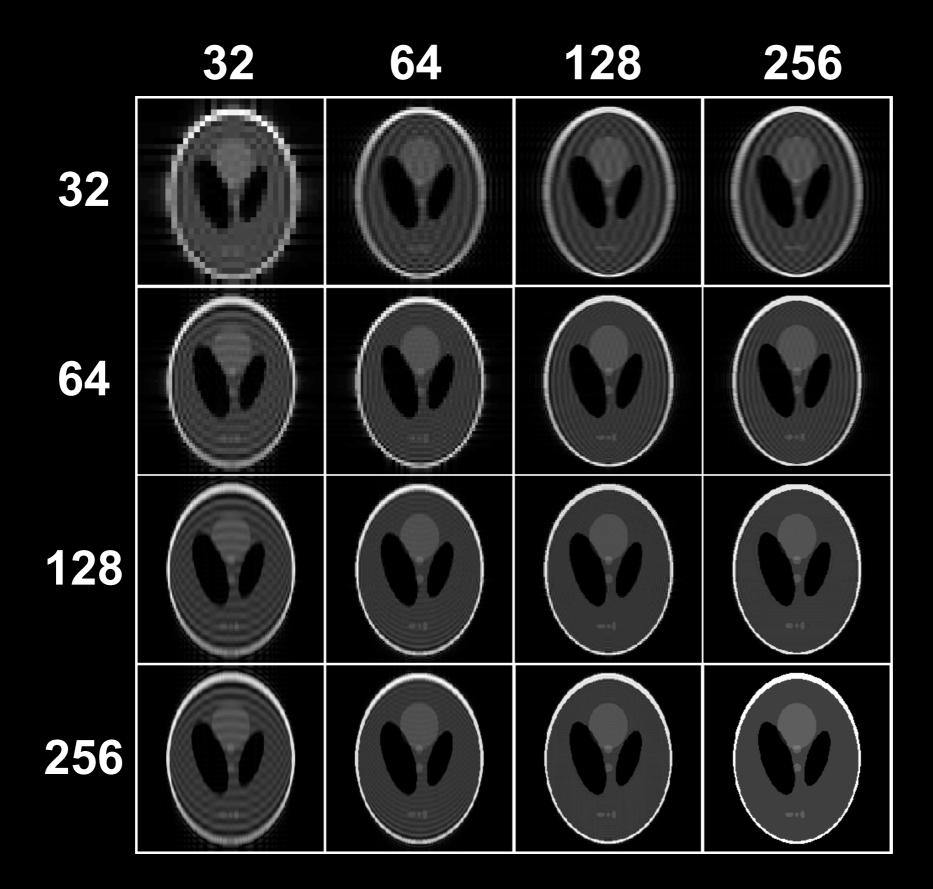
Dot



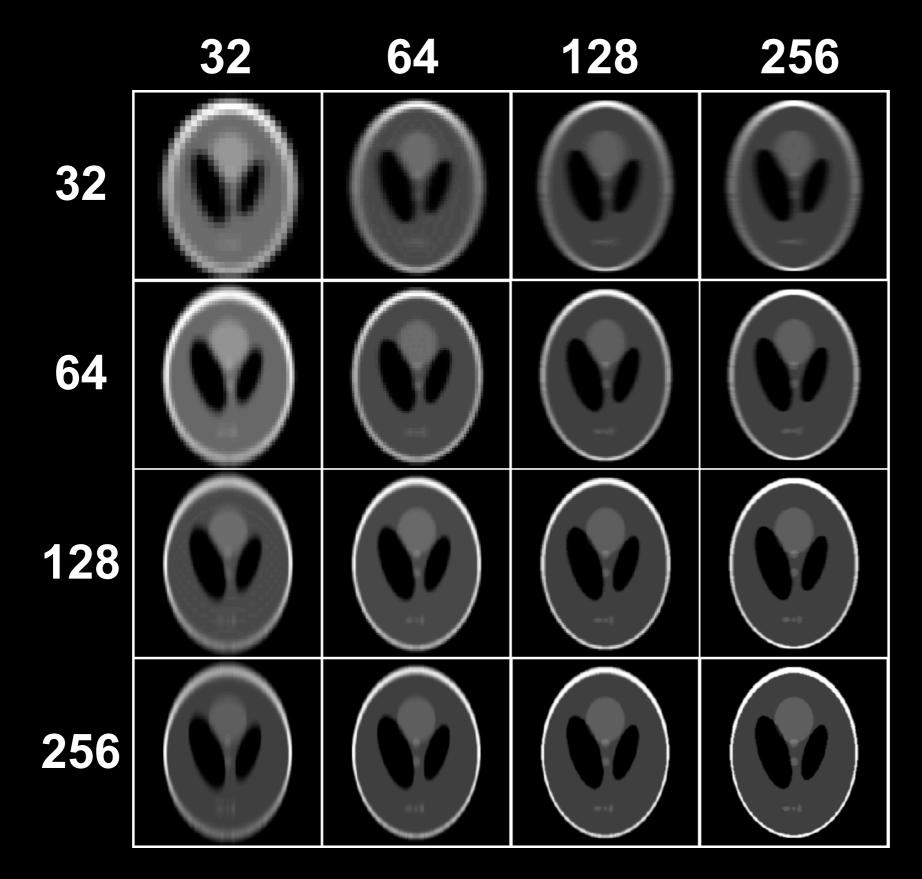




Zero-Pad

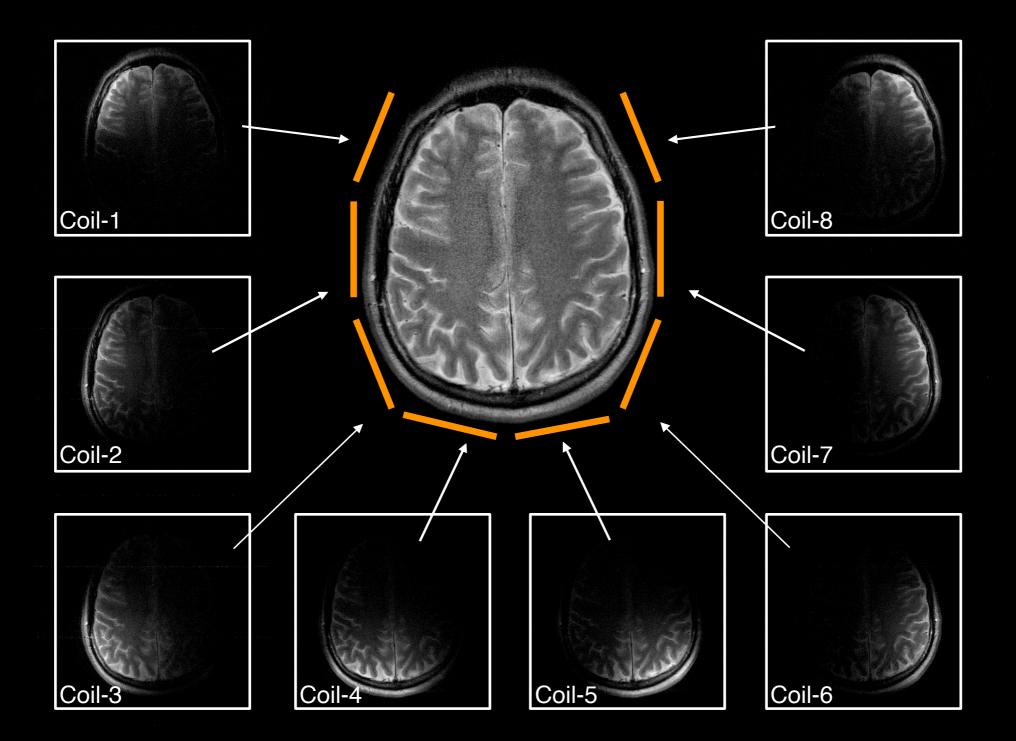


Hamming Window & Zero-Pad

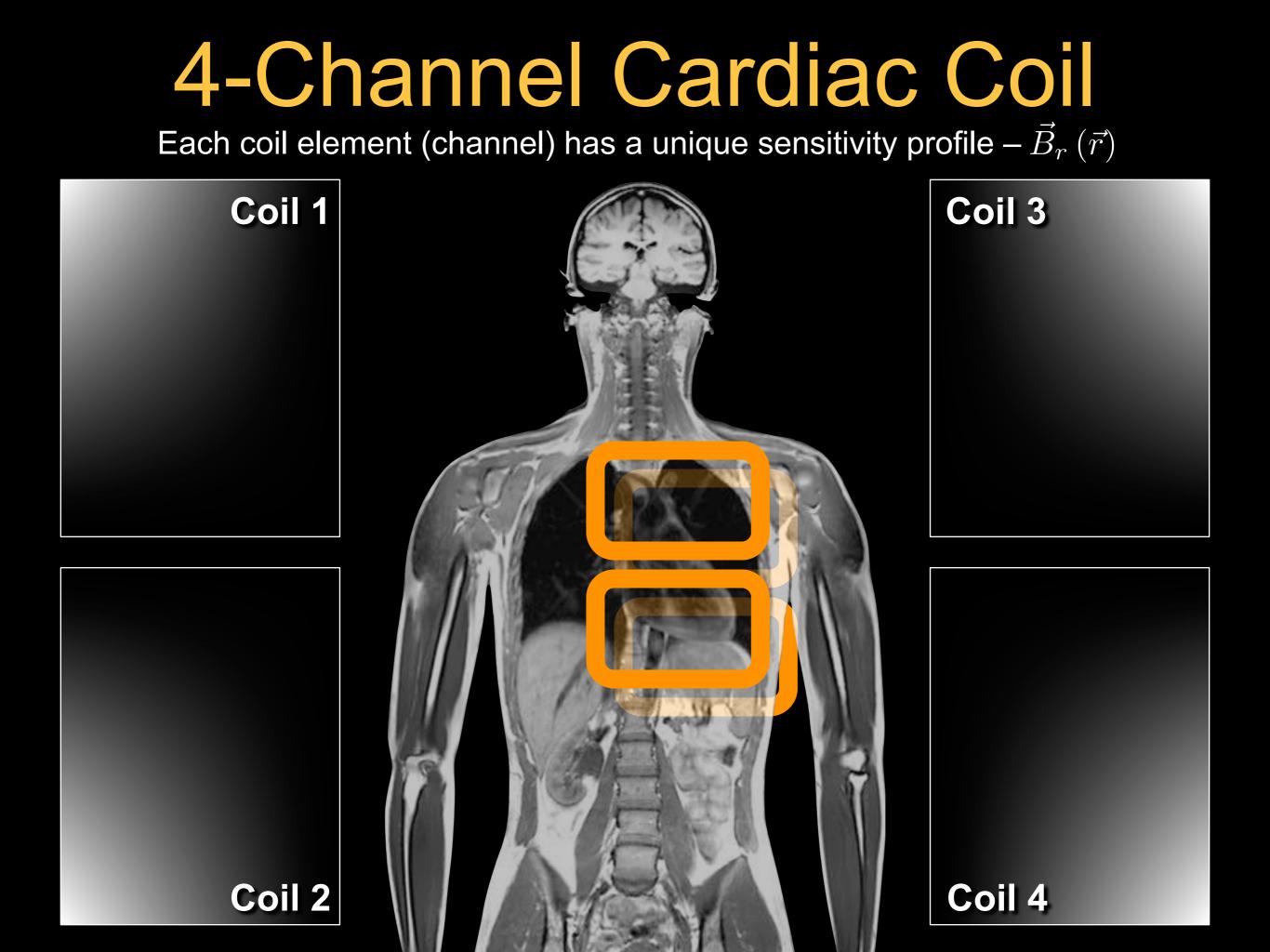


Multi-Channel (Coil) Reconstruction

8-Channel Head Coil

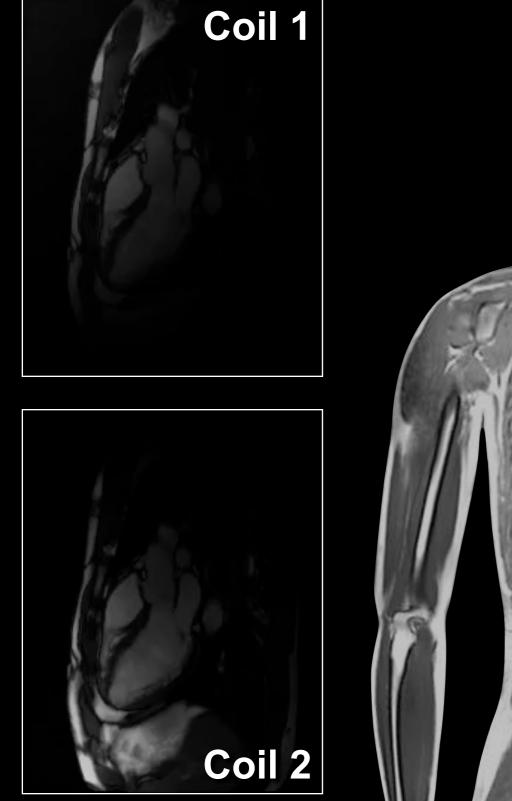


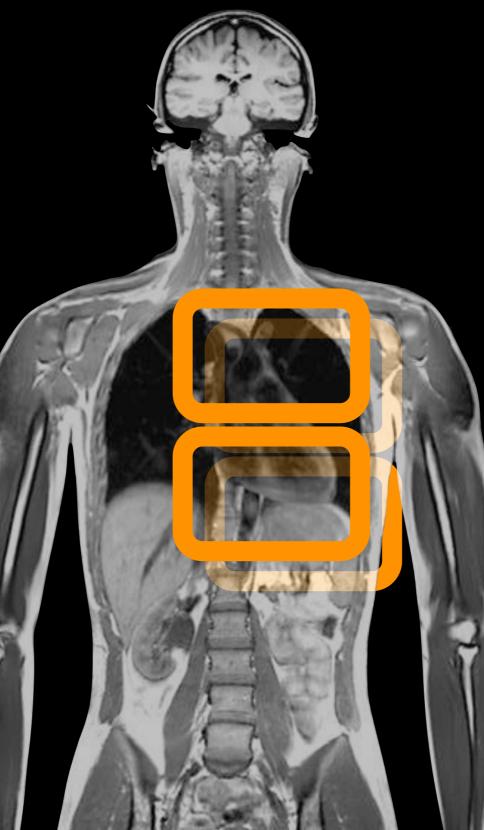
Each coil element (channel) has a unique sensitivity profile – $\vec{B_r}$ (\vec{r})



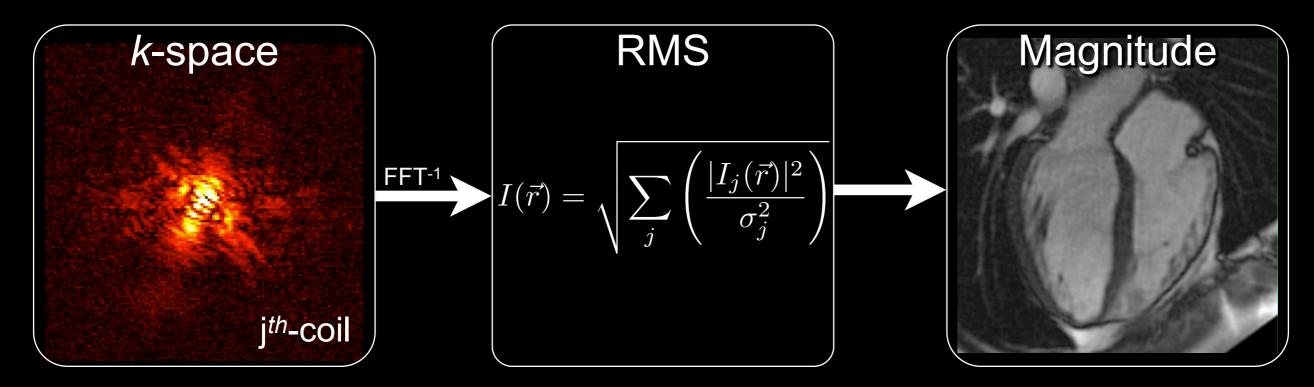
4-Channel Cardiac Coil

Each coil element (channel) has a unique sensitivity profile – \vec{B}_r (\vec{r})





Multi-Coil Reconstruction



 $I(\vec{r})
ightarrow$ Final *magnitude* image $I_j(\vec{r})
ightarrow$ Image from jth coil

 $\sigma_j^2
ightarrow$ Noise variance

- Depends on coil loading
- Proximity to patient
- Measured with "noise scan"
- Weights each coil's contribution

Thanks!

- Next: fast imaging, advanced recon
- Acknowledgments
 - Dr. Daniel Ennis
 - Dr. Peng Hu
 - Dr. Kyung Sung

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab