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Outline

e MRI Signal Equation

¢ MR Image Reconstruction

- Fourier transform

- Sampling considerations

- Zero padding (interpolation)

- Windowed recon to reduce Gibb’s ringing
- Multi-channel (coil) reconstruction
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MRI Signal Equation
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The Fourier Transform
+ 00 _
S(,ZZ) — / Ji (7:») o127k T 7= MRISigna

Equation

S(k) « I(7)
S(ks) = /+OO I (z) e 2 (Fa®) gy 1D

+o00  p+Foo |
S(ke,ky) = / / I (z,y) e 2™ Fatkyy) g dy D

+00 + 00 +00 .
S(ksz, ky, k) :/ / / I (z,y,z)e 2 Fezthyytk:2) godydz 3D



Image Reconstruction
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How do we determine I (7)?



Image Reconstruction
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Image Reconstruction
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One-dimensional Case



Image Recgnstruction
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This Is what we measure! This is what we want!




Image Recgnstruction
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This Is what we measure! This is what we want!

We can show the following...(Page 191 in Lauterbur).
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Fourier Series Periodic Extension of [(x)



Image Reconstruction
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* Fourier series * Periodic extension of /(x)
* Ak is the fundamental frequency * nis an integer

* S[n] coefficient of the nth harmonic * Period is 1/Ak=FOV

“—FOV—«2:FOV>«3-FOV~>
Periodic extensions of a object/function.



Sampling Considerations



Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}



Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}

Can I(x) be recovered from its periodic extension?
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Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}

Can I(x) be recovered from its periodic extension?
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then

If I(x )—Oon\x|>FOVx/2(ze A/~C<FOV>,



Infinite Sampling

S(k) is measured atk € D
D = {nAk,—oco <n < 400}

Can I(x) be recovered from its periodic extension?

Z S[n]eiQWnAka: __ AL,ZC Z T ($ Ank) N

nN——00 nN=——0o

then

If I(x )—Oon\x\>FOVx/2(ze A/~C<FOV>,
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But ¢ takes forever...



Finite Sampling

S(k) is measured atk € D
D = {nAk,—N/2 <n < +N/2}

T T

Fourier Number of
Step-size Sample Points
N/2—1
I(x)=Ak Y S[n]e®™% 2| < ¢ anea
n=—N/2

This is the fundamental image reconstruction equation for MRI.



Sampling Considerations
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Zero Padding



Zero-Padding

e Append zeros to k-space data before FFT
- Append symmetrically about k-space

e \Why?

If N=2n, then the radix-2 FFT can be used
Increases the “digital” resolution; interpolates
pixels in image space

Reconstruction with correct aspect ratio
Starting point for iterative reconstructions; or a
reference for comparisons



Asymmetric Resolution

Low-Res Data

64x64




Asymmetric Resolution

Low-Res Data




Asymmetric Resolution

Low-Res Data Asymmetric Res

64x64 32x64

Pixels are square, but they shouldn’t be.




Asymmetric Resolution

Low-Res Data Asymmetric Res

64x64 32x64

Stretched




Asymmetric Resolution

Low-Res Data Asymmetric Res Zero-Padded

64x64 32x64 64x"64”"

Stretched




Windowed Reconstruction to
Reduce Gibb’'s Ringing



Gibb’s Ringing
® Spurious ringing around sharp edges

e Max/Min overshoot is ~9% of the intensity discontinuity

- Independent of the # of recon points
- Frequency of ringing increases as # of recon points
Increases

® Ringing becomes less apparent

e Result of truncating the Fourier series model as a
consequence of finite sampling

e (Can reduce by:

- Acquiring more data
- Filtering the data to reduce oscillations in the PSF



Shepp-Logan Phantom




Gibb’s Ringing
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Gibb’s Ringing
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Pad
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Windowed Reconstruction

N/2—1
[(x)=Ak »  5(nAk)e?™make
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Fourier reconstruction



Windowed Reconstruction
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Fourier reconstruction
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Windowed Fourier

reconstruction K-space
filter/window

function



Windowed Reconstruction
I(z)=1I(z)%*h(x)

1L

Image  Object Spread
Function



Windowed Reconstruction
I(z)=1I(z)%*h(x)
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Point Spread Function for a windowed Fourier reconstruction.
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Hamming Filter - 1D
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Windowed Reconstruction

FWHM PSF for a Hamming windowed Fourier reconstruction.
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In general w,,<wy, therefore
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Hamming windowed Fourier reconstruction suppresses ringing,
but reduces effective spatial resolution.




Windowed Reconstruction
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Windowed Reconstruction

® Fourier transform properties

= Convolution in the image domain
IS equivalent to
multiplication in the frequency domain
(and vice versa)



Hamming Filter - 2D
Wi(n) = wn) ® wn)




Hamming Filter




Pad
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Hamming Window & Zero-Pad
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Multi-Channel (Coill)
Reconstruction



8-Channel Head Coll

Coil-8

Coil-3" COil- A Coil-5" Coil-6

Each coil element (channel) has a unique sensitivity profile — E,,,. (7)



4-Channel Cardiac C0|I

Each coil element (channel) has a unique sensitivity profile —

Coil 1 Coil 3

Coil 2




4-Channel Cardiac C0|I

Each coil element (channel) has a unique sensitivity profile —
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Multi-Colil Reconstruction

k-space

I(7) — Final magnitude image

I; () — Image from jtt coil

(7]2- — Noise variance
- Depends on coll loading
- Proximity to patient
- Measured with “noise scan”
- Weights each coil’s contribution



Thanks!

e Next: fast imaging, advanced recon
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