MRI Systems II – Nuclear Precession and B1

M219 - Principles and Applications of MRI Kyung Sung, Ph.D.

1/18/2022

Course Overview

- Course website
 - https://mrrl.ucla.edu/pages/m219
- 2023 course schedule
 - https://mrrl.ucla.edu/pages/m219_2023
- Assignments
 - Homework #1 due on 1/30
- Office hours, Fridays 10-12pm
 - In-person (Ueberroth, 1417B)
 - Zoom is also available

Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - ->1.5T
 - Z-oriented
- B₀ generates bulk magnetization (\vec{M})
 - More B₀, more

$$\vec{B}_0 = B_0 \vec{k}$$

$$ec{M} = \sum_{n=1}^{N_{total}} ec{\mu}_n$$

- B $_0$ forces \vec{M} to precess
 - Larmor Equation

$$\omega = \gamma B$$

To the board

Equation of Motion for the Bulk Magnetization

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

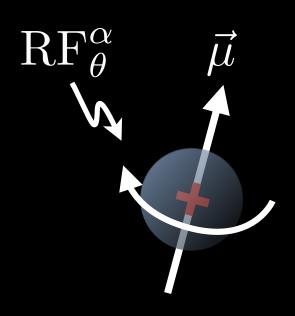
Equation of motion for an ensemble of spins [Classical Description]

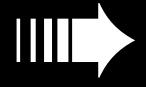
What is a general solution?

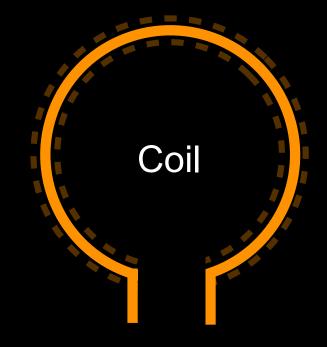
The *equation of motion* describes the bulk magnetization "behavior" in the presence of a B-field.

To the board

Signal Reception



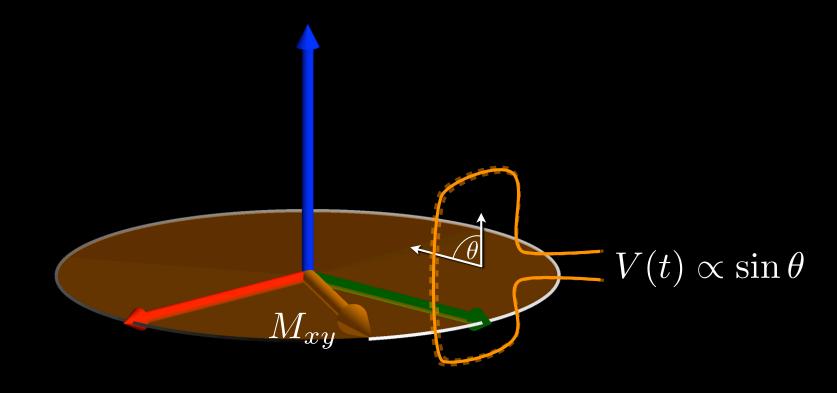




$$M_{xy}\left(\vec{r},t\right)$$

NMR Signal Detection

- Coil only detects M_{xy}
- Coil does not detect Mz
- Coil must be properly oriented



How does RF alter \vec{M} ? $\vec{B}_1\left(t ight)$

Generating B₁-Fields

MRI Hardware

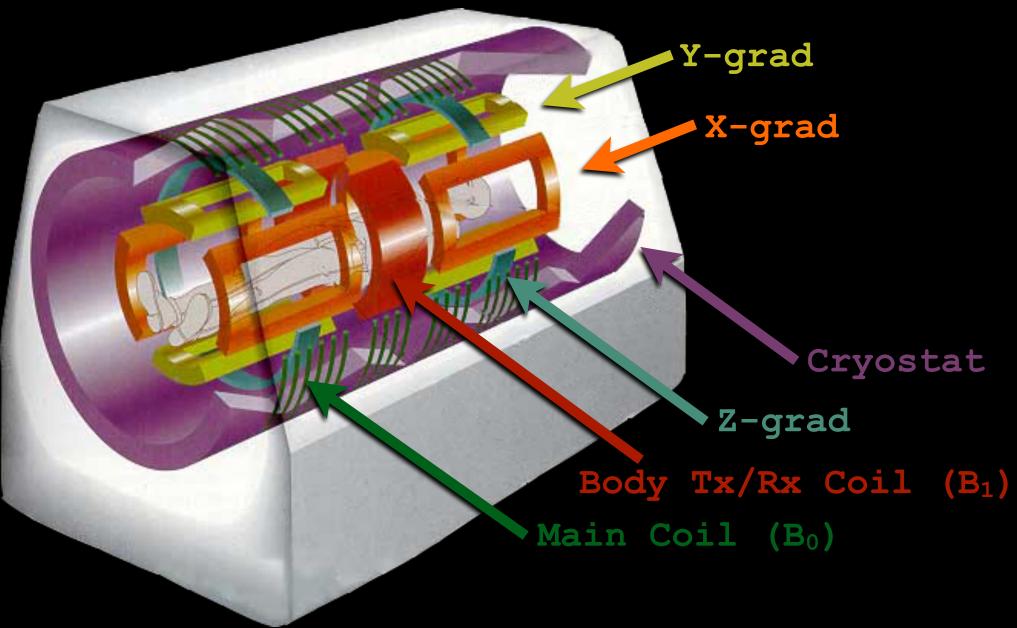


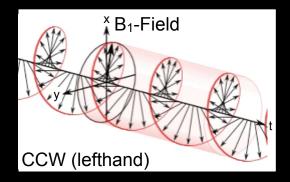
Image Adapted From: http://www.ee.duke.edu/~jshorey

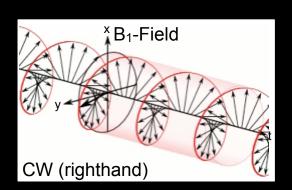
RF Shielding

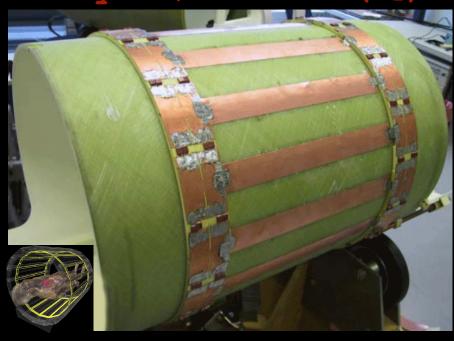
- RF fields are close to FM radio
 - 1 H @ 1.5T ⇒ 63.85 MHz
 - 1 H @ 3.0T ⇒ 127.71 MHz
 - KROQ \Rightarrow 106.7 MHz
- Need to shield local sources from interfering
- Copper room shielding required

RF Birdcage Coil

- Most common design
- Highly efficient
 - Nearly all of the fields produced contribute to imaging
- Very uniform field
 - Especially radially
 - Decays axially
 - Uniform sphere if L≈D
- Generates a "quadrature" field
 - Circular polarization







B₁ Field - RF Pulse

- B₁ is a
 - radiofrequency (RF)
 - 42.58MHz/T (63MHz at 1.5T)
 - short duration pulse (~0.1 to 5ms)
 - small amplitude
 - <30 μT
 - circularly polarized
 - rotates at Larmor frequency
 - magnetic field
 - perpendicular to B₀

Basic RF Pulse

$$\overrightarrow{B} = \overrightarrow{B}_0 + \overrightarrow{B}_1(t)$$

$$\overrightarrow{B}_1(t) = B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$$

$$B_1^e(t)$$

pulse envelope function

 ω_{RF}

excitation carrier frequency

 θ

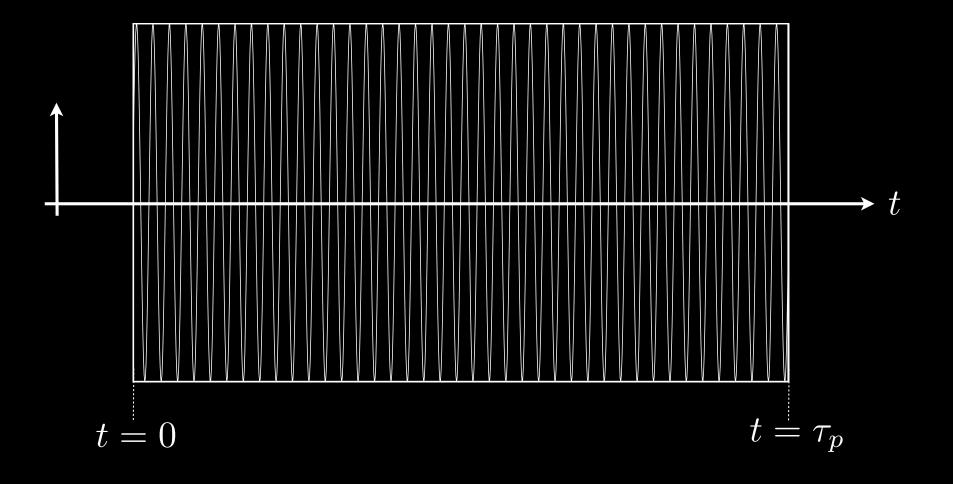
initial phase angle

B₁ is perpendicular to B₀.

$$\overrightarrow{B}_0 = B_0 \hat{k}$$

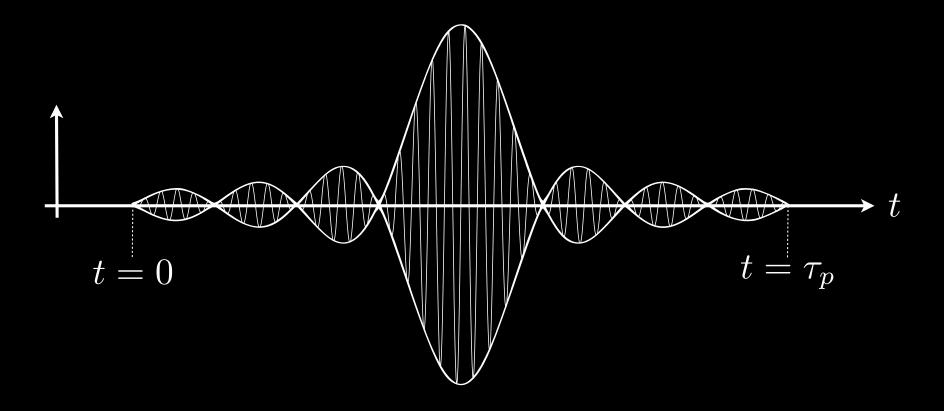
Rect Envelope Function

$$B_1^e(t) = B_1 \sqcap \left(\frac{t - \tau_p/2}{\tau_p}\right) = \begin{cases} B_1, & 0 \le t \le \tau_p \\ 0, & otherwise \end{cases}$$



Sinc Envelope Function

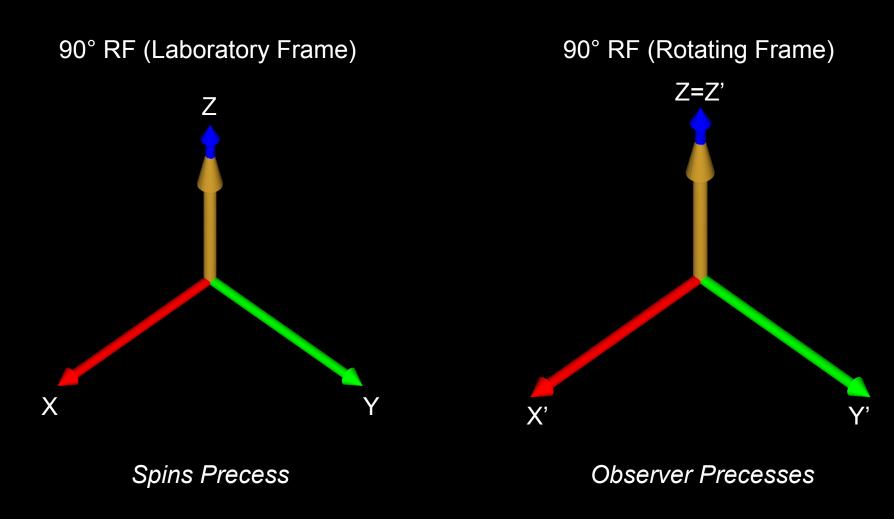
$$B_{1}^{e}(t) = \begin{cases} B_{1} \operatorname{sinc}\left[\pi f_{\omega}\left(t - \tau_{p}/2\right)\right], & 0 \leq t \leq \tau_{p} \\ 0, & otherwise \end{cases}$$



Rotating Frame

Lab vs. Rotating Frame

• The rotating frame simplifies the mathematics and permits more intuitive understanding.



Note: Both coordinate frames share the same z-axis.

Combined B₀ & B₁ Effects

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$
$$= \vec{M} \times \gamma \left(\vec{B_0} + \vec{B_1} \right)$$

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions

$$ec{M}_{rot} \equiv \left[egin{array}{c} M_{x'} \ M_{y'} \ M_{z'} \end{array}
ight] \qquad ec{B}_{rot} \equiv \left[egin{array}{c} B_{x'} \ B_{z'} \ B_{z'} \end{array}
ight]$$

$$ec{B}_{rot} \equiv \left| egin{array}{c} B_{x'} \ B_{y'} \ B_{z'} \end{array}
ight|$$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

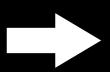
$$\overrightarrow{M}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{M}_{rot}(t)$$

$$\overrightarrow{B}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{B}_{rot}(t)$$

Bulk magnetization components in the rotating frame.

Applied B-field components in the rotating frame.

$$rac{dec{M}}{dt} = ec{M} imes \gamma ec{B}$$



$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \qquad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

Bloch Equation (Rotating Frame)

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Equation of motion for an ensemble of spins (isochromats).

[Laboratory Frame]

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \left(\frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \right)$$

Equation of motion for an ensemble of spins (isochromats).

[Rotating Frame]

$$ec{B}_{eff}\equiv rac{ec{\omega}_{rot}}{\gamma}+ec{B}_{rot}$$
 Effective B-field that Applied B-M experiences in the

$$\overrightarrow{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$

Applied B-field in the rotating frame.

Fictitious field that demodulates the apparent effect of *B*₀.

rotating frame.

Bloch Equation (Rotating Frame)

$$\overrightarrow{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$$

$$\overrightarrow{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF} + \theta) \\ B_0 \end{pmatrix} \qquad \overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{pmatrix}$$

$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \overrightarrow{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$
 Effective B-field that Applied B-field in the rotating frame. M experiences in the

Fictitious field that demodulates the apparent effect of B_0 .

rotating frame.

Bloch Equation (Rotating Frame)

$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$$

Assume no RF phase $(\theta = 0)$

$$\overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \end{pmatrix} \qquad \overrightarrow{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$

$$\overrightarrow{B}_{eff}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 & \gamma \end{pmatrix}$$

Questions?

- Related reading materials
 - Nishimura Chap 3 and 4

Kyung Sung, Ph.D.

KSung@mednet.ucla.edu

http://mrrl.ucla.edu/sunglab