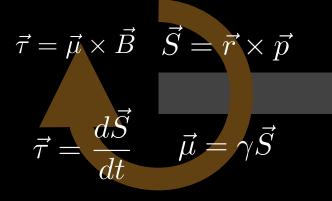
Bloch Equations and Relaxation

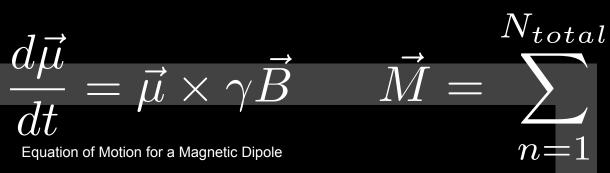
M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/23/2023

Course Overview

- Course website
 - https://mrrl.ucla.edu/pages/m219
- 2023 course schedule
 - https://mrrl.ucla.edu/pages/m219_2023
- Assignments
 - Homework #1 due on 1/30
 - Homework #2 will be out on 1/30
- Office hours, Fridays 10-12pm
 - In-person (Ueberroth, 1417B)
 - Zoom is also available

Last Time...





$$M_x(t) = M_x^0 \cos(\gamma B_0 t) + M_y^0 \sin(\gamma B_0 t)$$

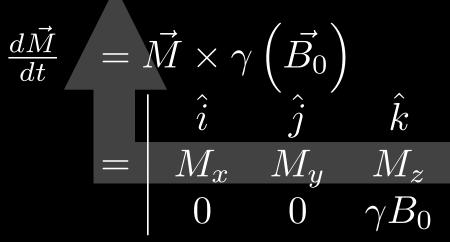
$$M_y(t) = -M_x^0 \sin(\gamma B_0 t) + M_y^0 \cos(\gamma B_0 t)$$

$$M_z(t) = M_z^0$$

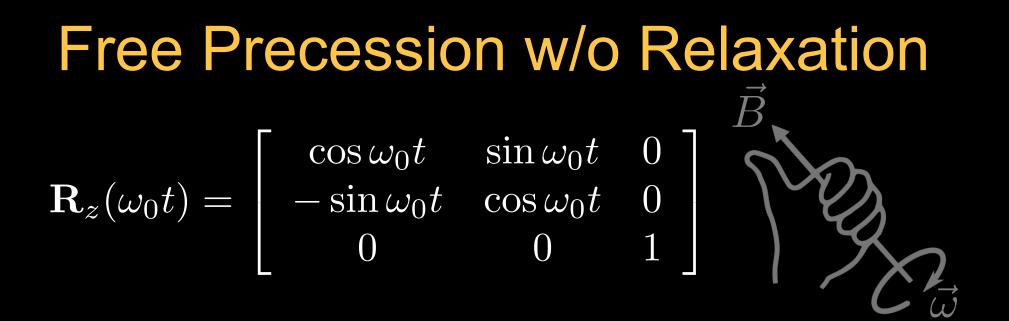
$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Equation of Motion for the bulk magnetization.

 $=B_0\vec{k}$



 $ec{\mu}_n$



Precession is left-handed (clockwise).

 $\vec{M}(t) = \mathbf{R}_z(\omega_0 t) \vec{M}^0$

Basic RF Pulse $\overrightarrow{B} = \overrightarrow{B}_0 + \overrightarrow{B}_1(t)$ $\vec{B}_1(t) = B_1^e(t)[\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $B_{1}^{e}(t)$ pulse envelope function ω_{RF} excitation carrier frequency Ĥ initial phase angle

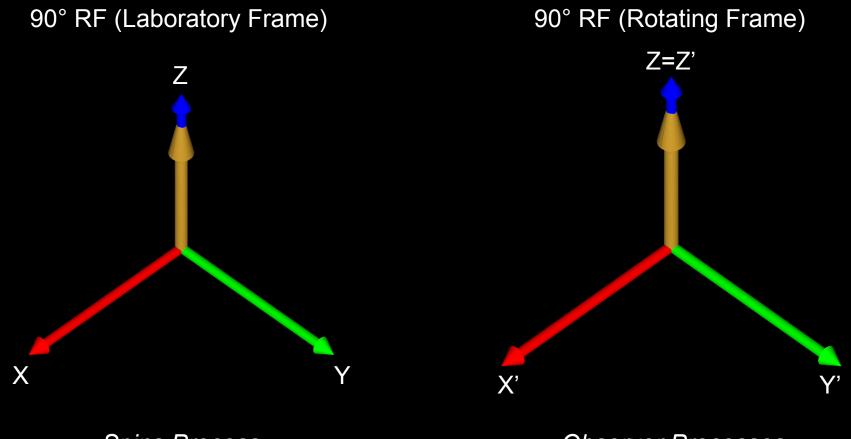
 B_1 is perpendicular to B_0 .

$$\overrightarrow{B}_0 = B_0 \hat{k}$$

Rotating Frame

Lab vs. Rotating Frame

• The rotating frame simplifies the mathematics and permits more intuitive understanding.



Spins Precess

Observer Precesses

Note: Both coordinate frames share the same z-axis.

Combined B₀ & B₁ Effects

 $\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$ $= \vec{M} \times \gamma \left(\vec{B_0} + \vec{B_1} \right)$

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions $\vec{M}_{rot} \equiv \begin{bmatrix} M_{x'} \\ M_{y'} \\ M_{z'} \end{bmatrix}$ $\vec{B}_{rot} \equiv \begin{bmatrix} B_{x'} \\ B_{y'} \\ B_{z'} \end{bmatrix}$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

$$\vec{M}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \vec{M}_{rot}(t)$$

 $\overrightarrow{B}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{B}_{rot}(t)$

Bulk magnetization components in the rotating frame.

Applied B-field components in the rotating frame.

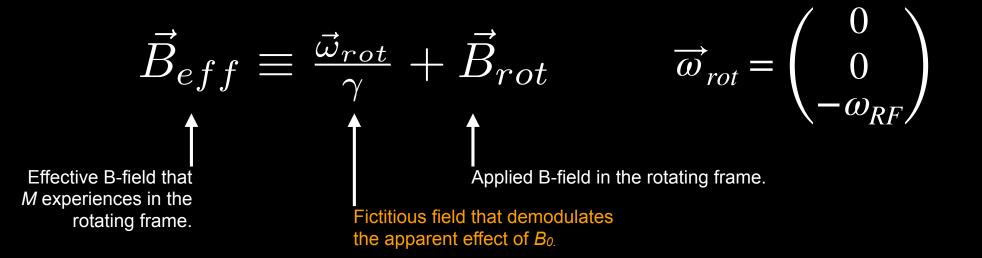
$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \Longrightarrow \quad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

Bloch Equation (Rotating Frame)

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Equation of motion for an ensemble of spins (isochromats). [Laboratory Frame]

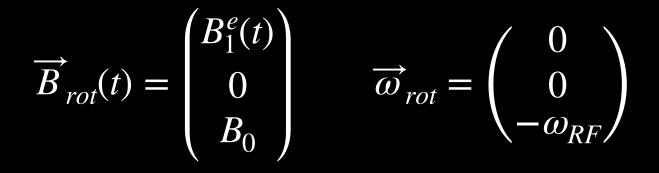
$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \left(\frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \right) \overset{\text{Equation of motion for an}}{\underset{[\text{Rotating Frame}]}{\text{Equation of motion for an}}}$$



Bloch Equation (Rotating Frame) $\vec{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $\vec{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF} + \theta) \\ B_0 \end{pmatrix} \qquad \vec{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{pmatrix}$ $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$ Effective B-field that Applied B-field in the rotating frame. M experiences in the Fictitious field that demodulates rotating frame. the apparent effect of B_{0} .

Bloch Equation (Rotating Frame) $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$

Assume no RF phase ($\theta = 0$)



$$\vec{B}_{eff}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \\ & \omega_{RF} \\ B_0 \\ & \gamma \end{pmatrix}$$

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions $\vec{M}_{rot} \equiv \begin{bmatrix} M_{x'} \\ M_{y'} \\ M_{z'} \end{bmatrix}$ $\vec{B}_{rot} \equiv \begin{bmatrix} B_{x'} \\ B_{y'} \\ B_{z'} \end{bmatrix}$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

$$\vec{M}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \vec{M}_{rot}(t)$$

 $\overrightarrow{B}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{B}_{rot}(t)$

Bulk magnetization components in the rotating frame.

Applied B-field components in the rotating frame.

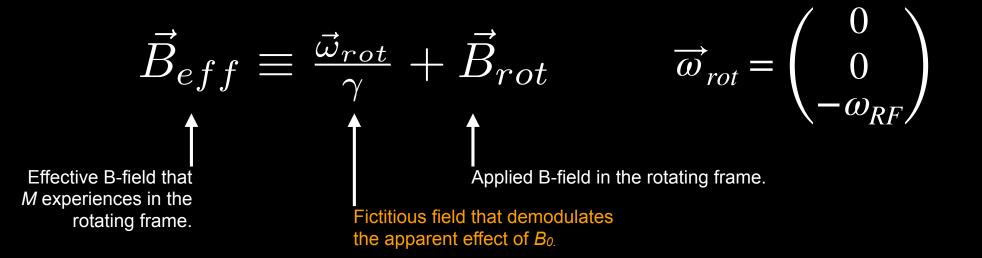
$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \Longrightarrow \quad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

Bloch Equation (Rotating Frame)

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Equation of motion for an ensemble of spins (isochromats). [Laboratory Frame]

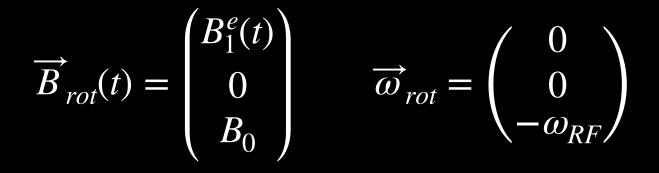
$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \left(\frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \right) \overset{\text{Equation of motion for an}}{\underset{[\text{Rotating Frame}]}{\text{Equation of motion for an}}}$$



Bloch Equation (Rotating Frame) $\vec{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $\vec{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF} + \theta) \\ B_0 \end{pmatrix} \qquad \vec{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{pmatrix}$ $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$ Effective B-field that Applied B-field in the rotating frame. M experiences in the Fictitious field that demodulates rotating frame. the apparent effect of B_{0} .

Bloch Equation (Rotating Frame) $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$

Assume no RF phase ($\theta = 0$)



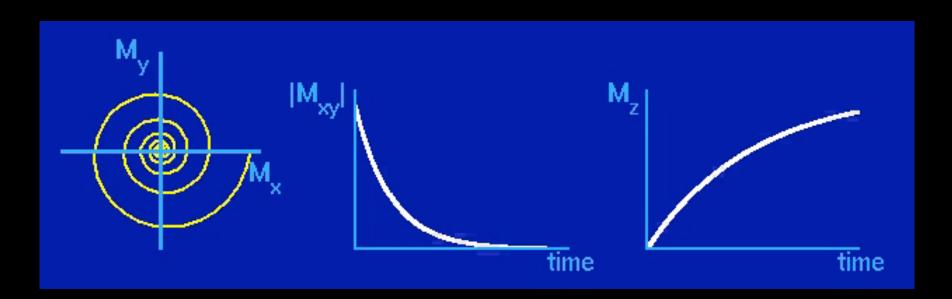
$$\vec{B}_{eff}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \\ & \omega_{RF} \\ B_0 \\ & \gamma \end{pmatrix}$$

To the Board

T₁ & T₂ Relaxation

Relaxation

- Magnetization returns exponentially to equilibrium:
 - Longitudinal recovery time constant is T1
 - Transverse decay time constant is T2
- Relaxation and precession are independent



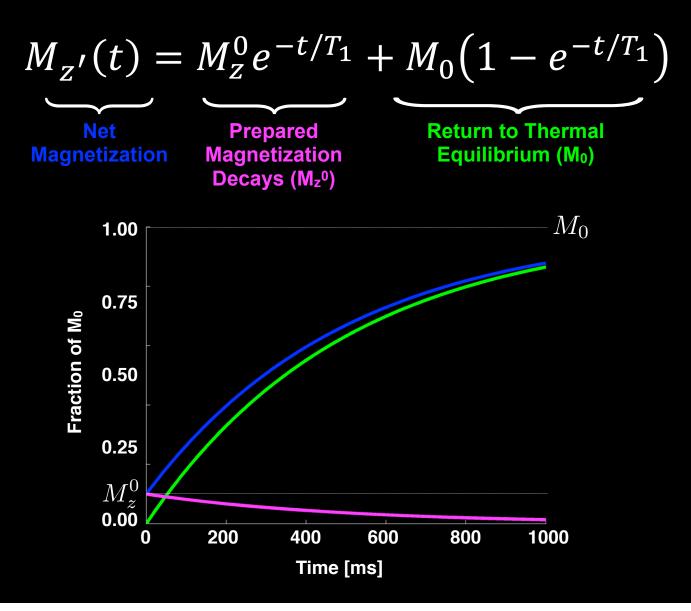
T₁ Relaxation

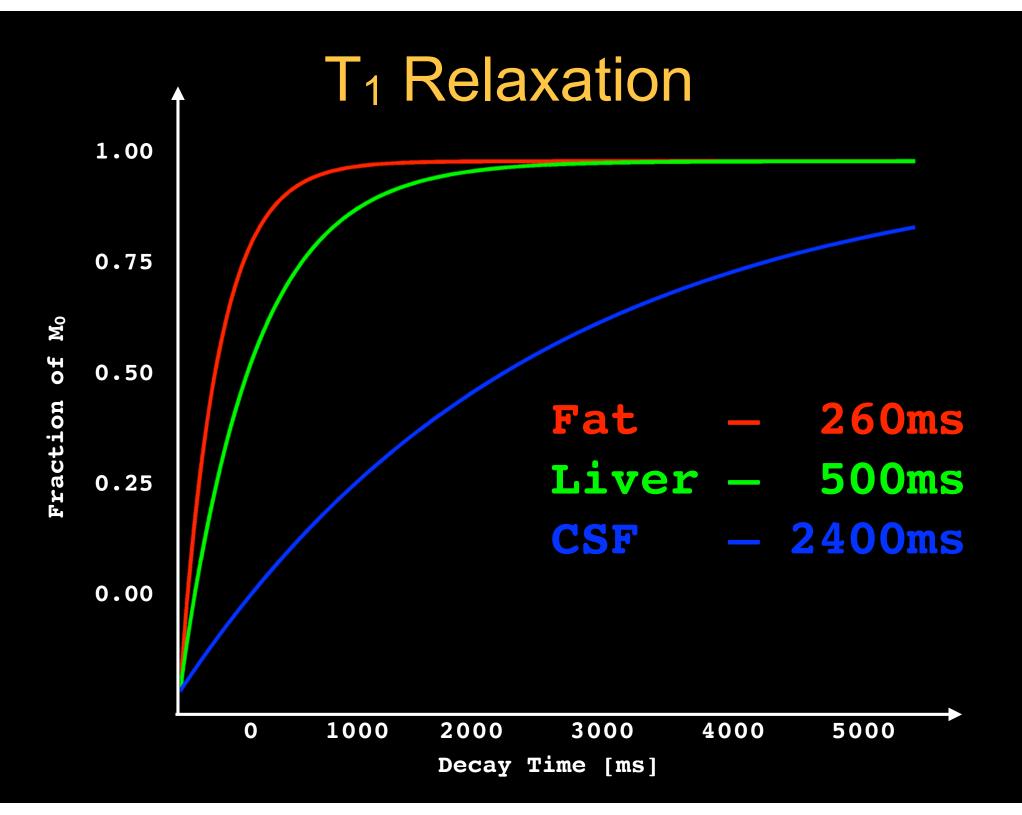
- Longitudinal or spin-lattice relaxation
 - Typically, (10s ms) < T1 < (100s ms)
- T1 is long for
 - Small molecules (water)
 - Large molecules (proteins)
- T1 is short for
 - Fats and intermediate-sized molecules
- T1 increases with increasing B0
- T1 decreases with contrast agents

Short T_1s are bright on T_1 -weighted image

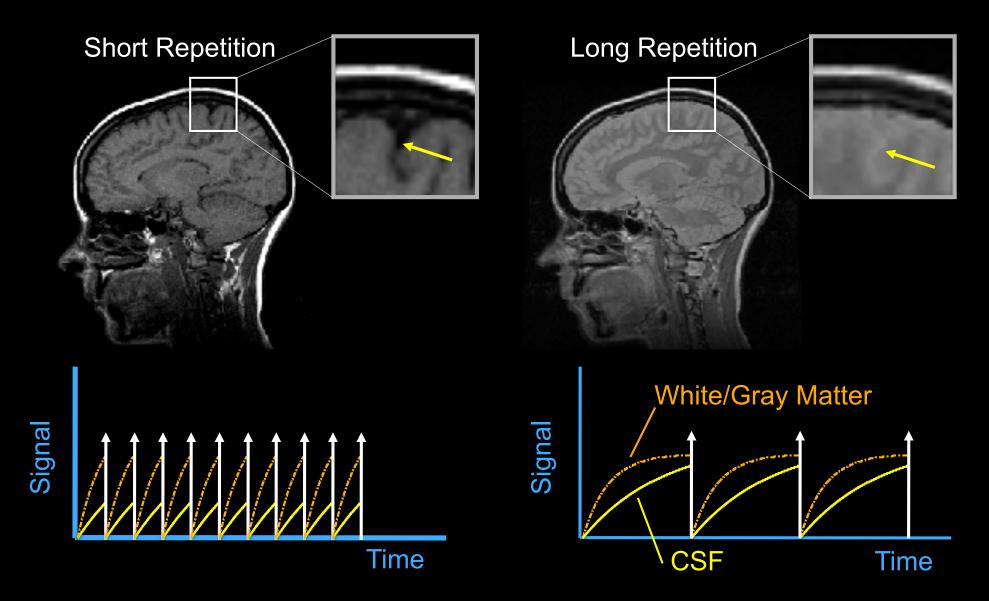
T₁ Relaxation

Free Precession in the Lab or Rotating Frame with Relaxation





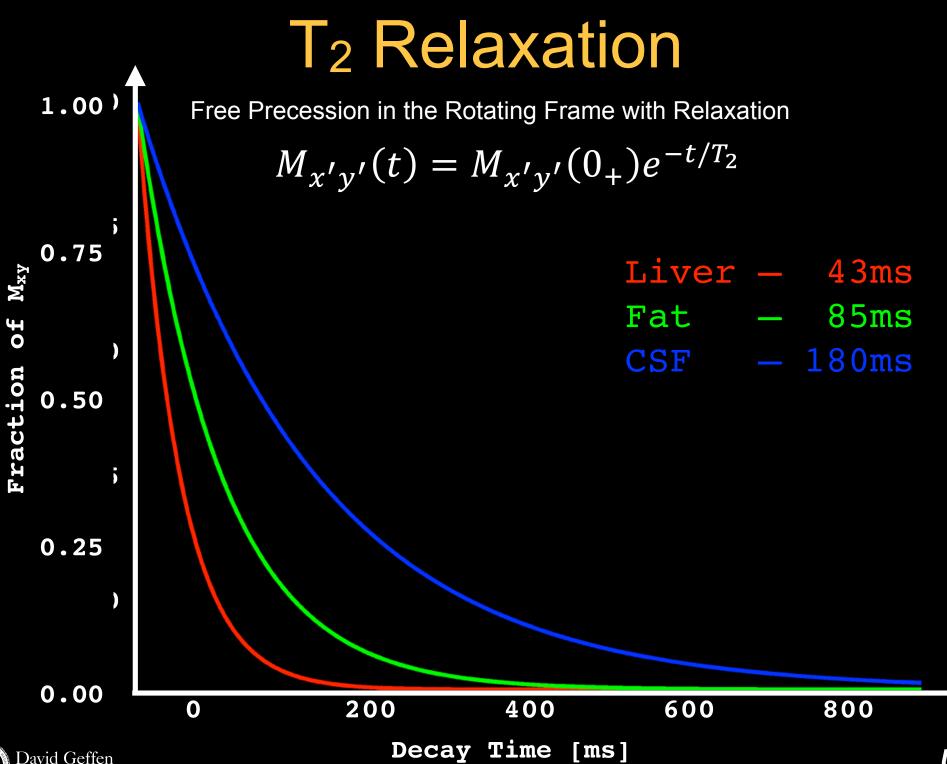
T₁ Contrast



T₂ Relaxation

- Transverse or spin-spin relaxation
 - Molecular interaction causes spin dephasing
 - Typically, T2 < (10s ms)</p>
- Increasing molecular size, decrease T2
 - Fat has a short T2
- Increasing molecular mobility, increases T2
 - Liquids (CSF, edema) have long T2s
- Increasing molecular interactions, decreases T2
 - Solids have short T2s
- T2 relatively independent of B0

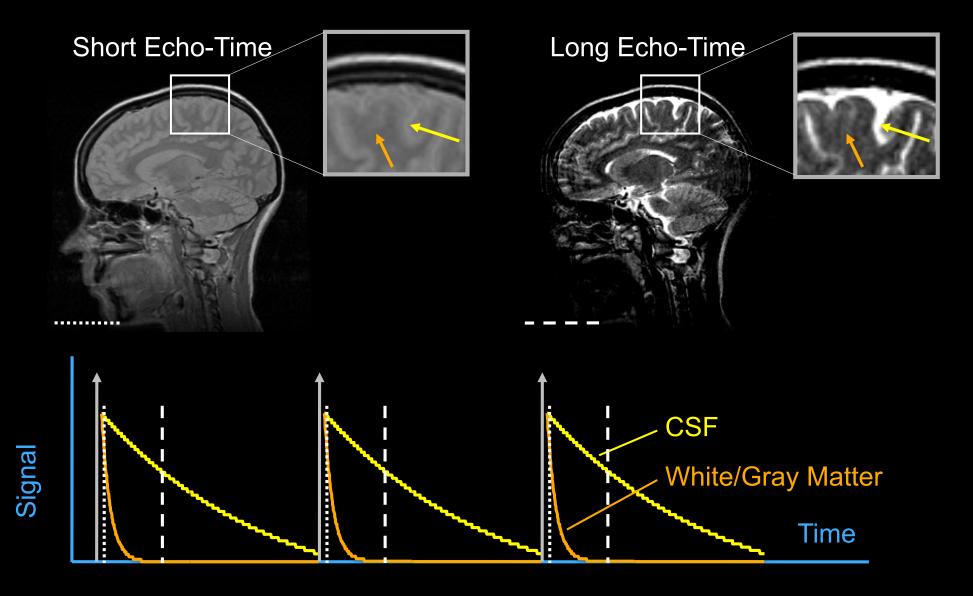
Long T₂ is bright on T₂ weighted image



chool of Medicine

UCLA Radiology

T2 Contrast



T₁ and T₂ Values @ 1.5T

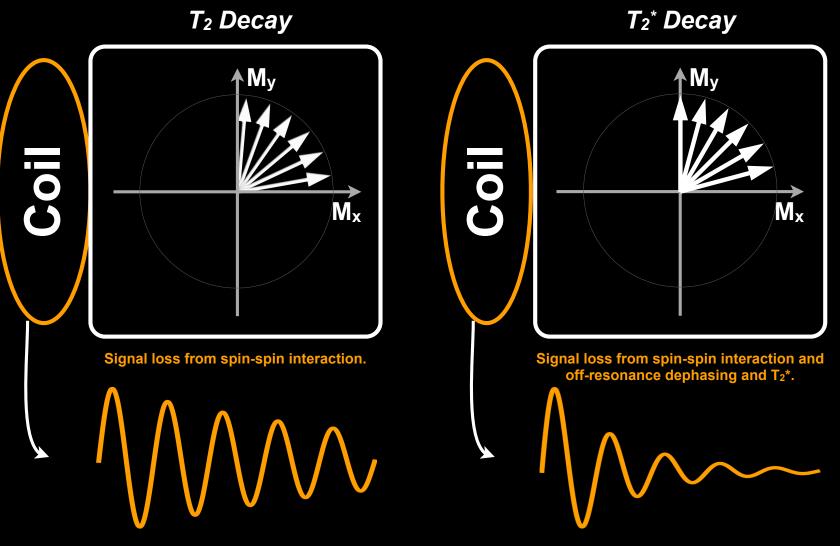
Tissue	\mathbf{T}_1 [ms]	T ₂ [ms]
gray matter	925	100
white matter	790	92
muscle	875	47
fat	260	85
kidney	650	58
liver	500	43
CSF	2400	180

Each tissue has "unique" relaxation properties, which enables "soft tissue contrast".

T₂* Relaxation

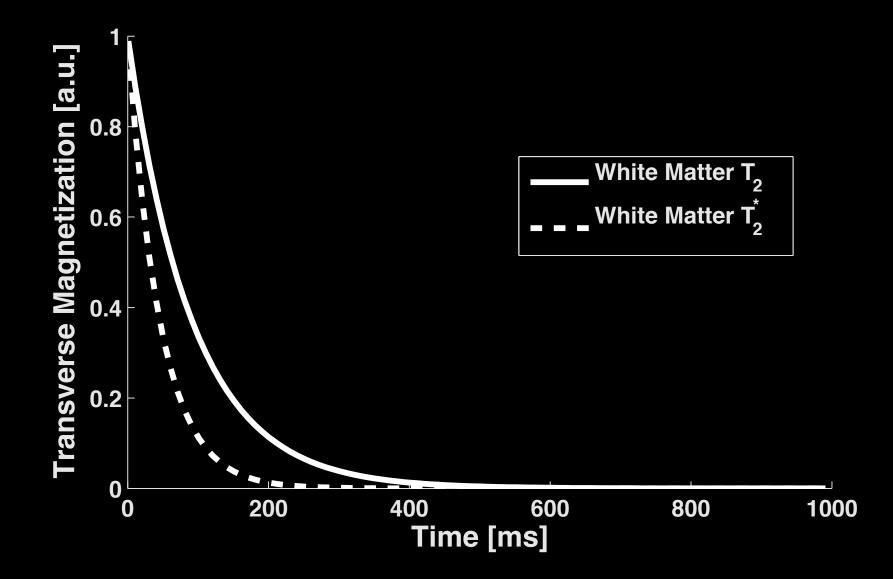
$\frac{1}{T_2^*} = \frac{1}{T_2} + \gamma \Delta B_0$

- T₂* is "observed" transverse relaxation time constant
- T₂* consists of <u>irreversible spin-spin (T₂)</u> <u>dephasing</u> and <u>reversible intravoxel spin de-</u> <u>phasing</u> due to off-resonance
- Sources of off-resonance:
 - B₀ inhomogeneity
 - susceptibility differences (e.g. air spaces)



 T_2^* is signal loss from spin dephasing and T_2

T2*<T2 (always!)



PATENTED FEB 5 1974

3,789,832

SHEET 2 OF 2

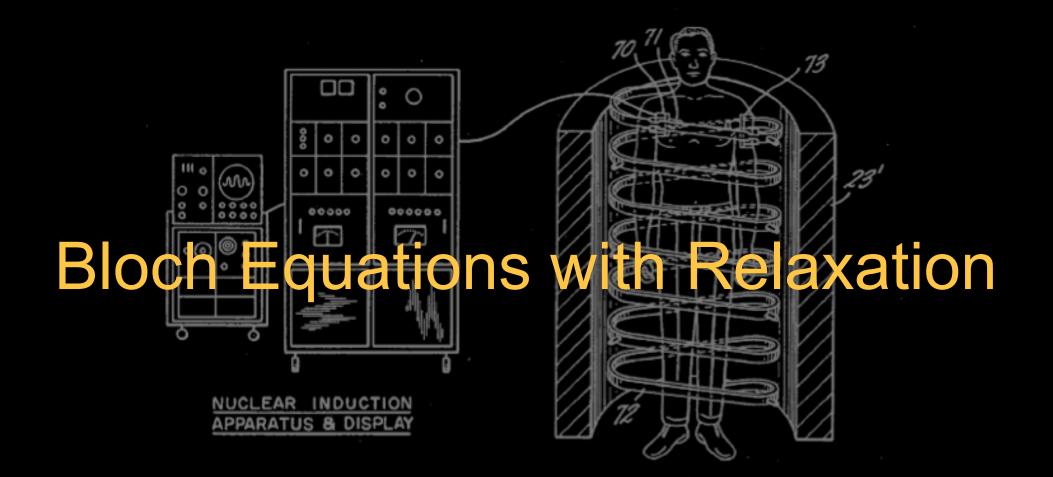


FIG. 2

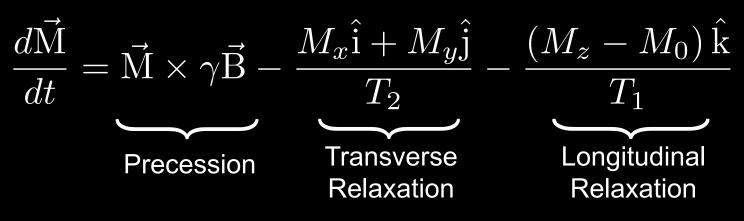
Bloch Equations with Relaxation

$$\frac{d\vec{\mathbf{M}}}{dt} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}} - \frac{M_x \hat{\mathbf{i}} + M_y \hat{\mathbf{j}}}{T_2} - \frac{(M_z - M_0) \hat{\mathbf{k}}}{T_1}$$

- Differential Equation

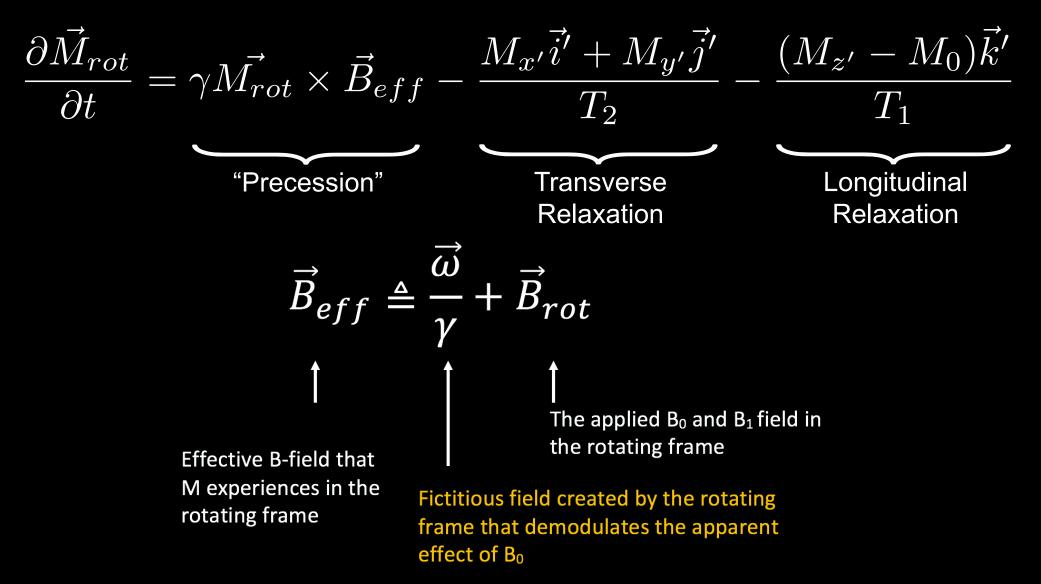
 Ordinary, Coupled, Non-linear
- No analytic solution, in general.
 - Analytic solutions for simple cases.
 - Numerical solutions for all cases.
- Phenomenological
 - Exponential behavior is an approximation.

Bloch Equations - Lab Frame



- Precession
 - Magnitude of M unchanged
 - Phase (rotation) of M changes due to B
- Relaxation
 - T₁ changes are slow O(100ms)
 - T₂ changes are fast O(10ms)
 - Magnitude of M can be ZERO
- Diffusion
 - Spins are thermodynamically driven to exchange positions.
 - Bloch-Torrey Equations

Bloch Equations – Rotating Frame



Free Precession in the Rotating Frame with Relaxation

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$

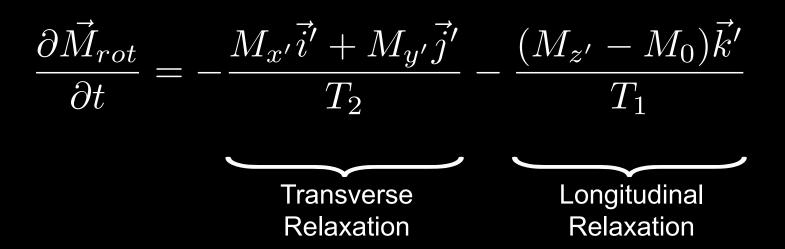
$$\vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot}$$

$$\vec{\omega}_{rot} = \vec{\omega} = -\gamma \mathbf{B}_0 \hat{k} \qquad \vec{\mathbf{B}}_{rot} = \mathbf{B}_0 \hat{k}$$

 $\vec{B}_{eff} = \vec{0}$ $\frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$

The precessional term drops out in the rotating frame.

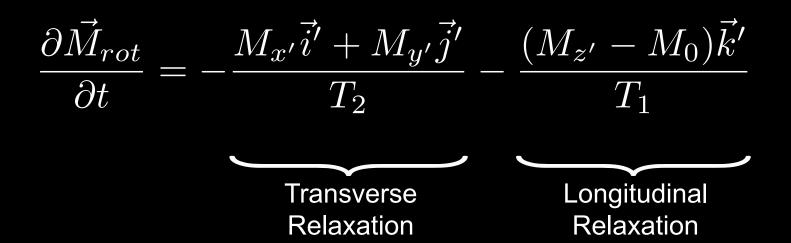
Free Precession in the Rotating Frame



- No precession
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, separable ODEs!

The precessional term drops out in the rotating frame.

Free Precession in the Rotating Frame



Solution:

$$M_{z'}(t) = M_z^0 e^{-t/T_1} + M_0 (1 - e^{-t/T_1})$$
$$M_{x'y'}(t) = M_{x'y'}(0_+) e^{-t/T_2}$$

The precessional term drops out in the rotating frame.

Forced Precession in the Rotating Frame with Relaxation

Forced Precession in the Rot. Frame with Relaxation

$$\begin{aligned} \frac{\partial \vec{M}_{rot}}{\partial t} &= \gamma \vec{M_{rot}} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1} \\ \vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot} \\ \vec{\omega}_{rot} &= \vec{\omega} = -\gamma B_0 \hat{k} \quad \vec{B}_{rot} = B_0 \hat{k} + B_1^e(t) \hat{i'} \\ \vec{B}_{eff} &= B_1^e(t) \hat{i'} \end{aligned}$$

The precessional term *does not* drop out in the rotating frame.

Forced Precession in the Rot. Frame with Relaxation

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$
$$\vec{B}_{eff} = B_1^e(t)\hat{i'}$$

- B1 induced nutation
- T₁ and T₂ Relaxation

David Geffen

- Drop the diffusion term
- System or first order, linear, coupled PDEs!
- When does this equation apply?

Forced Precession in the Rotating Frame with Relaxation

- RF pulses are short
 - $-100\mu s$ to 5ms
- Relaxation time constants are long
 - $-T_1 O(100s) ms$
 - $-T_2 O(10s) ms$
- Complicated Coupling
- Best suited for simulation

Free? Forced? Relaxation?

- We've considered all combinations of:
 - Free and forced precession
 - With and without relaxation
 - Laboratory and rotating frames
- Which one's concern M219 the most?
 - Free precession in the rotating frame with relaxation
 - Forced precession in the rotating frame without relaxation.
- We can, in fact, simulate all of them...

- Related reading materials
 - Nishimura Chap 4 and 5

Kyung Sung, Ph.D. KSung@mednet.ucla.edu http://mrrl.ucla.edu/sunglab