Bloch Equations and Relaxation II

M219 - Principles and Applications of MRI Kyung Sung, Ph.D.

1/25/2023

Course Overview

- Course website
 - https://mrrl.ucla.edu/pages/m219
- 2023 course schedule
 - https://mrrl.ucla.edu/pages/m219_2023
- Assignments
 - Homework #1 due on 1/30
 - Homework #2 will be out on 1/30
- Office hours, Fridays 10-12pm
 - In-person (Ueberroth, 1417B)
 - Zoom is also available

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions

$$ec{M}_{rot} \equiv \left[egin{array}{c} M_{x'} \ M_{y'} \ M_{z'} \end{array}
ight] \qquad ec{B}_{rot} \equiv \left[egin{array}{c} B_{x'} \ B_{z'} \ B_{z'} \end{array}
ight]$$

$$ec{B}_{rot} \equiv \left[egin{array}{c} B_{x'} \ B_{y'} \ B_{z'} \end{array}
ight]$$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

$$\overrightarrow{M}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{M}_{rot}(t)$$

$$\overrightarrow{B}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{B}_{rot}(t)$$

Bulk magnetization components in the rotating frame.

Applied B-field components in the rotating frame.

$$rac{dec{M}}{dt} = ec{M} imes \gamma ec{B}$$

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \qquad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

Bloch Equation (Rotating Frame)

$$\overrightarrow{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$$

$$\overrightarrow{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF}t + \theta) \\ B_0 \end{pmatrix} \qquad \overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{pmatrix}$$

$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \overrightarrow{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$
 Effective B-field that Applied B-field in the rotating frame. M experiences in the

rotating frame. Fictitious field that demodulates the apparent effect of B_0 .

Bloch Equation (Rotating Frame)

$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$$

Assume no RF phase $(\theta = 0)$

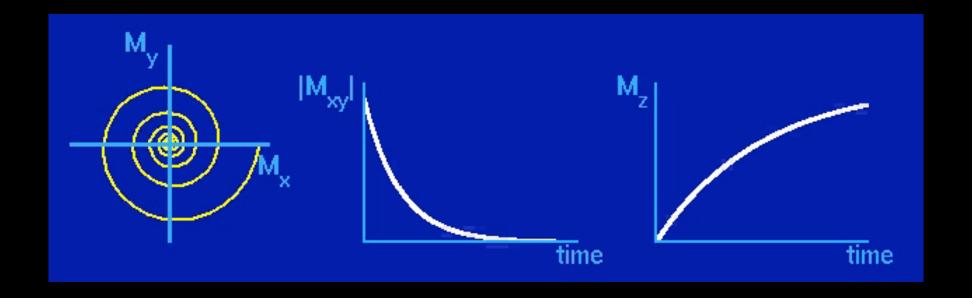
$$\overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \end{pmatrix} \qquad \overrightarrow{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$

$$\overrightarrow{B}_{eff}(t) = egin{pmatrix} B_1^e(t) \ 0 \ B_0 \ \gamma \end{pmatrix}$$

T₁ & T₂ Relaxation

Relaxation

- Magnetization returns exponentially to equilibrium:
 - Longitudinal recovery time constant is T1
 - Transverse decay time constant is T2
- Relaxation and precession are independent



T₁ Relaxation

- Longitudinal or spin-lattice relaxation
 - Typically, (10s ms) < T1 < (100s ms)
- T1 is long for
 - Small molecules (water)
 - Large molecules (proteins)
- T1 is short for
 - Fats and intermediate-sized molecules
- T1 increases with increasing B0
- T1 decreases with contrast agents

Short T₁s are bright on T₁-weighted image

T₁ Relaxation

Free Precession in the Lab or Rotating Frame with Relaxation

$$M_{Z'}(t) = M_Z^0 e^{-t/T_1} + M_0 (1 - e^{-t/T_1})$$

Net
Prepared
Magnetization
Decays (Mz0)

1.00

0.75

0.75

0.25

 M_z^0

0.00

0.200

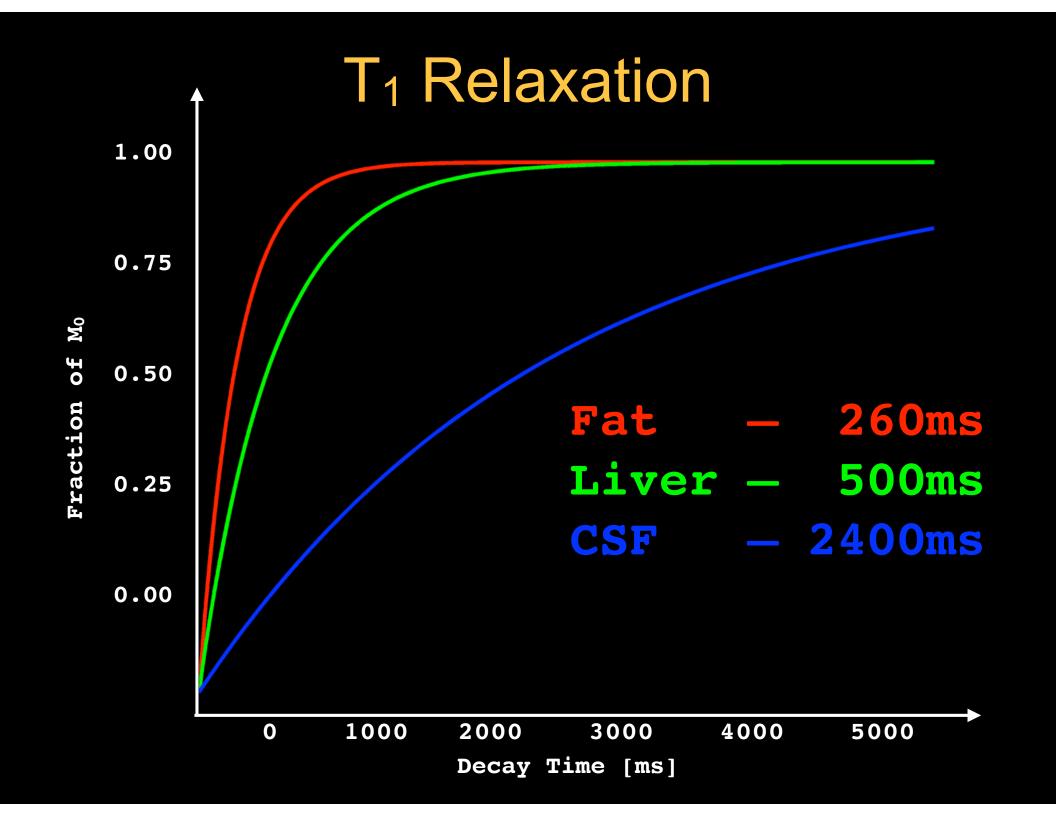
400

600

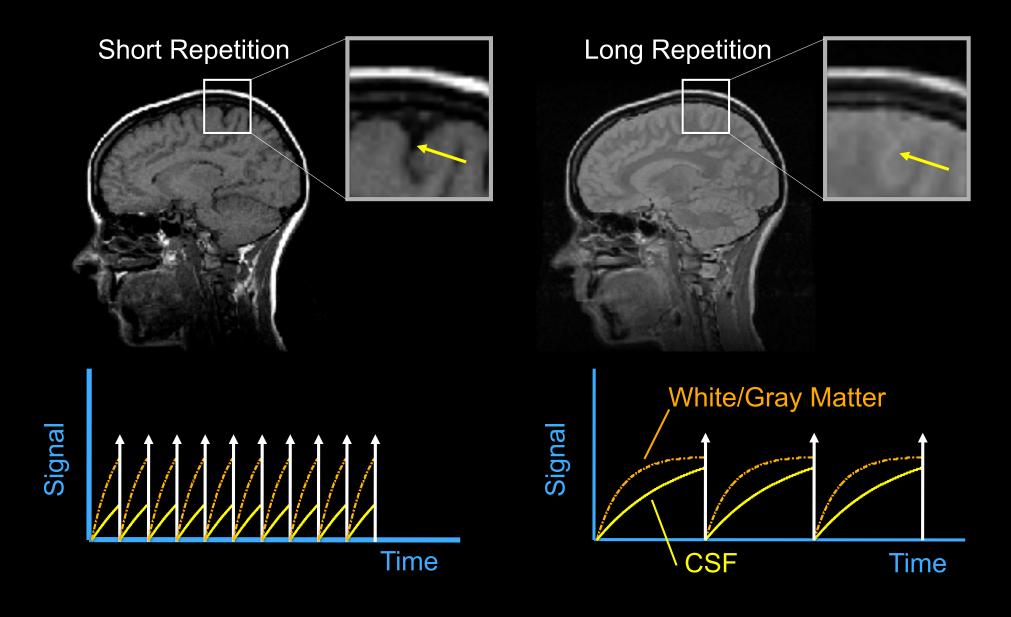
800

1000

Time [ms]



T₁ Contrast

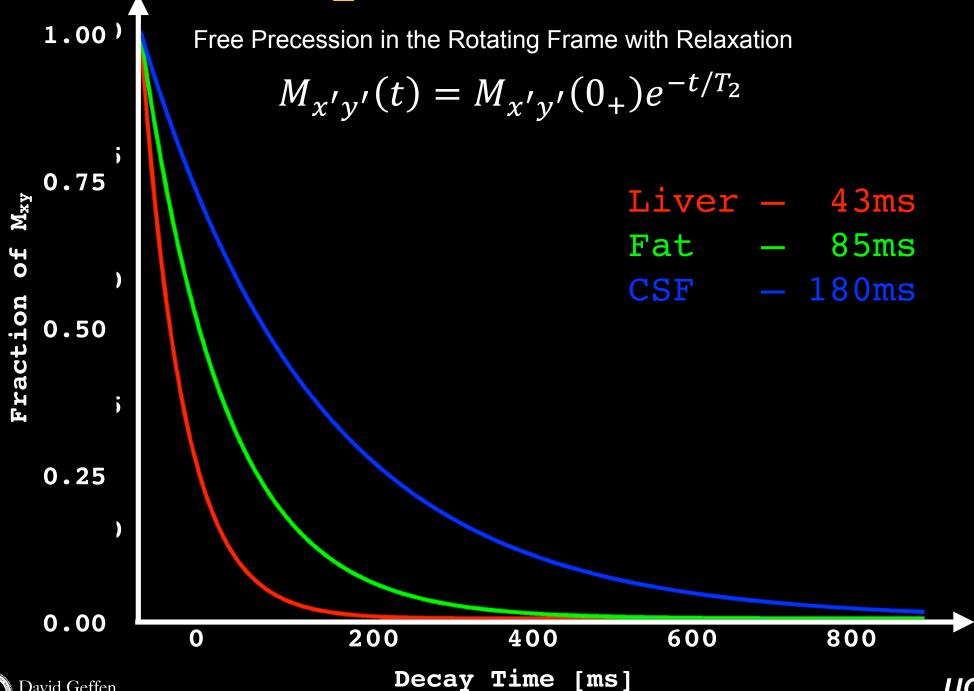


T₂ Relaxation

- Transverse or spin-spin relaxation
 - Molecular interaction causes spin dephasing
 - Typically, T2 < (10s ms)
- Increasing molecular size, decrease T2
 - Fat has a short T2
- Increasing molecular mobility, increases T2
 - Liquids (CSF, edema) have long T2s
- Increasing molecular interactions, decreases T2
 - Solids have short T2s
- T2 relatively independent of B0

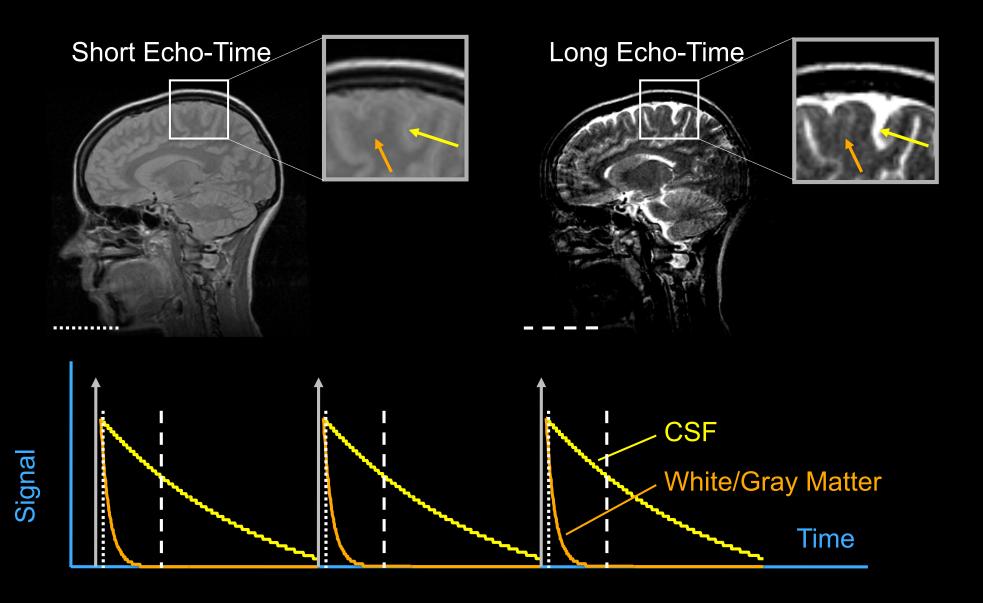
Long T₂ is bright on T₂ weighted image

T₂ Relaxation



UCLA Radiology

T2 Contrast



T₁ and T₂ Values @ 1.5T

	<u> </u>	
Tissue	\mathbf{T}_1 [ms]	T_2 [ms]
gray matter	925	100
white matter	790	92
muscle	875	47
fat	260	85
kidney	650	58
liver	500	43
CSF	2400	180

Each tissue has "unique" relaxation properties, which enables "soft tissue contrast".

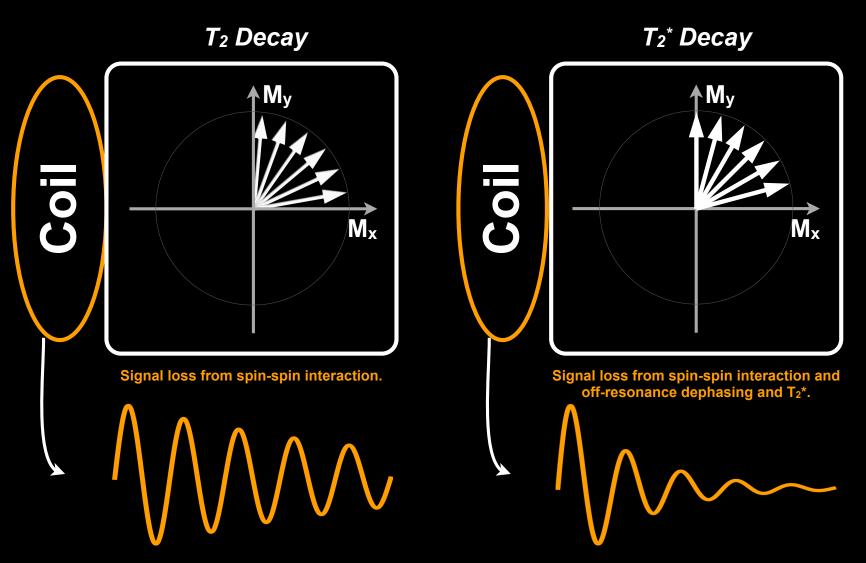
T₂* Relaxation

T₂* Relaxation

$$\frac{1}{T_2^*} = \frac{1}{T_2} + \gamma \Delta B_0$$

- T₂* is "observed" transverse relaxation time constant
- T₂* consists of <u>irreversible spin-spin (T₂)</u>
 <u>dephasing</u> and <u>reversible intravoxel spin dephasing</u> due to off-resonance
- Sources of off-resonance:
 - B₀ inhomogeneity
 - susceptibility differences (e.g. air spaces)

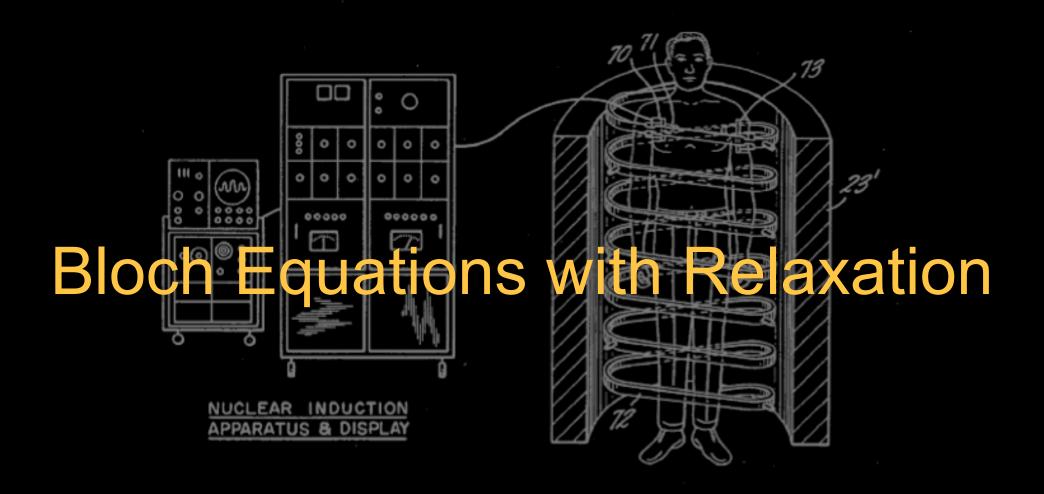
T₂ versus T₂*



T₂* is signal loss from spin dephasing and T₂

T2*<T2 (always!)

SHEET 2 OF 2



F1G. 2

Bloch Equations with Relaxation

$$\frac{d\vec{\mathbf{M}}}{dt} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}} - \frac{M_x \hat{\mathbf{i}} + M_y \hat{\mathbf{j}}}{T_2} - \frac{(M_z - M_0) \hat{\mathbf{k}}}{T_1}$$

- Differential Equation
 - Ordinary, Coupled, Non-linear
- No analytic solution, in general.
 - Analytic solutions for simple cases.
 - Numerical solutions for all cases.
- Phenomenological
 - Exponential behavior is an approximation.

Bloch Equations - Lab Frame

$$\frac{d\vec{\mathbf{M}}}{dt} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}} - \frac{M_x \hat{\mathbf{i}} + M_y \hat{\mathbf{j}}}{T_2} - \frac{(M_z - M_0) \, \hat{\mathbf{k}}}{T_1}$$
 Precession Transverse Longitudinal Relaxation

Precession

- Magnitude of M unchanged
- Phase (rotation) of M changes due to B

Relaxation

- T₁ changes are slow O(100ms)
- T₂ changes are fast O(10ms)
- Magnitude of M can be ZERO

Diffusion

- Spins are thermodynamically driven to exchange positions.
 - Bloch-Torrey Equations

Bloch Equations – Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M_{rot}} \times \vec{B}_{eff} - \underbrace{\frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2}}_{\text{"Precession"}} - \underbrace{\frac{(M_{z'} - M_0)\vec{k'}}{T_1}}_{\text{Longitudinal Relaxation}}$$

$$\vec{B}_{eff} \triangleq \frac{\omega}{\gamma} + \vec{B}_{rot}$$
 \uparrow

The applied B₀ and B₁ field in the rotating frame

Effective B-field that M experiences in the rotating frame

Fictitious field created by the rotating frame that demodulates the apparent effect of $B_{\rm 0}$

Free Precession in the Rotating Frame with Relaxation

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$

$$\vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot}$$

$$\vec{\omega}_{rot} = \vec{\omega} = -\gamma B_0 \hat{k}$$
 $\vec{B}_{rot} = B_0 \hat{k}$

$$\vec{B}_{eff} = \vec{0} \\ \frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i}' + M_{y'}\vec{j}'}{T_2} - \frac{(M_{z'} - M_0)\vec{k}'}{T_1}$$

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i}' + M_{y'}\vec{j}'}{T_2} - \underbrace{\frac{(M_{z'} - M_0)\vec{k}'}{T_1}}_{\text{Longitudinal Relaxation}}$$

- No precession
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, separable ODEs!

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i}' + M_{y'}\vec{j}'}{T_2} - \underbrace{\frac{(M_{z'} - M_0)\vec{k}'}{T_1}}_{\text{Longitudinal Relaxation}}$$

Solution:

$$M_{z'}(t) = M_z^0 e^{-t/T_1} + M_0 (1 - e^{-t/T_1})$$

 $M_{x'y'}(t) = M_{x'y'}(0_+) e^{-t/T_2}$

Forced Precession in the Rotating Frame with Relaxation

Forced Precession in the Rot. Frame with Relaxation

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{\vec{M}_{x'}\vec{i'} + \vec{M}_{y'}\vec{j'}}{T_2} - \frac{(\vec{M}_{z'} - \vec{M}_0)\vec{k'}}{T_1}$$

$$\vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot}$$

$$\vec{\omega}_{rot} = \vec{\omega} = -\gamma B_0 \hat{k} \qquad \vec{B}_{rot} = B_0 \hat{k} + B_1^e(t) \hat{i}'$$

$$\vec{B}_{eff} = B_1^e(t)\hat{i}'$$

Forced Precession in the Rot. Frame with Relaxation

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$
$$\vec{B}_{eff} = B_1^e(t)\hat{i'}$$

- B1 induced nutation
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, coupled PDEs!
- When does this equation apply?

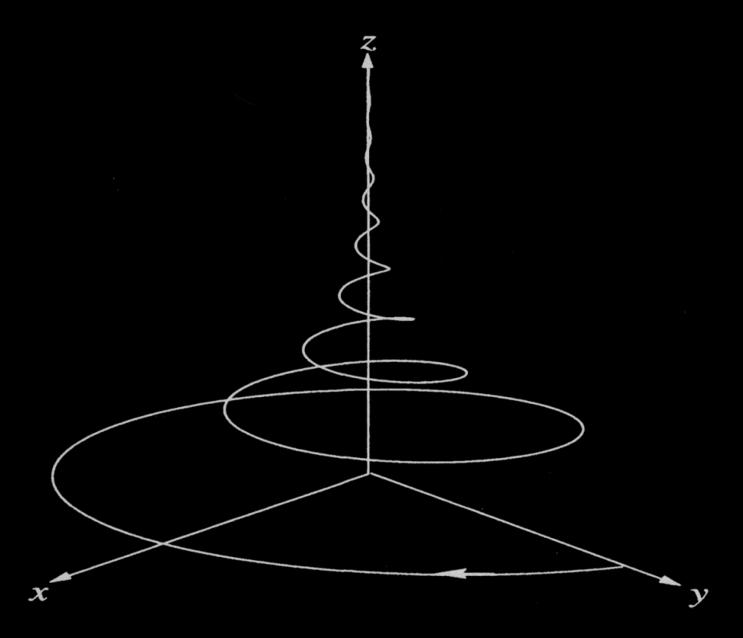
Forced Precession in the Rotating Frame with Relaxation

- RF pulses are short
 - $-100\mu s$ to 5ms
- Relaxation time constants are long
 - $-T_1 O(100s) ms$
 - $-T_2 O(10s) ms$
- Complicated Coupling
- Best suited for simulation

Free? Forced? Relaxation?

- We've considered all combinations of:
 - Free and forced precession
 - With and without relaxation
 - Laboratory and rotating frames
- Which one's concern M219 the most?
 - Free precession in the rotating frame with relaxation
 - Forced precession in the rotating frame without relaxation.
- We can, in fact, simulate all of them...

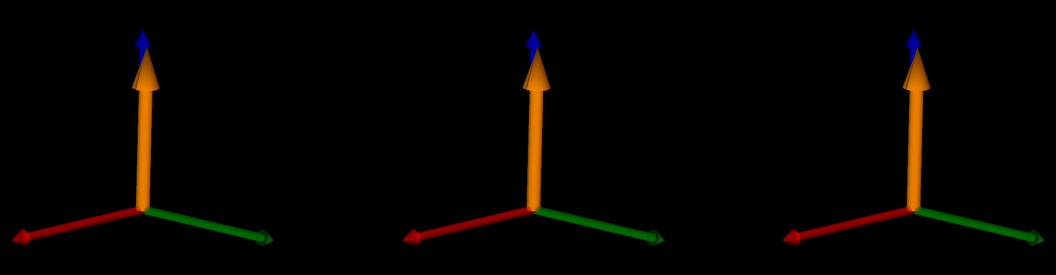
Spin Gymnastics - Lab Frame



Spin Gymnastics - Rotating Frame

$$M_Z(t) = M_Z^0 e^{-\frac{t}{T_1}} + M_0 \left(1 - e^{-\frac{t}{T_1}} \right)$$

$$M_{xy}(t) = M_{xy}^0 e^{-t/T_2}$$



90° RF

135° RF

180° RF

Frequency Selectivity of RF Pulses

Matlab Demo

Questions?

- Related reading materials
 - Nishimura Chap 4 and 5

Kyung Sung, Ph.D.

KSung@mednet.ucla.edu

http://mrrl.ucla.edu/sunglab