Fast Imaging, Advanced Image Reconstruction

M219 Principles and Applications of MRI Holden H. Wu, Ph.D. 2023.02.15

Review: Basic Recon

Image Reconstruction

$$S = T \left\{ I \right\} \text{ Data Consistency Constraint}$$
 Measured Spatial Information Image Function (Fourier Transform)

$$I = \mathcal{T}^{-1}\left\{S\right\}$$

The Fourier Transform

$$S(\vec{k}) = \int_{-\infty}^{+\infty} I\left(\vec{r}\right) e^{-i2\pi\vec{k}\cdot\vec{r}} d\vec{r} \quad \text{MRI Signal Equation}$$

$$S(\vec{k}) \stackrel{\mathcal{F}}{\longleftrightarrow} I(\vec{r})$$

$$S(k_x) = \int_{-\infty}^{+\infty} I(x) e^{-i2\pi(k_x x)} dx$$

$$S(k_x, k_y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x, y) e^{-i2\pi(k_x x + k_y y)} dx dy$$
 2D

1D

$$S(k_x, k_y, k_z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} I(x, y, z) e^{-i2\pi(k_x x + k_y y + k_z z)} dx dy dz \quad \text{3D}$$

Finite Sampling

$$S(k) \text{ is measured at } k \in \mathcal{D}$$

$$\mathcal{D} = \{n\Delta k, -N/2 \leq n \leq +N/2\}$$

$$\uparrow$$

$$\uparrow$$

$$\mathsf{Fourier}$$

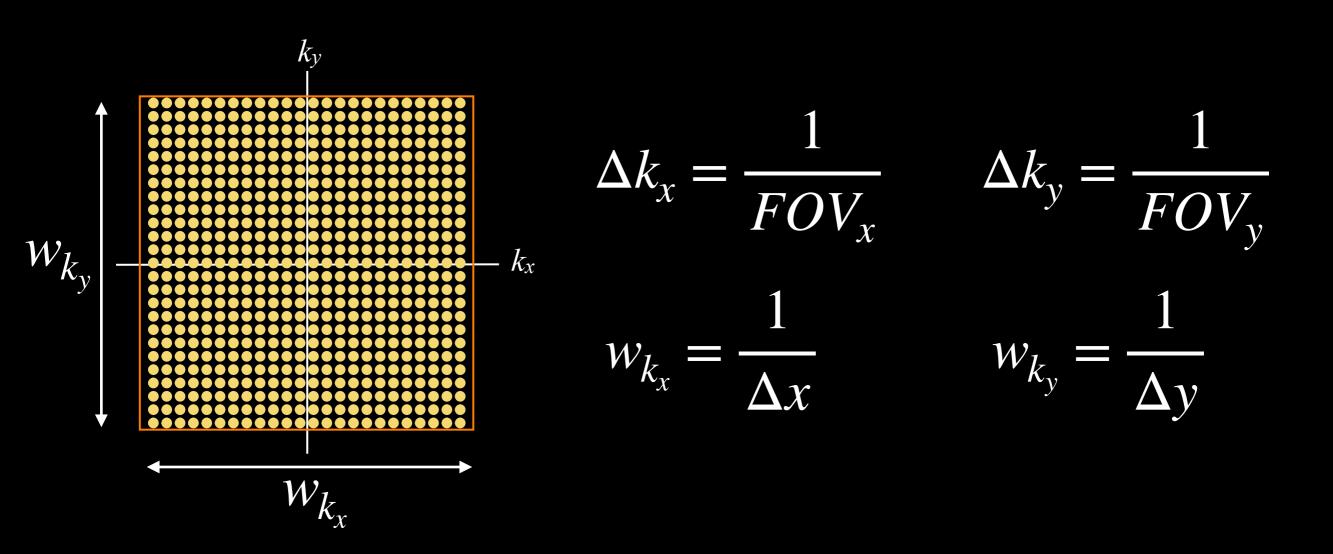
$$\mathsf{Step\text{-size}}$$

$$\mathsf{Sample Points}$$

$$I(x) = \Delta k \sum_{n=-N/2}^{N/2-1} S[n] e^{i2\pi n \Delta k x}, \ |x| < \tfrac{1}{\Delta k} \ \ _{\rm Eqn.\,6.20}$$

This is the fundamental image reconstruction equation for MRI.

Sampling Considerations



Review Sampling Theorem

Review Lectures 9/10 Spatial Localization

Noise Considerations

- Signal-to-Noise Ratio (SNR)
 - A fundamental measure of image quality

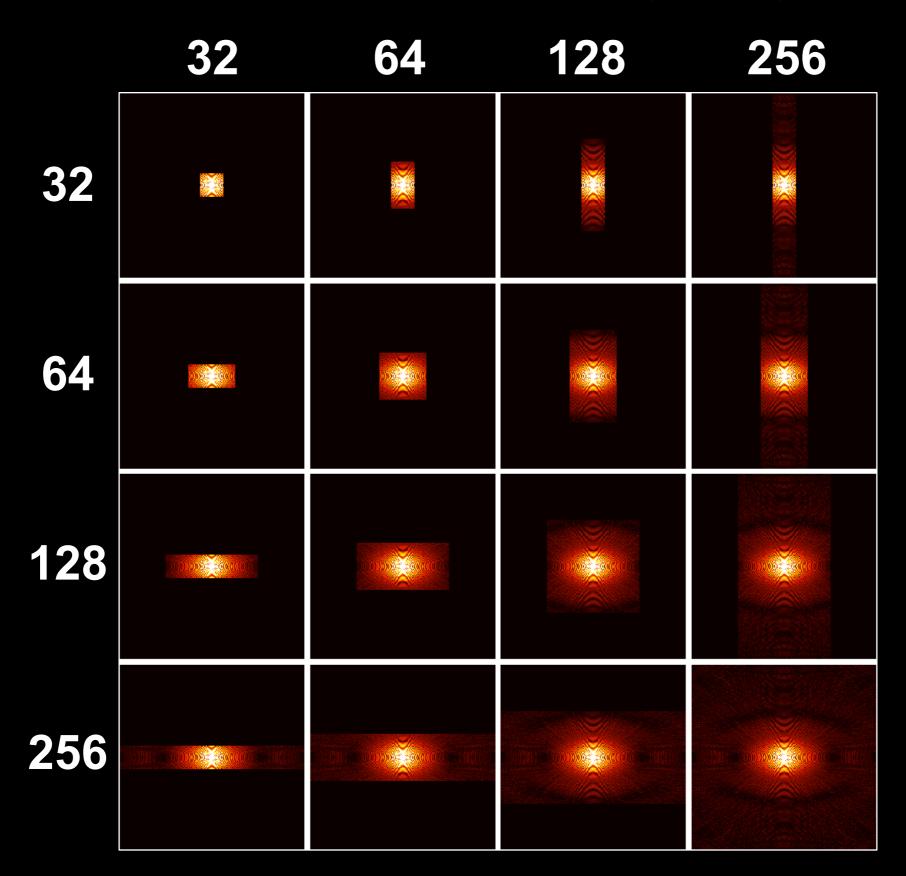
$$SNR \triangleq \frac{signal\ amplitude}{\sigma\ of\ noise}$$

-
$$SNR_{dB} = 20 \cdot log(SNR)$$

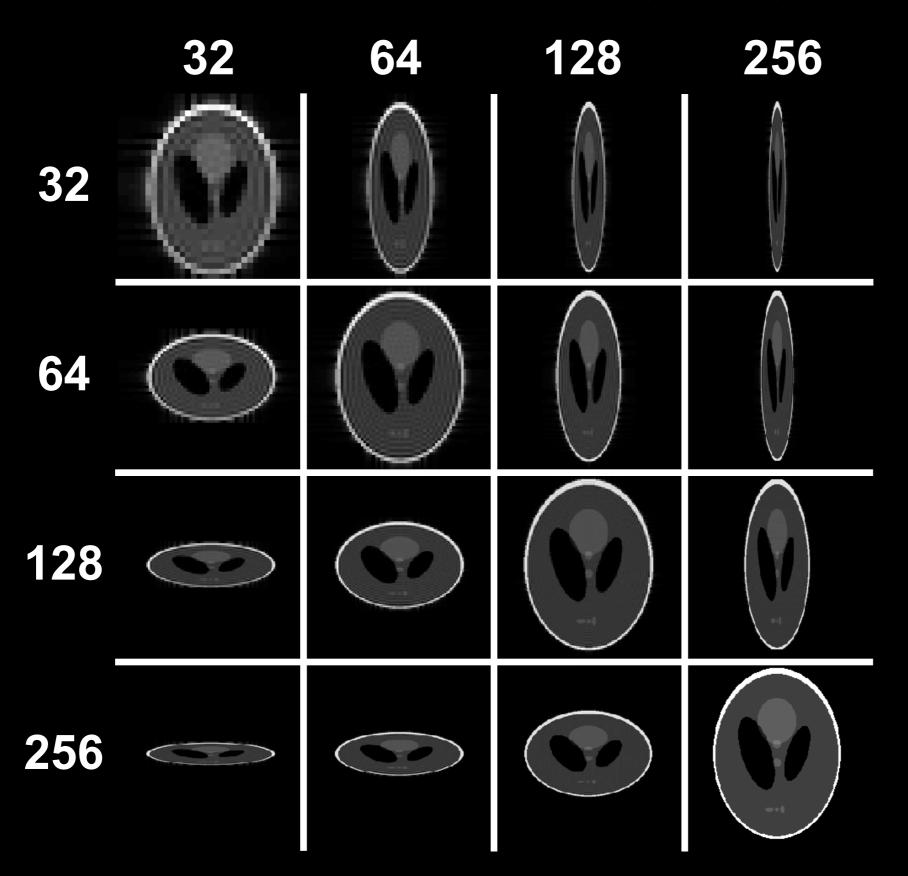
Noise Considerations

- Summary of Acquisition Time Effects
 - $SNR \propto \sqrt{N_{ave} \cdot T_{read}}$
 - $SNR \propto \sqrt{measurement\ time}$
- Effect of Spatial Resolution
 - $SNR \propto (\delta_x)(\delta_y)(\delta_z)$
- Other factors
 - $SNR \propto f(\rho, T_1, T_2, \dots)$

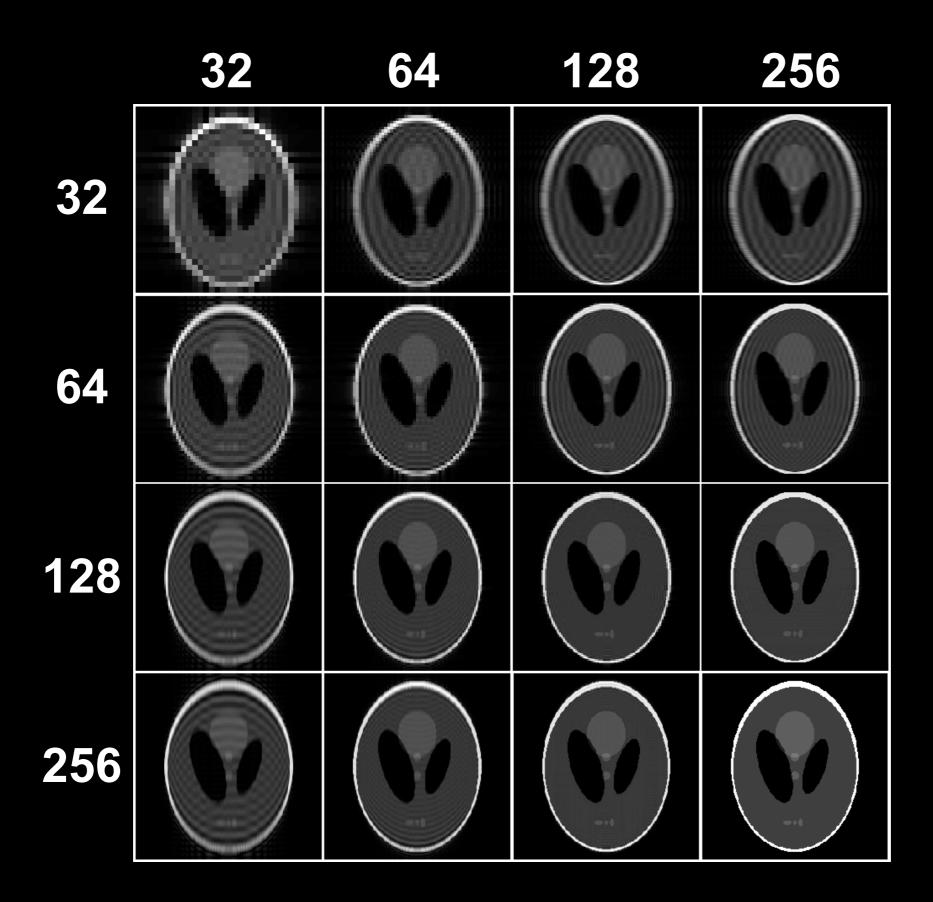
Gibb's Ringing



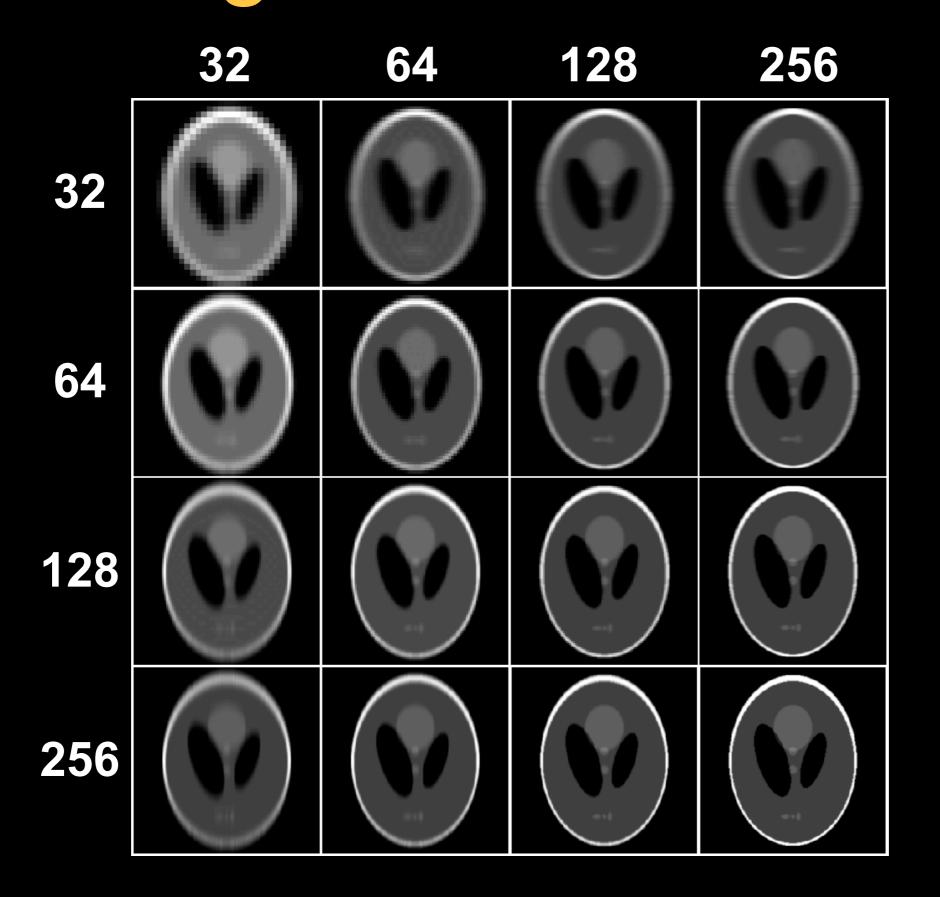
Gibb's Ringing



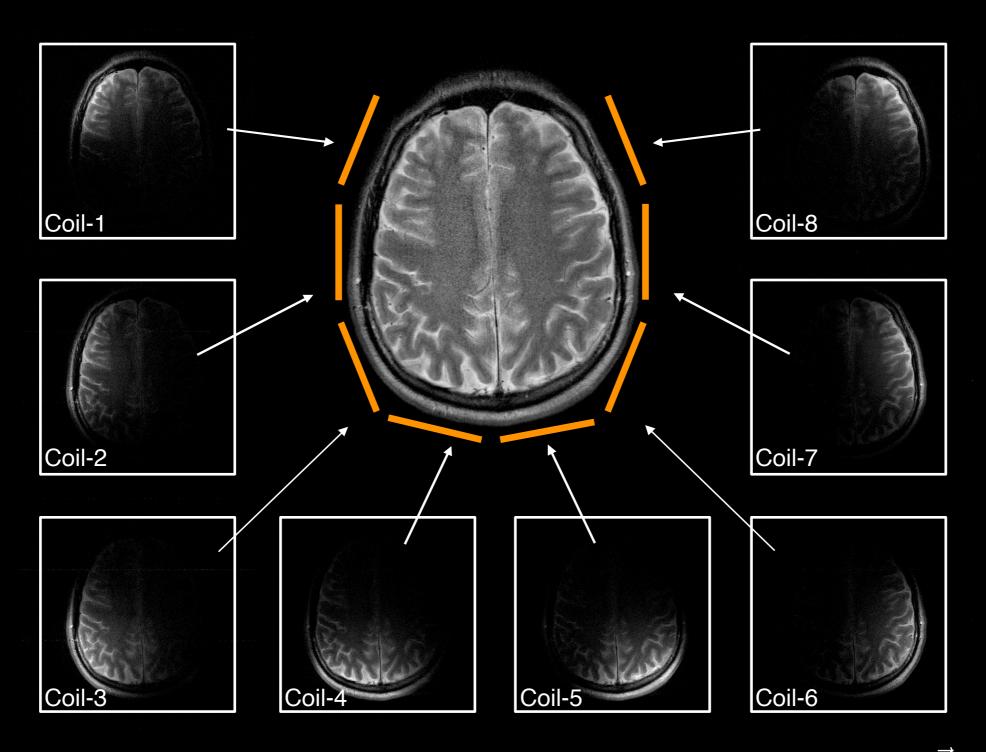
Zero-Pad



Hamming Window & Zero-Pad



Multi-Coil Reconstruction



Each coil element (channel) has a unique sensitivity profile – \vec{B}_r (\vec{r})

Outline

- Fast Imaging
 - Non-Cartesian MRI
 - Echo-planar imaging (EPI)
- Advanced MR Image Reconstruction
 - Parallel imaging
 - Compressed sensing

Overview

- Motivation
 - MRI is relatively slow; need to accelerate
- Strategies
 - Efficient pulse sequences
 - Fast k-space sampling trajectories
 - Data undersampling + advanced recon
- Many challenges and trade-offs
- Key drivers for MRI research

Fast Imaging

k-Space Sampling

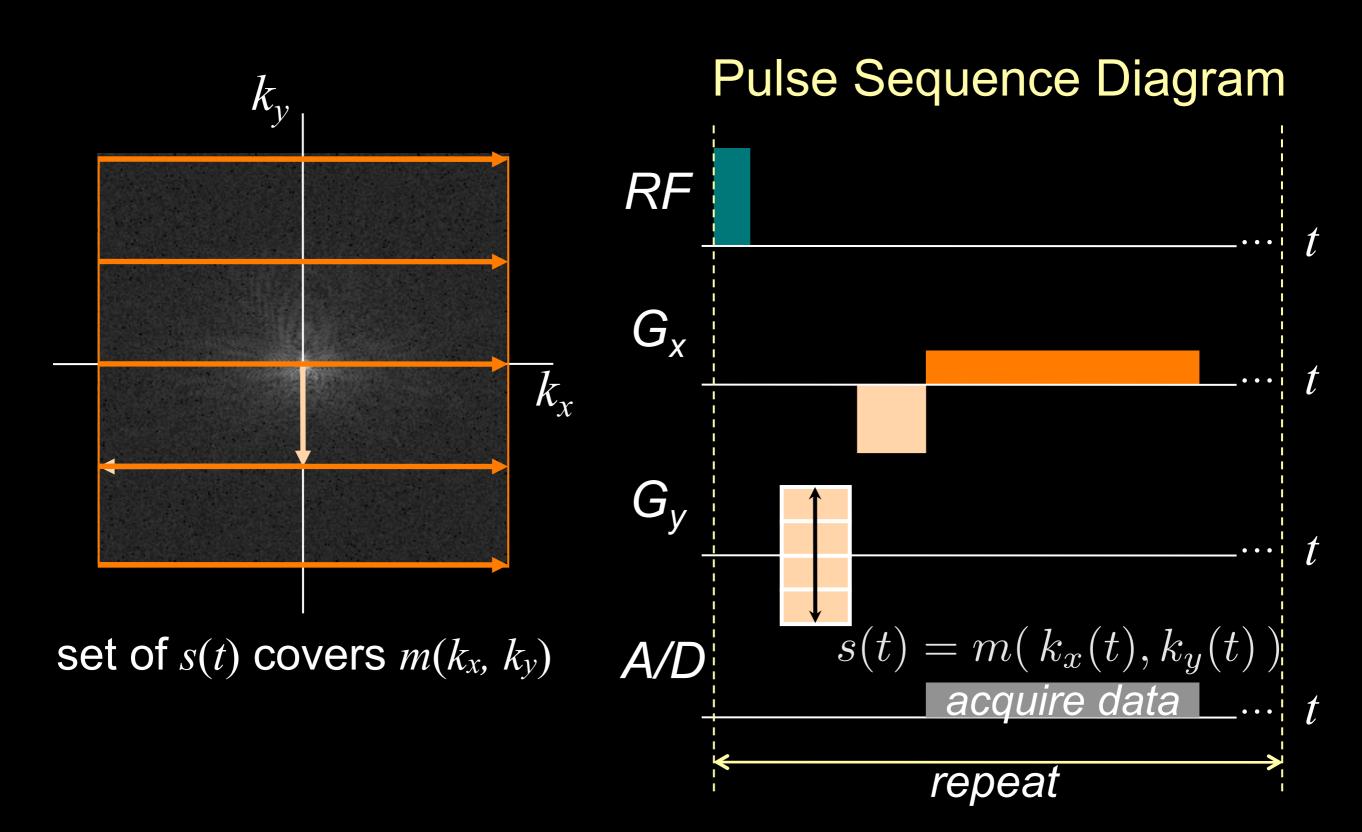
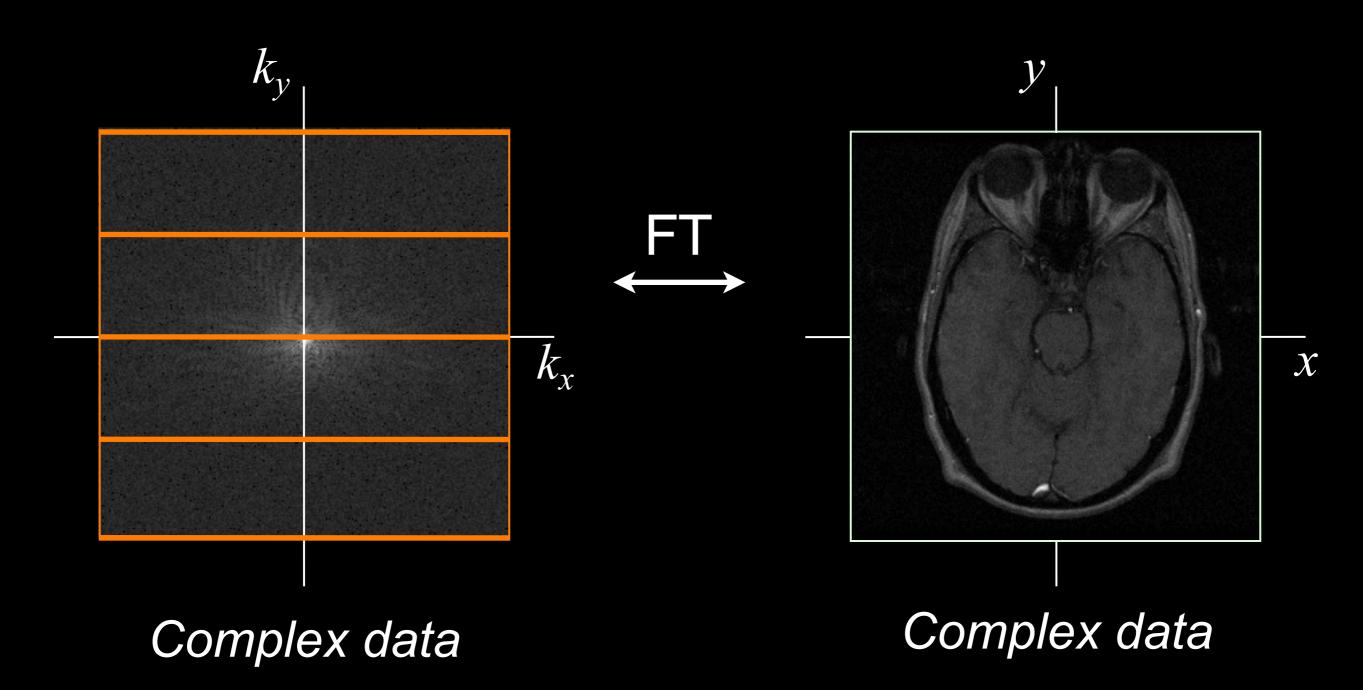
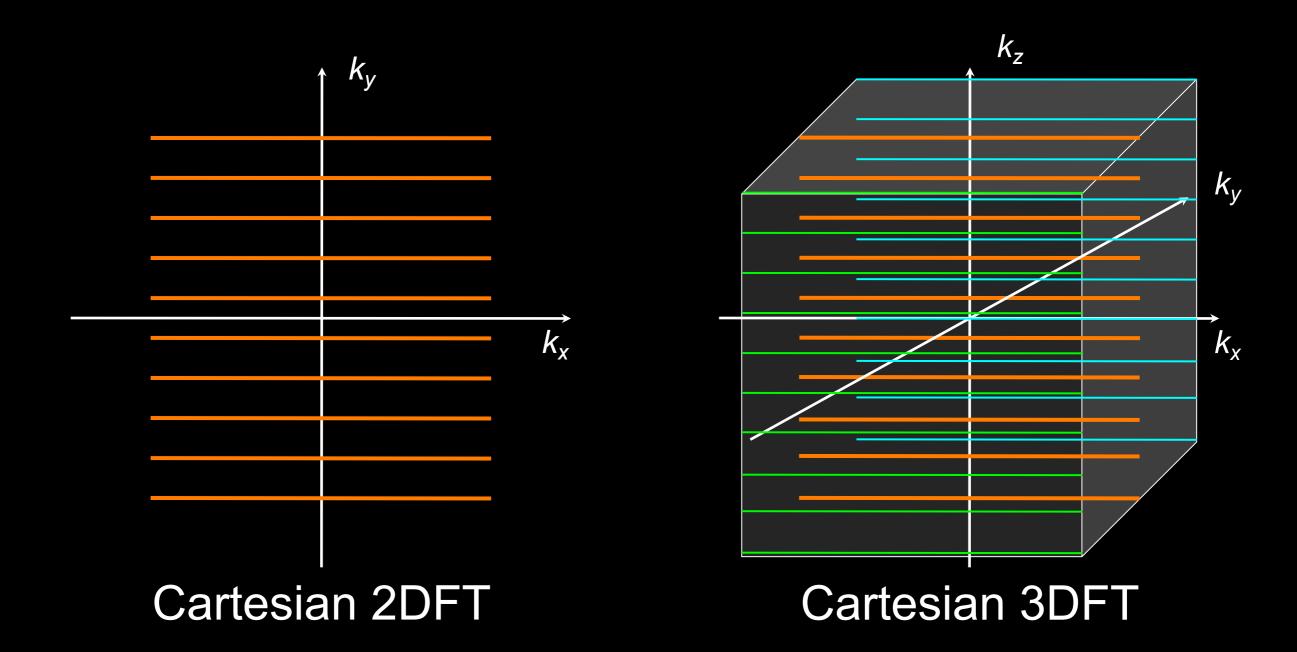


Image Reconstruction



Cartesian Sampling



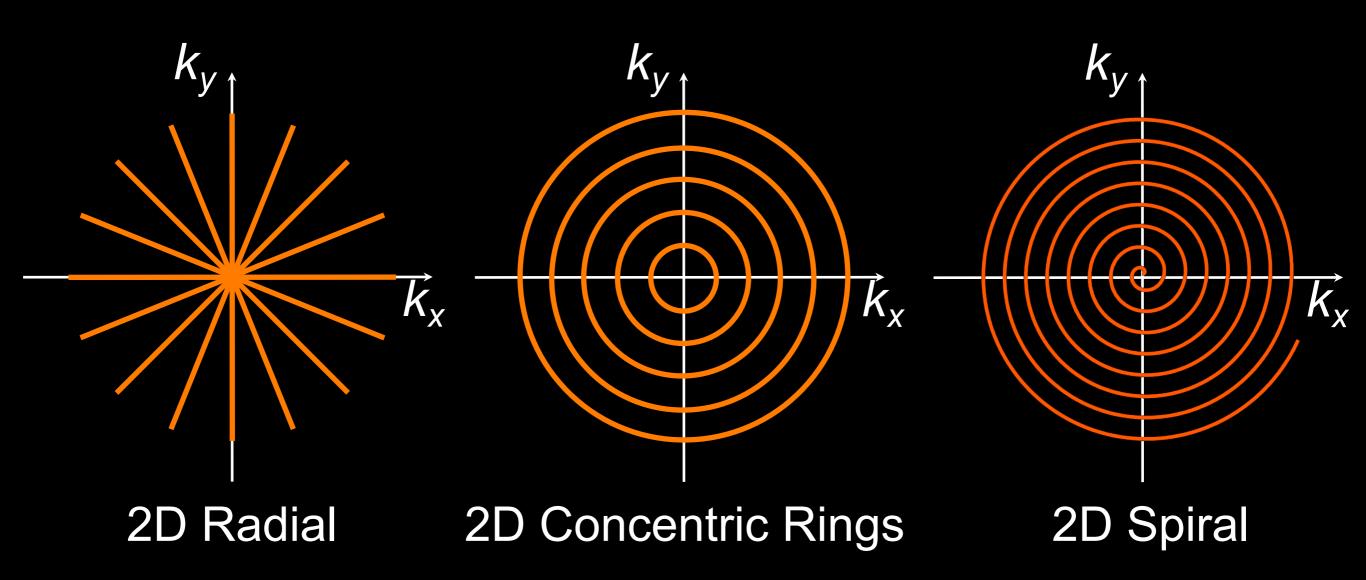
MR Signal Equation

$$s(t) = \iint_{X,Y} M(x,y) \cdot \exp(-i2\pi \cdot [k_x(t) x + k_y(t) y]) dx dy$$
$$= m(k_x(t), k_y(t)) \qquad k_x(t) = \frac{\gamma}{2\pi} G_x t, k_y(t) = \frac{\gamma}{2\pi} G_y t$$

$$m = \mathcal{FT}(M(x, y))$$

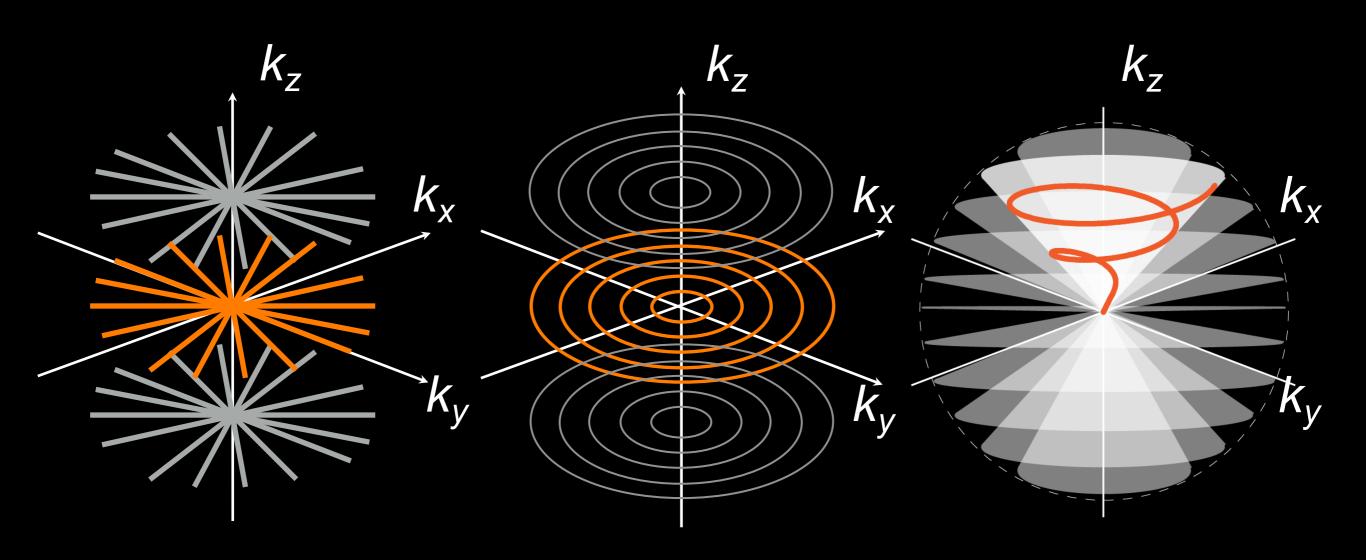
$$k_x(t) = \frac{\gamma}{2\pi} \int_0^t G_x(\tau) d\tau, \ k_y(t) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) d\tau$$

Non-Cartesian Sampling



and much more ...

Non-Cartesian Sampling



3D Stack of Stars

3D Stack of Rings

3D Cones

and much more ...

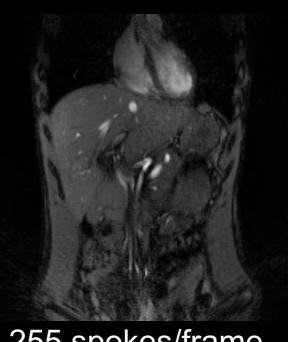
Radial: Real-time MRI

Radial FLASH

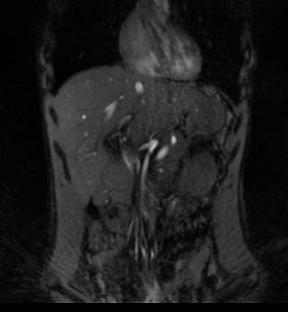
- golden-angle ordering
- 192 x 192 matrix
- TR = 3.1 ms(1 spoke per TR)
- 3.0 T

Reconstruction

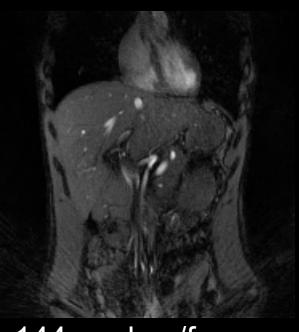
- sliding window of 20 TRs (display at 16 frames/sec)
- parallel imaging (SPIRiT) (300 spokes for Nyquist)



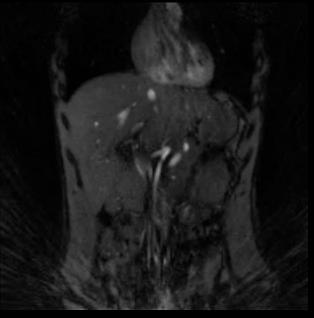
255 spokes/frame (791 ms/frame)



89 spokes/frame (276 ms/frame)



144 spokes/frame (446 ms/frame)



55 spokes/frame (171 ms/frame)

courtesy of Samantha Mikaiel

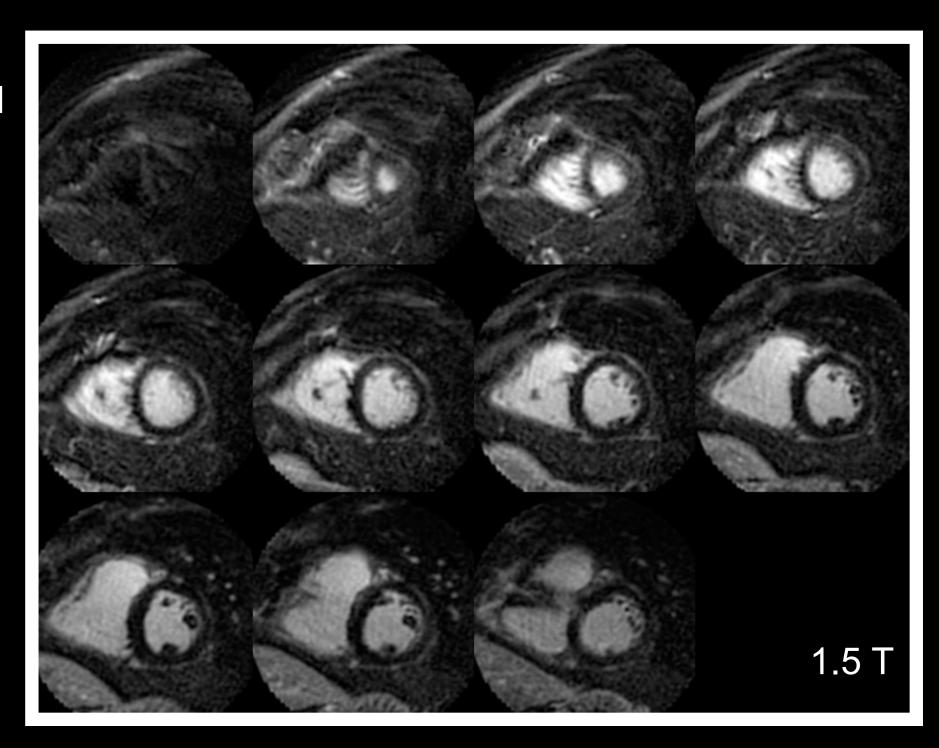
Spirals: 3D LGE MRI

3D Spiral IR-GRE

- 6-interleaf VD spiral
- 7.5-ms readout
- 90 x 90 x 11 matrix
- outer volume suppr
- water-only RF exc
- TR = 15.48 ms
- 8-HB BH scan

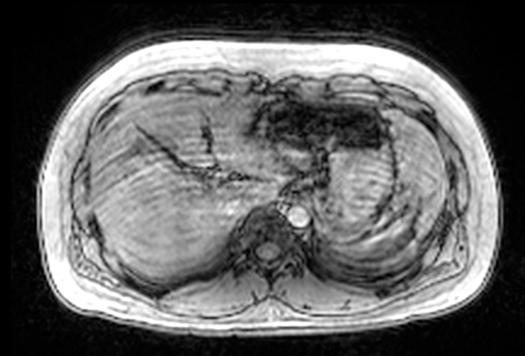
Reconstruction

- SPIRiT (R = 2)
- ~5-sec recon



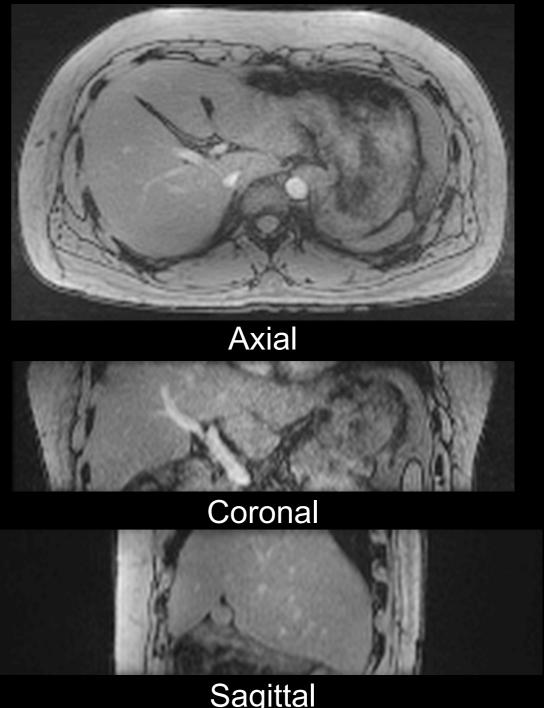
3D Stack-of-Radial: Liver MRI

3D Cartesian MRI



Insufficient breath-holding

Free-breathing 3D Stack-of-Radial MRI



Sagittal

courtesy of Tess Armstrong

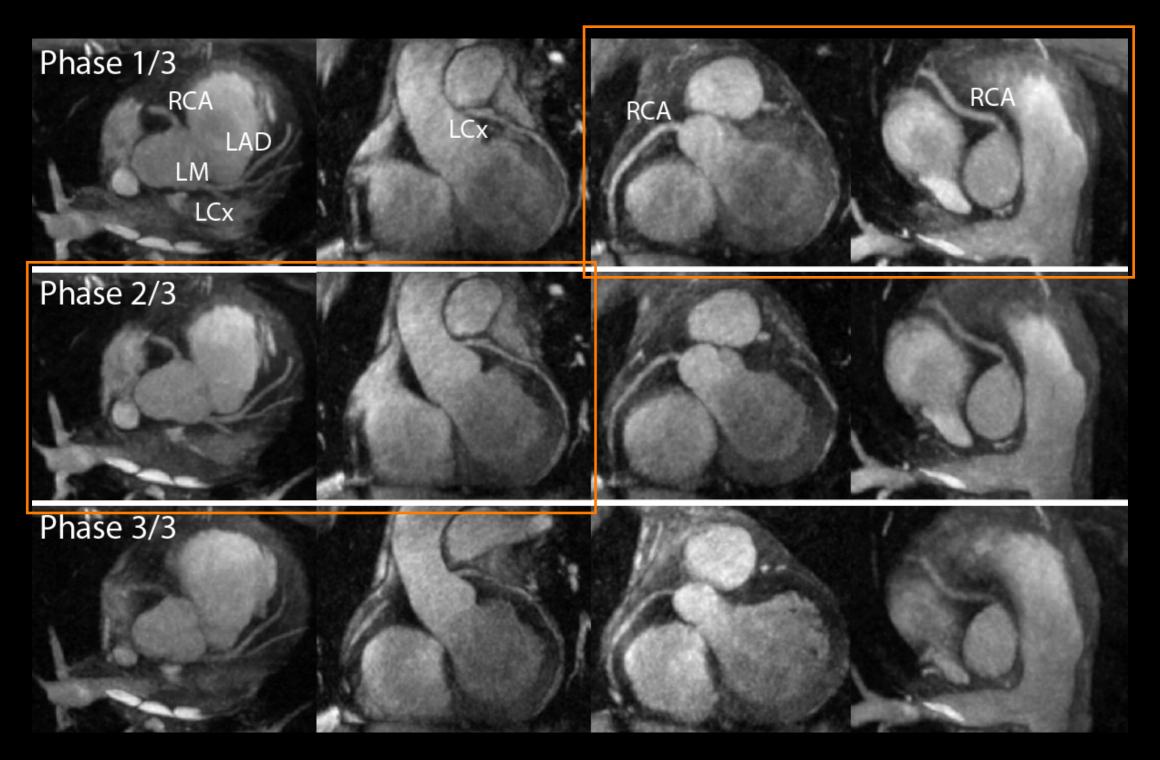
3D Radial: Coronary MRA

Contrast-Enhanced MRA at 3.0T

ECG-gated, fat-saturated, inversion-recovery prepared spoiled gradient echo sequence (1.0 mm)³ spatial resolution, 1D self navigation, CG-SENSE recon, 5.4 min scan time

3D Cones: Coronary MRA

Multi-Phase Thin-Slab MIP Reformats

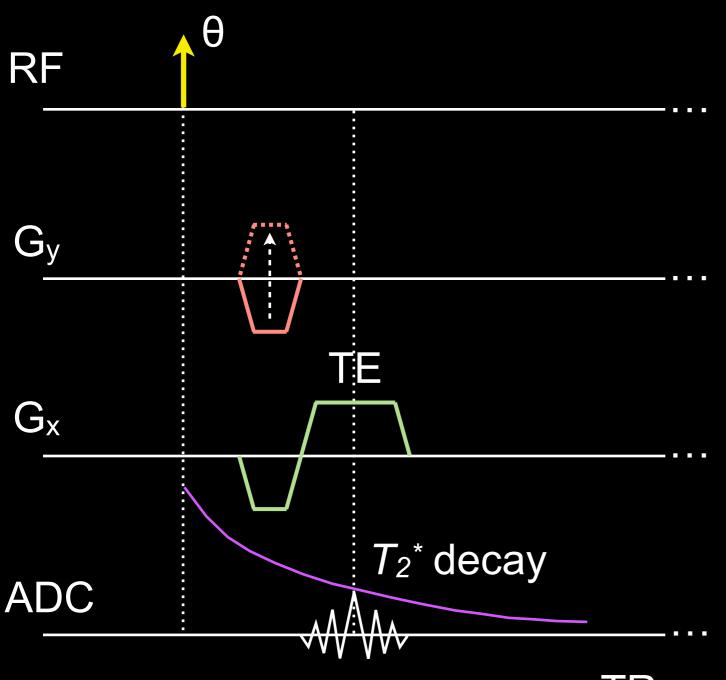


Wu HH et al., MRM 2013; 69: 1083-1093

Echo-Planar Imaging

- Echo-Planar Imaging (EPI)¹
- Ultra-fast imaging (<100 ms/frame)
- Imperfections and artifacts
- Ongoing topic of rapid MRI research

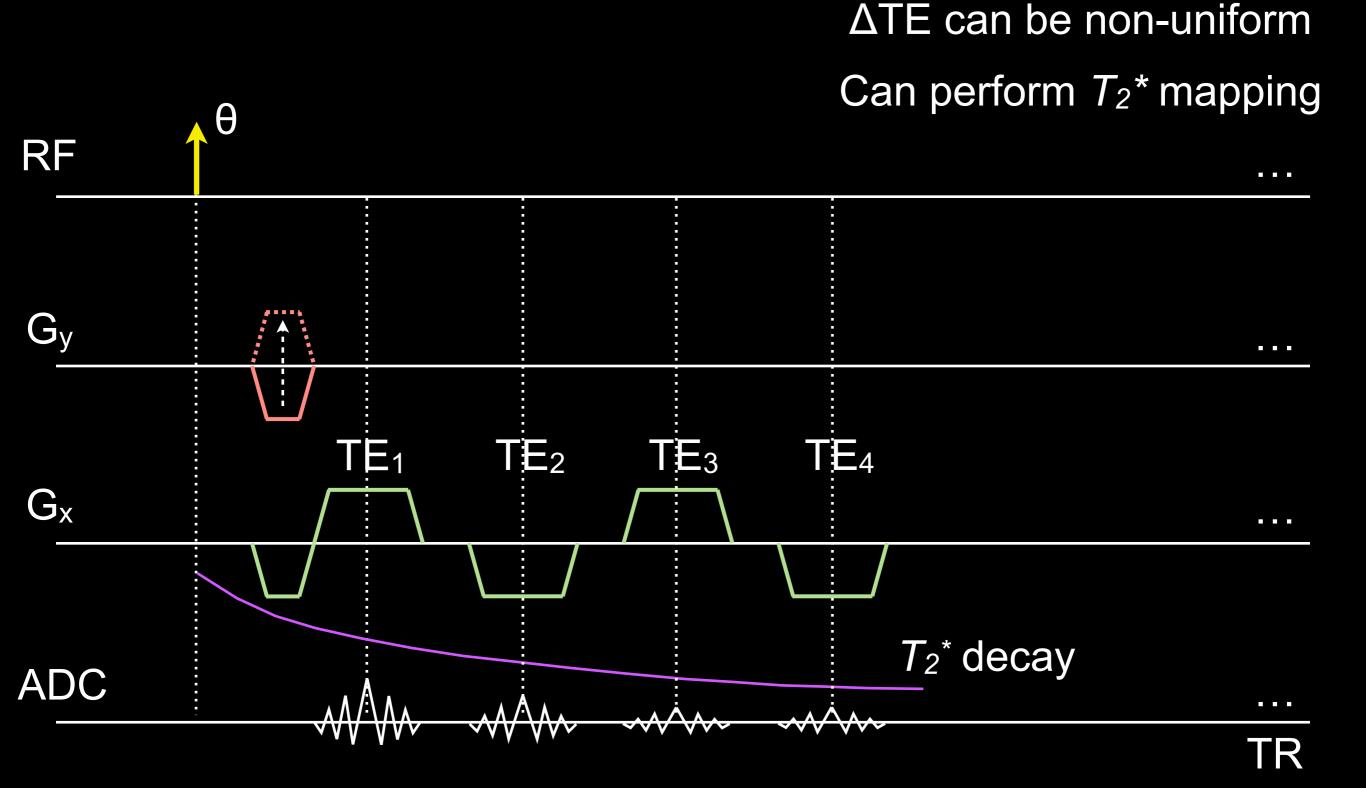
Gradient Echo



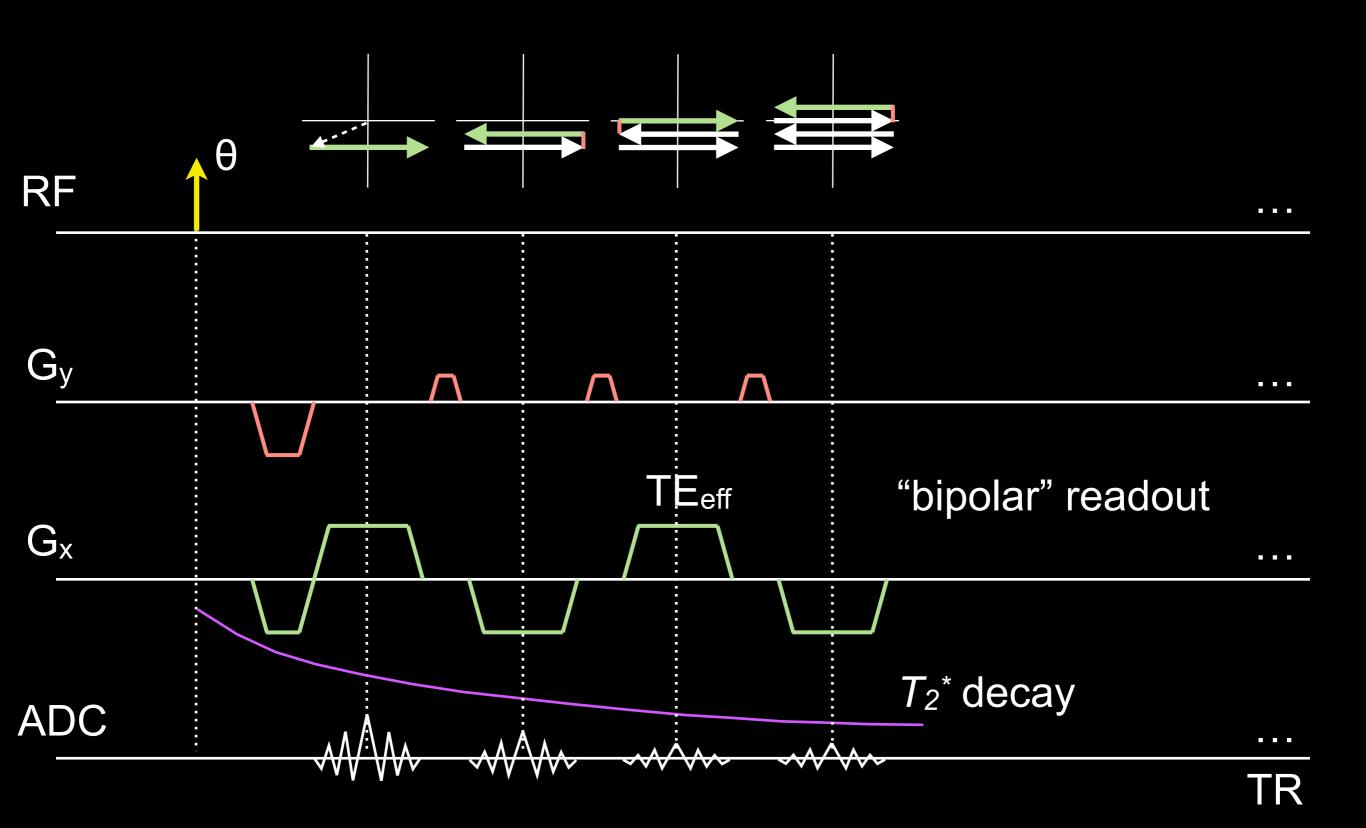
- Utilization of transverse magnetization
 - With $T_s = 8 \mu s$ and $N_x = 128$, $T_{acq} = 1.024 \text{ ms}$
 - <2% of T₂* in brain at 3 T!¹
- Scan time
 - $T_{GRE} = N_{pe} \times TR$
 - TR = 10 ms, N_{pe} = 256: T_{GRE} = 2.56 sec

TR

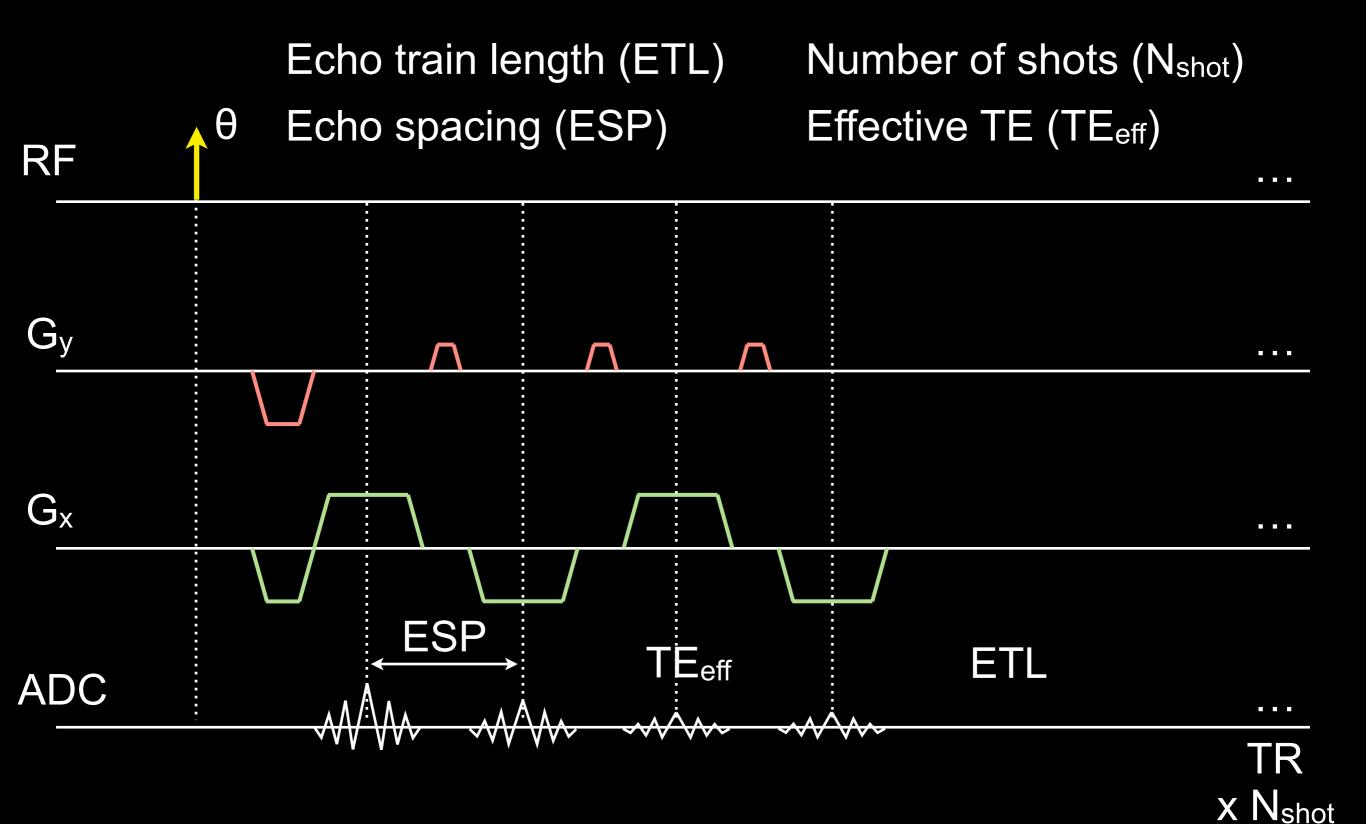
Multi-echo Gradient Echo



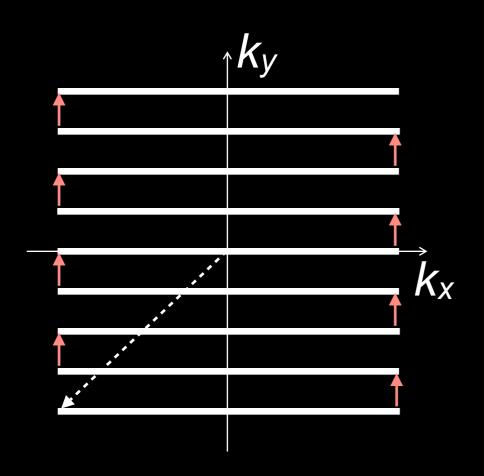
Gradient-Echo EPI



EPI Sequence Parameters



EPI k-Space Sampling



- ETL can be 4-64 or higher
 - Limited by T₂* decay, offresonance effects
 - aka "EPI factor"

- ESP typically ~1 ms
 - Must accommodate RF, gradients, ADC
 - Short ESP facilitates high ETL

Fast Sampling Trajectories

Benefits

- Reduced scan time
- Robustness to motion and flow
- Short echo time

Applications

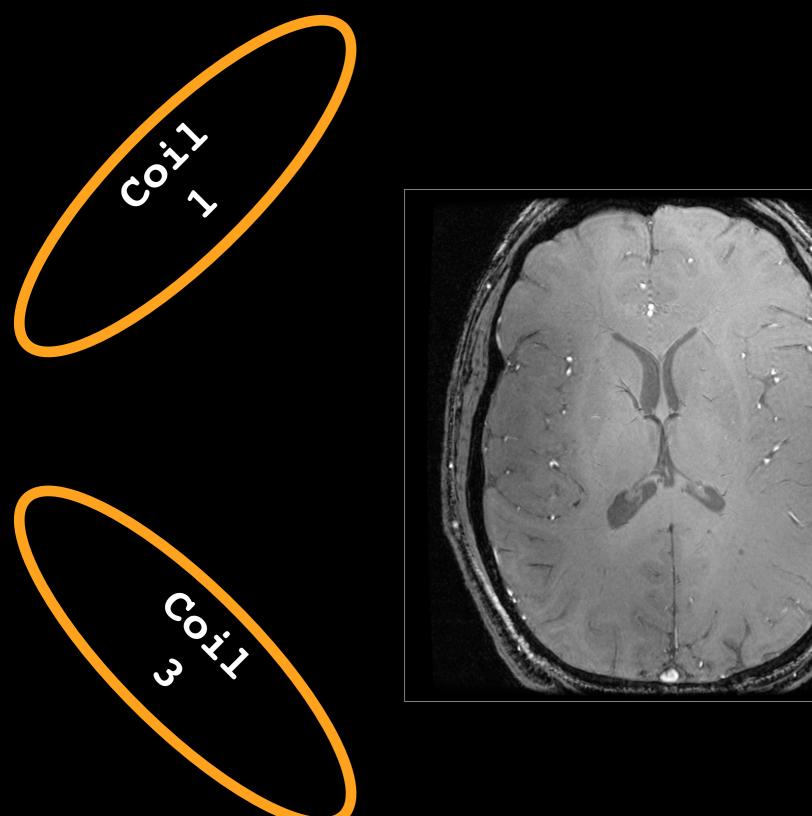
- Dynamic MRI
- Real-time MRI
- Cardiovascular MRI
- Short-TE MRI

Challenges

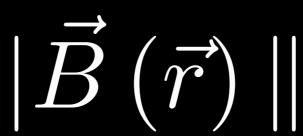
- Hardware performance
- Gradient fidelity
- Off-resonance effects
- Design and implementation
- Challenges addressed
- On-going research
- Use judiciously!

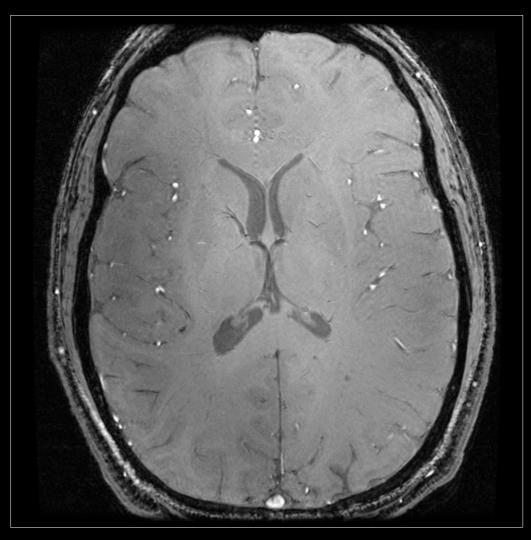
Parallel Imaging

Multi-coil Arrays



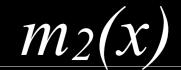
Multi-coil Sensitivity

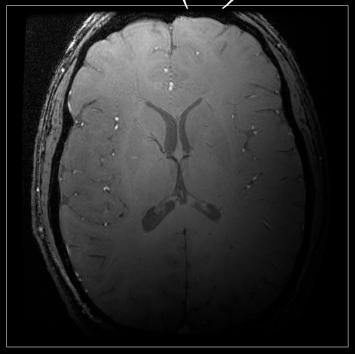




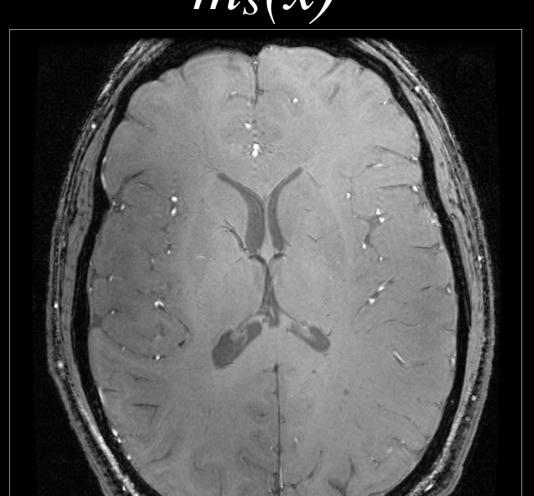
 $m_1(x)$

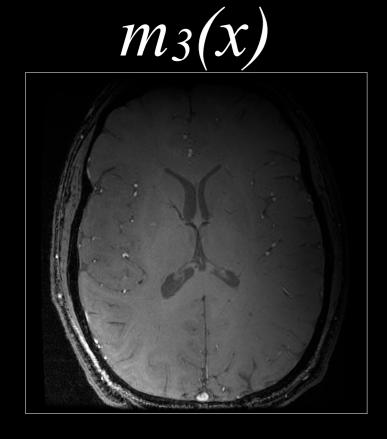
Multi-coil Images

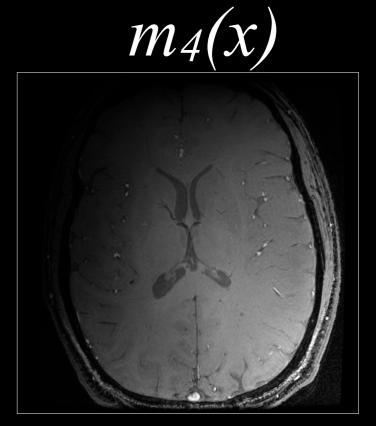




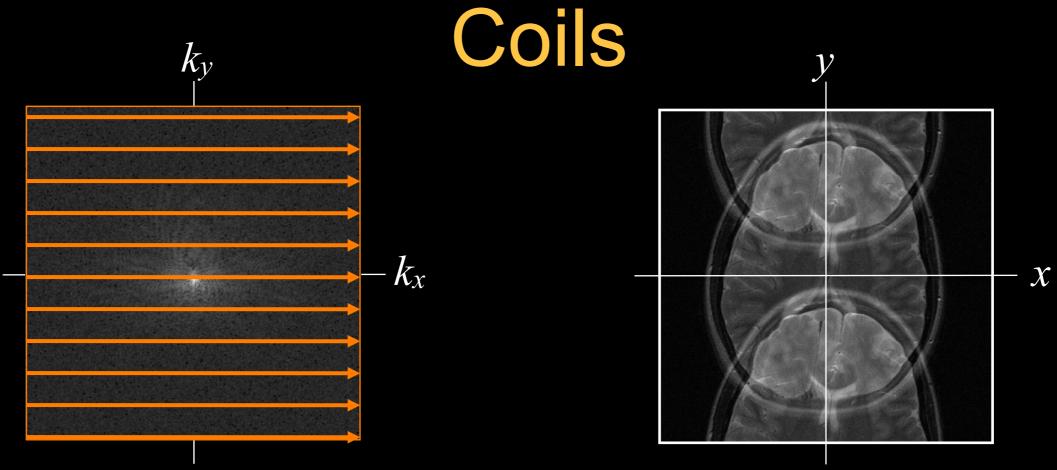
 $m_s(x)$



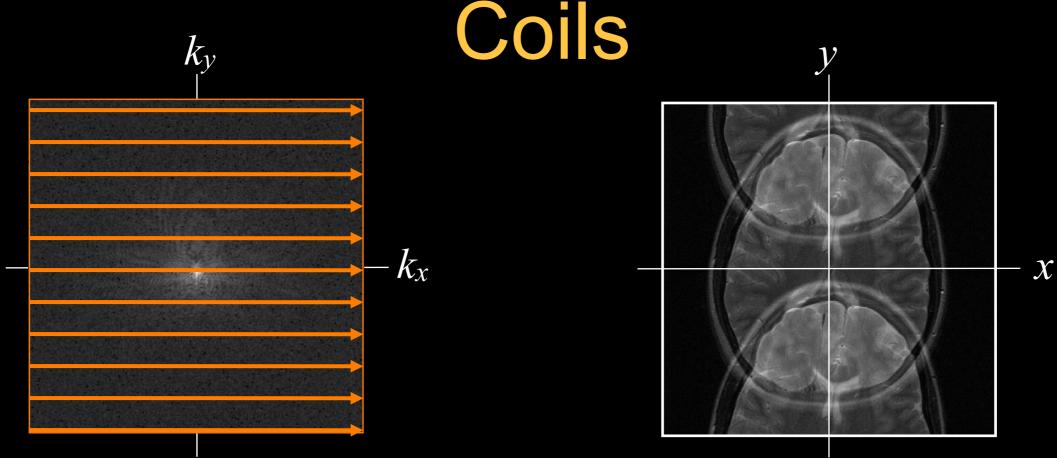




Accelerate Imaging with Array



Accelerate Imaging with Array



- Parallel Imaging
 - Coil elements provide some localization
 - Undersample in k-space, producing aliasing
 - Sort out in reconstruction

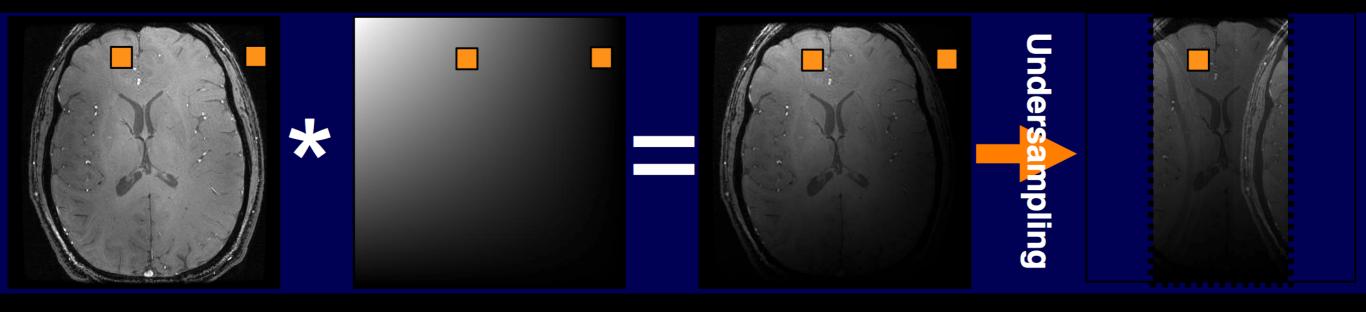
Parallel Imaging

- Many approaches:
 - Image domain SENSE
 - k-space domain SMASH, GRAPPA
 - Hybrid ARC

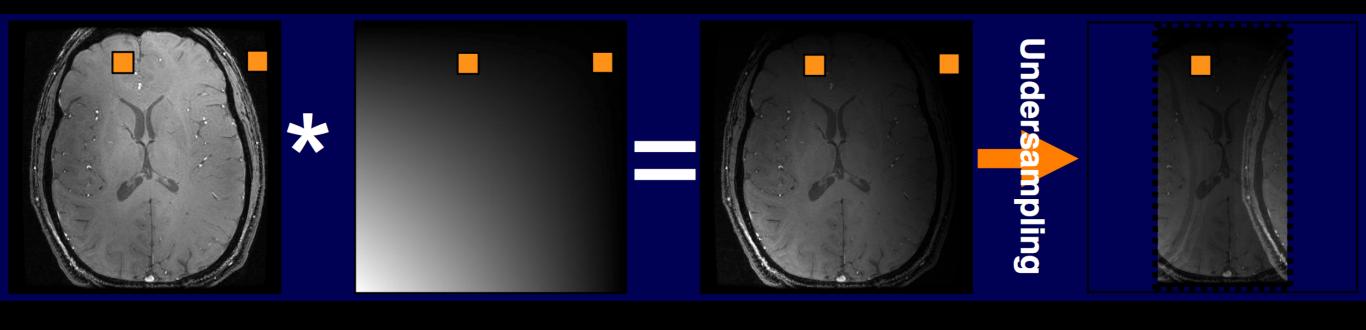
- We will introduce one:
 - SENSE: optimal if you know coil sensitivities

Cartesian SENSE

$$m_1(\vec{x_1}) = C_1(\vec{x_1})m(\vec{x_1}) + C_1(\vec{x_2})m(\vec{x_2})$$



$$m_2(\vec{x_1}) = C_2(\vec{x_1})m(\vec{x_1}) + C_2(\vec{x_2})m(\vec{x_2})$$



$$egin{pmatrix} m_1(ec{x_1}) \ m_2(ec{x_1}) \ \vdots \ m_L(ec{x_1}) \end{pmatrix} = egin{pmatrix} C_1(ec{x_1}) & C_1(ec{x_2}) \ C_2(ec{x_1}) & C_2(ec{x_2}) \ \vdots \ m_L(ec{x_1}) \end{pmatrix} egin{pmatrix} m(ec{x_1}) \ m(ec{x_2}) \end{pmatrix} + egin{pmatrix} n_1(ec{x_1}) \ n_2(ec{x_1}) \ \vdots \ n_L(ec{x_1}) \end{pmatrix} \ \mathbf{Source} \ \mathbf{Voxels} \end{pmatrix}$$

Aliased Images Sensitivity at Source Voxels

OR
$$2 \times 1$$

$$m_s = Cm + n$$

$$x \times 1 + x \times 2 + x \times 1$$

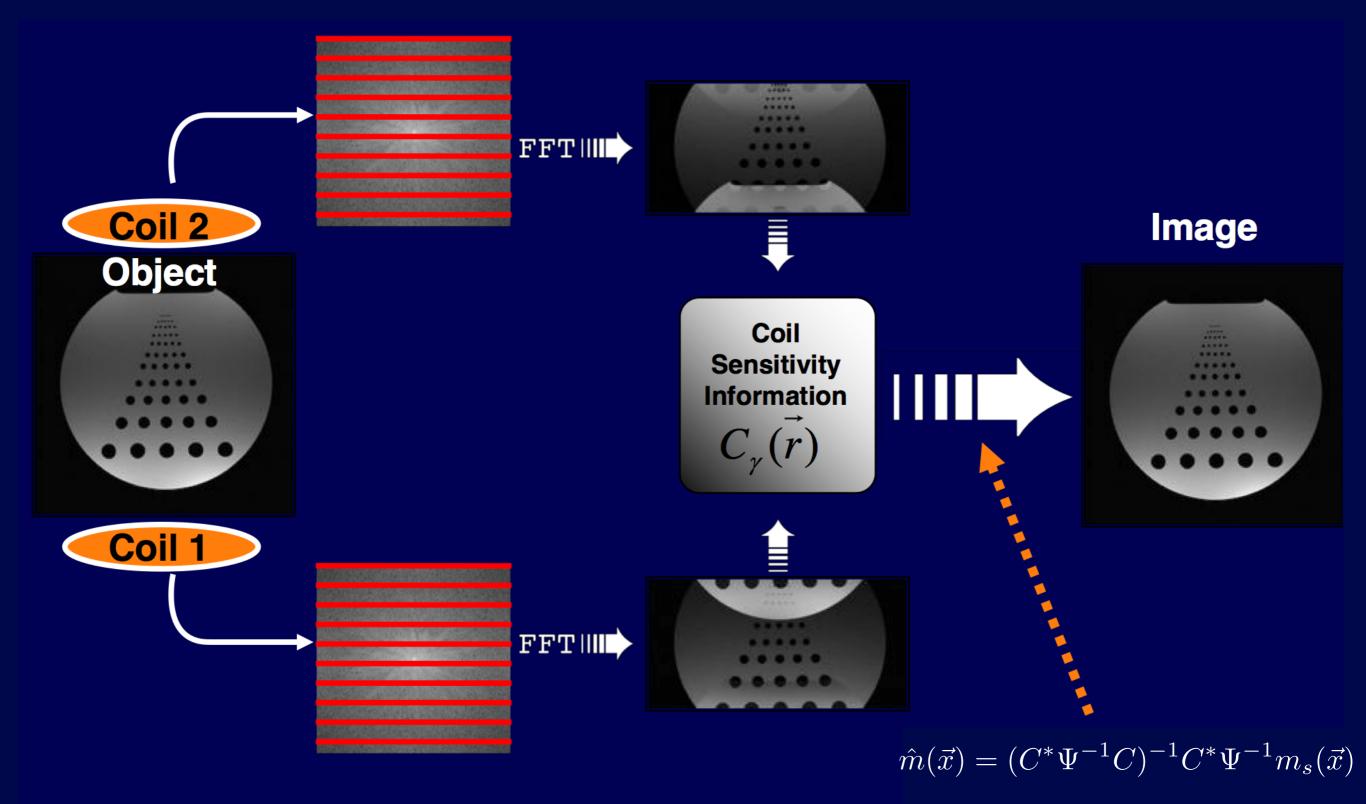
$$\hat{m}(\vec{x}) = (C^* \Psi^{-1} C)^{-1} C^* \Psi^{-1} m_s(\vec{x})$$
2 x 2 2 x L L x 1

L aliased reconstruction resolves 2 image pixels

For an N x N image, we solve (N/2 x N) 2 x 2 inverse systems

For an acceleration factor R, we solve (N/R x N) R x R inverse systems

SENSE Reconstruction



Unwrap fold over in image space

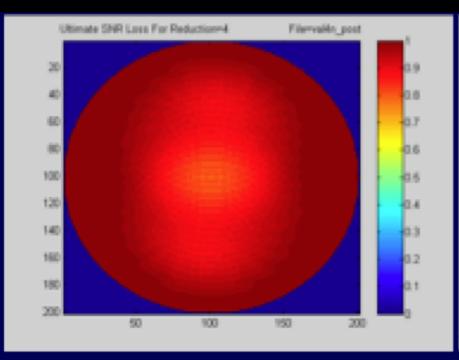
SNR Cost

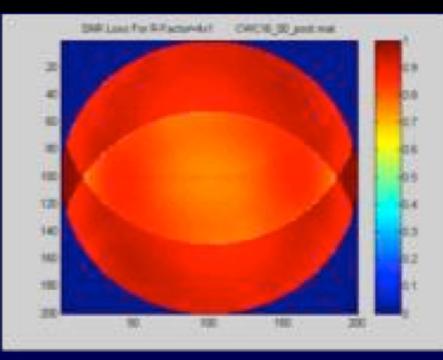
- How large can R be?
- Two SNR loss mechanisms
 - Reduced scan time
 - Condition of the SENSE decomposition
- SNR Loss

$$SNR_{SENSE} = \frac{SNR}{g\sqrt{R}}$$

Geometry Reduced
Factor Scan Time

1/g-factor Map for R=4

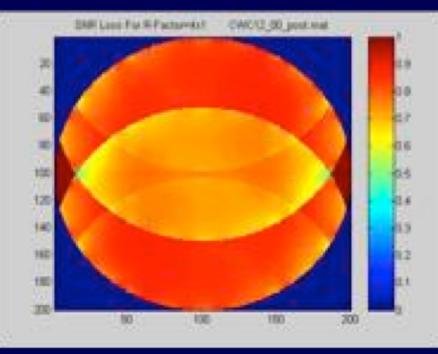


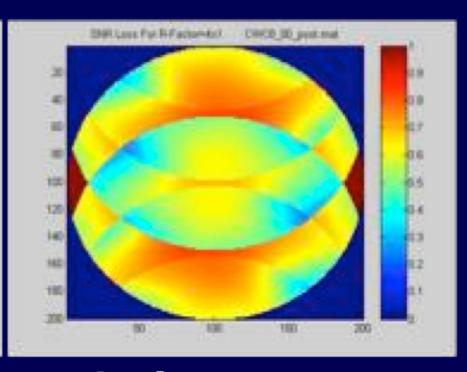


∞ elements

32 elements

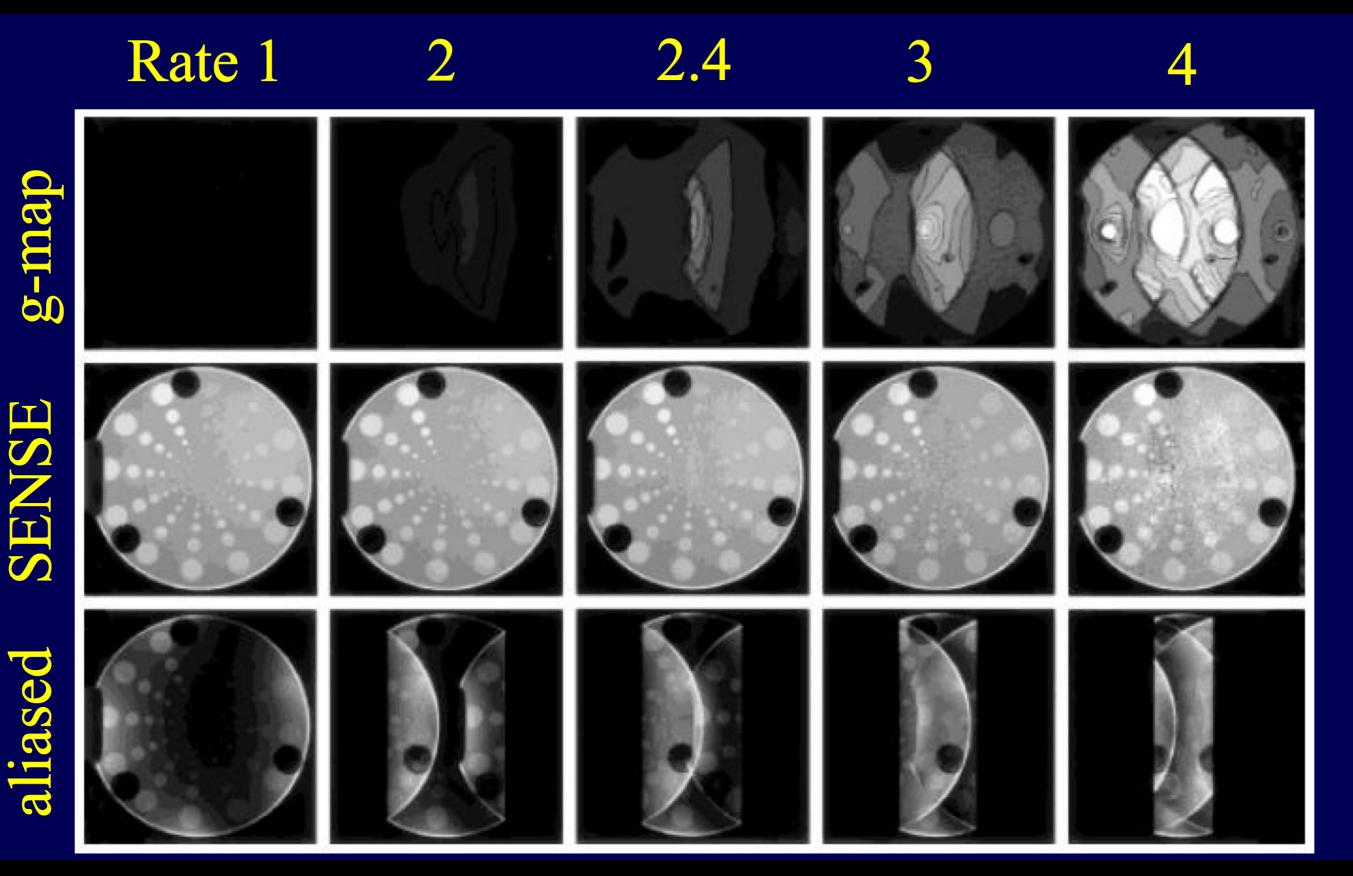
16 elements





Relative SNR Scale

8 elements



Parallel Imaging

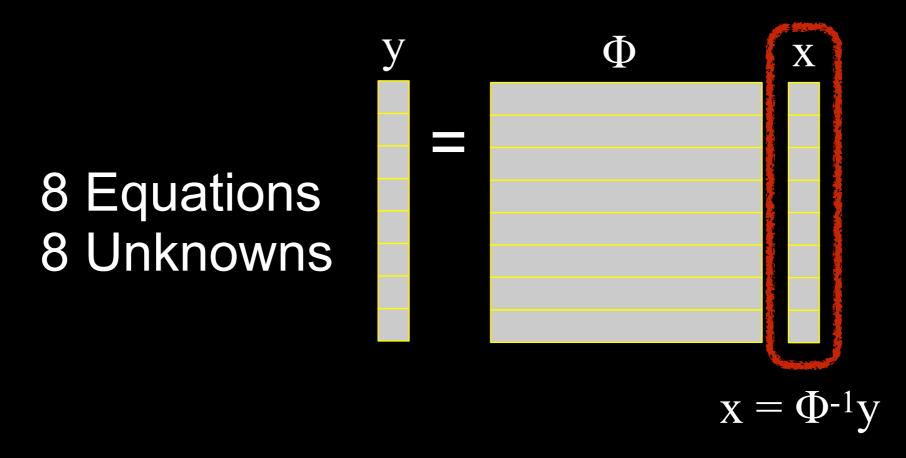
- Utilizes coil sensitivities to increase the speed of MRI (typical R=2-4)
- Cases for parallel imaging
 - Higher patient throughput
 - Real-time imaging/Interventional imaging
 - Motion suppression
- Cases against parallel imaging
 - Low SNR applications

Compressed Sensing (CS)

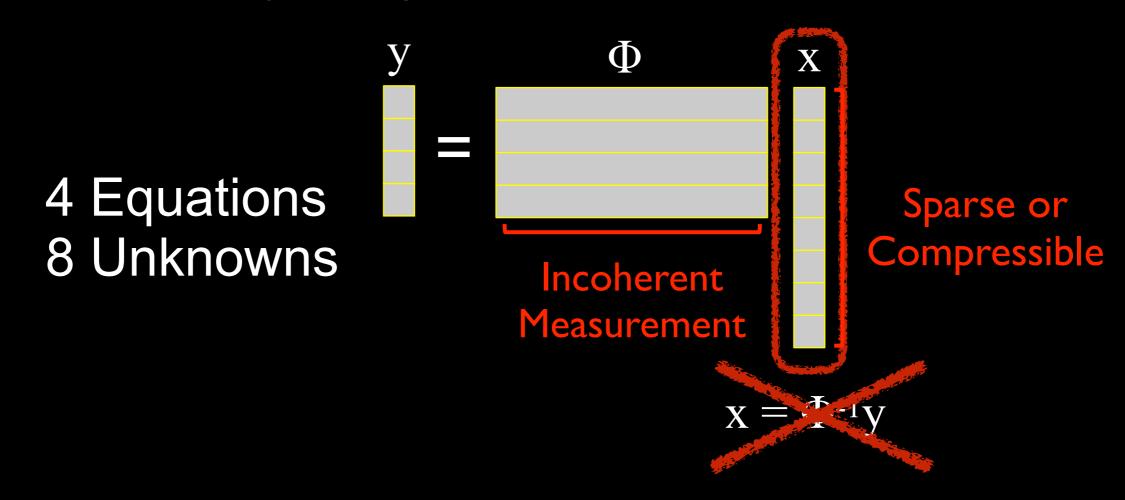
 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis

Donoho, IEEE TIT, 2006 Candes et al., Inverse Problems, 2007

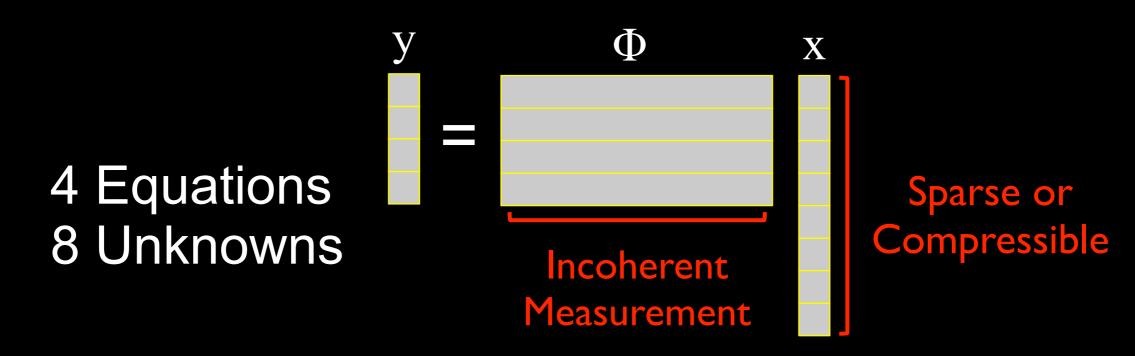
 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis



 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis



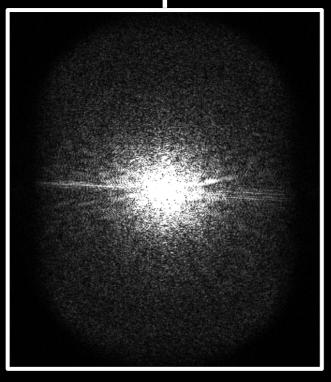
 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis



We still can find 8 unknowns!

Compressed Sensing MRI

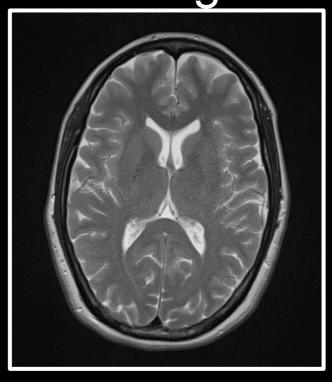
k-space



Inverse Fourier Transform Φ⁻¹

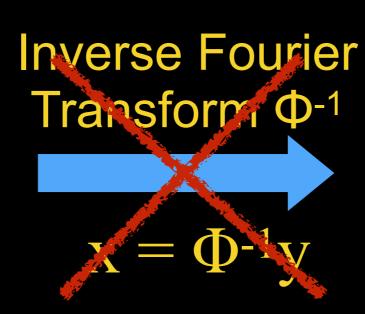
$$x = \Phi^{-1}y$$

Image

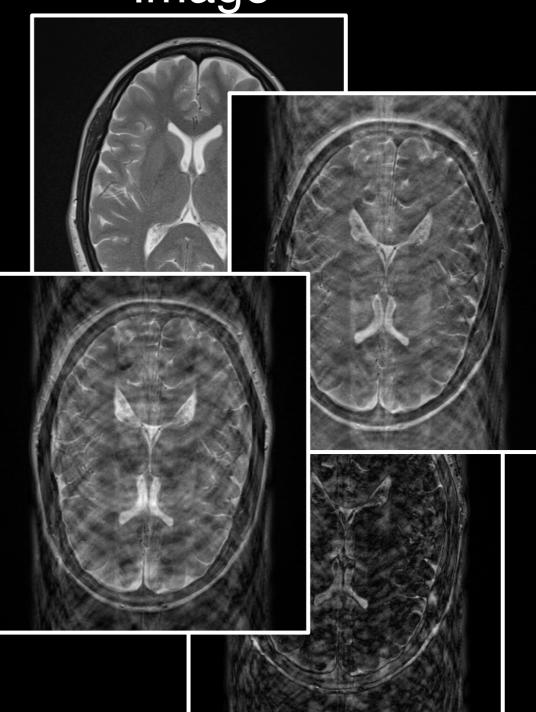


Compressed Sensing MRI

k-space

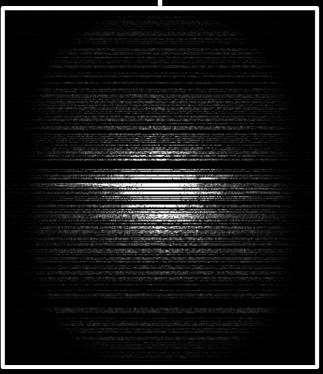


Image



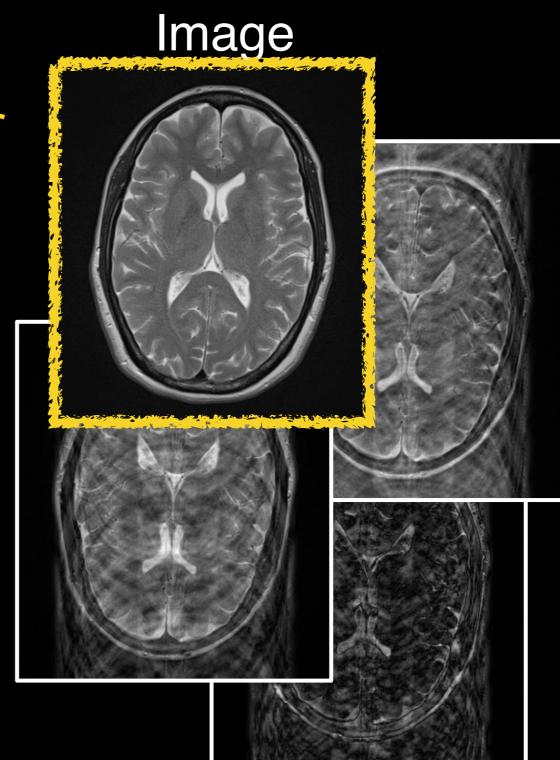
Compressed Sensing MRI

k-space



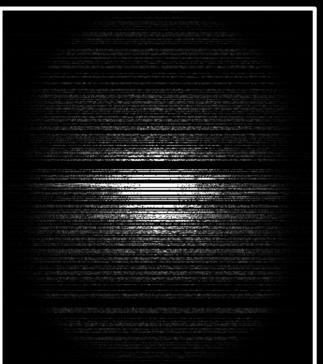
Inverse Fourier Transform Φ^{-1} $\mathbf{A} = \Phi^{-1}\mathbf{y}$

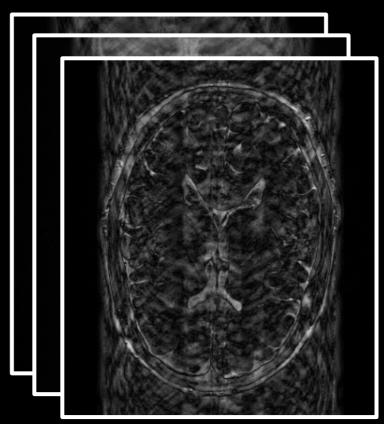
Choose the most compressible image matching data (<u>systematic optimization</u>)



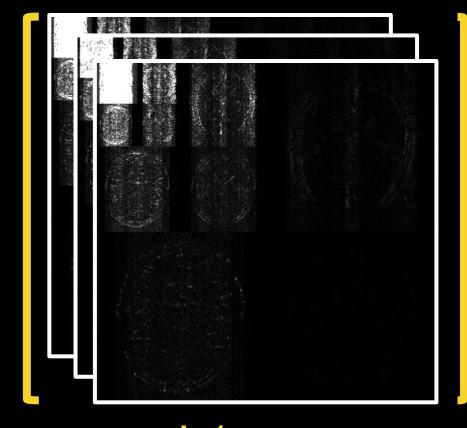
CS-MRI Reconstruction

y: k-space





w: Wavelet

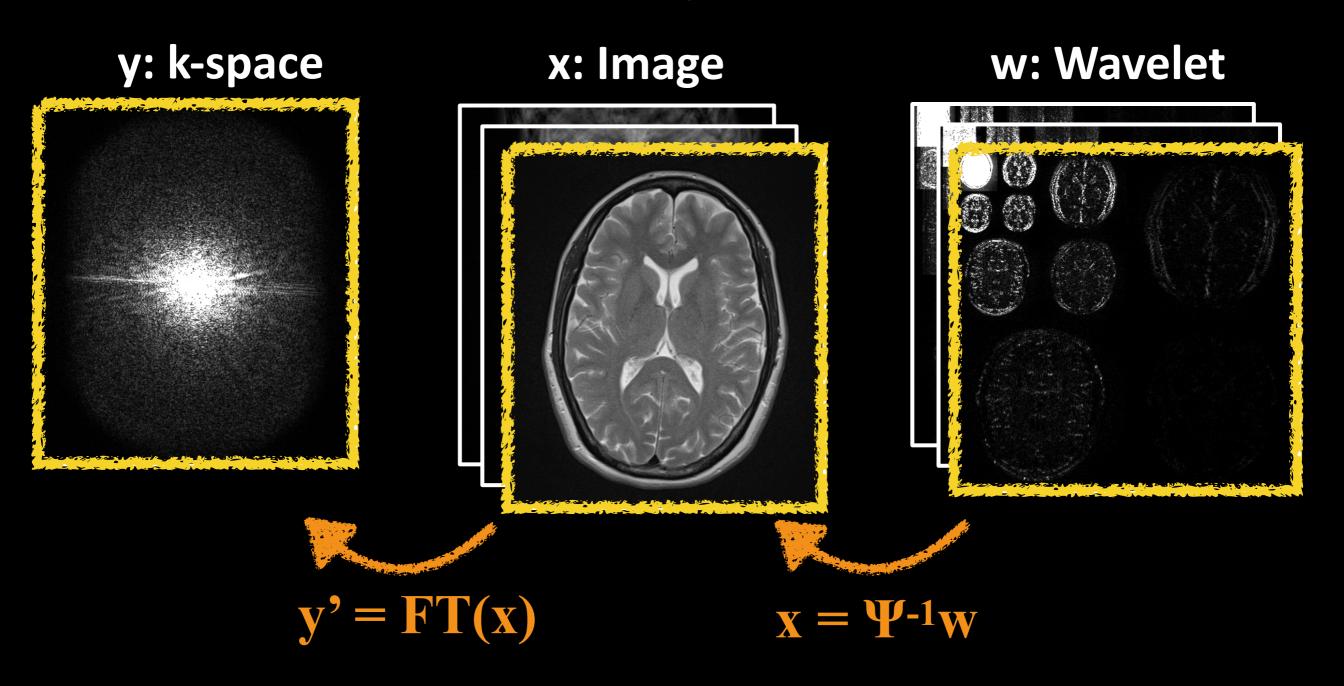


L1-norm

minimize $|\Psi x|_1$

CS-MRI Reconstruction

minimize F(x): $|y - \Phi x|^2 + R(x)$



Three Tenets of CS

```
minimize F(x): |y - \Phi x|_2^2 + R(x)

Data Compressibility

Consistency Constraint
```

Three key elements of Compressed Sensing:

Compressibility

Incoherence

Nonlinear Reconstruction

CS-MRI Reconstruction

minimize F(x): $|y - \Phi x|_2^2 + R(x)$

- Minimizing F(x) is non-trivial since R(x) is not differentiable
 - Linear programming is challenging due to high computational complexity
- Simple gradient-based algorithms have been developed:
 - Re-weighted L1 / FOCUSS
 - IST / IHT / AMP / FISTA
 - Split Bregman / ADMM

I.F. Gorodnitsky, et al., J. Electroencephalog. Clinical Neurophysiol. 1995 Daubechies I, et al. Commun. Pure Appl. Math. 2004 Elad M, et al. in Proc. SPIE 2007 T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2009

State-of-the-Art CS-MRI

- Reducing possible reconstruction failure
 - Improve sparse transformations
 - Develop k-space undersampling schemes
- Integrating CS with DL/parallel imaging
 - Develop compatible undersampling patterns
 - Develop reconstruction methods

State-of-the-Art CS-MRI

- Methods to evaluate CS reconstructed images
 - RMSE / SSIM / Mutual Information
- Reducing reconstruction time
 - Reduce computational complexity
 - Parallelize reconstruction problems
- Developing stable reconstruction algorithms
 - Minimize / avoid the number of regularization parameters

Thanks!

- Interested in more? M229 in Spring
 - Fast imaging sequences
 - Fast sampling trajectories
 - Parallel imaging
 - Constrained reconstruction
 - Deep learning-based methods

Thanks!

- Acknowledgments
 - Dr. Daniel Ennis
 - Dr. Peng Hu
 - Dr. Kyung Sung

Holden H. Wu, Ph.D.

HoldenWu@mednet.ucla.edu

http://mrrl.ucla.edu/wulab