MRI Optimization of Interventional Oncology Techniques

Jason Chiang, MD, PhD Assistant Professor

Division of Interventional Radiology Department of Radiological Sciences UCLA Ronald Reagan Medical Center, Los Angeles, CA

Disclosures

 J.C. receives licensing fees for patents relating to MWA through the Wisconsin Alumni Research Foundation; equipment support from Ethicon Neuwave Medical Inc.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Global Burden of HCC

- Hepatocellular carcinoma is one of the most common form of liver cancer with an estimated case incidence of >1 million by 2025
- Rates have tripled in the United States over the last 3 decades
- Hepatitis B and C are the main risk factors for HCC development, although NASH is becoming a bigger risk factor in the West.
- Asians and Hispanics have the highest incidence rates of HCC in the United States -> 1/3 live in CA.
 ~40/100,000 in CA alone

Llovet JM et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021 Jan 21;7(1):6. Han SS et al. . Changing Landscape of Liver Cancer in California: A Glimpse Into the Future of Liver Cancer in the United States. J Natl Cancer Inst. 2019 Jun 1;111(6):550-556.

UCLA Department of Radiology

Diagnosing HCC

Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases

Jorge A. Marrero,¹ Laura M. Kulik,² Claude B. Sirlin,³ Andrew X. Zhu,⁴ Richard S. Finn,⁵ Michael M. Abecassis,² Lewis R. Roberts,⁶ ⁽¹⁾ and Julie K. Heimbach⁶

LR-4

Diagnosis

2. The AASLD recommends diagnostic evaluation for HCC with either multiphase CT or multiphase MRI because of similar diagnostic performance characteristics.

Quality/Certainty of Evidence: Low for CT versus MRI

Strength of Recommendation: Strong

CT/MRI Diagnostic Table								
Arterial phase hyperenhancement (APHE)		No APHE		Nonrim APHE				
Observation size (mm)		< 20	≥ 20	< 10	10-19	≥ 20		
Count additional major features: • Enhancing "capsule" • Nonperipheral "washout" • Threshold growth	None	LR-3	LR-3	LR-3	LR-3	LR-4		
	One	LR-3	LR-4	LR-4	LR-4 LR-5	LR-5		
	≥ Two	LR-4	LR-4	LR-4	LR-5	LR-5		

Observations in this cell are categorized based on one additional major feature:

• LR-4 – if enhancing "capsule"

• LR-5 - if nonperipheral "washout" OR threshold growth

UCLA Department of Radiology

BCLC guidelines

Reig M, Forner A, Rimola J, Ferrer-Fàbrega J, Burrel M, Garcia-Criado Á, Kelley RK, Galle PR, Mazzaferro V, Salem R, Sangro B, Singal AG, Vogel A, Fuster J, Ayuso C, Bruix J. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022 Mar;76(3):681-693.

UCLA Department of Radiology

Cross Sectional Imaging: MRI Abdomen

UCLA Department of Radiology

Case Example: Diagnostic evaluation

UCLA Department of Radiology

 $\bigcirc \bigcirc \bigcirc$

How do we do ablations?

UCLA Department of Radiology

MWA vs RF: Differences in energy source

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Ablation planning and treatment

Benefits of computational modeling

Create a highly controlled environment to investigate and understand the effects of changing individual input variables

- Laboratory Work
 - More focused experimental studies
 - Fewer animal studies
 - Decreased developmental costs
 - Greater research efficiency
- Clinical Work
 - Tailor treatment to patient-specific environments
 - Optimize device settings before a procedure

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Margins are critical – use modeling to help you predict it ahead of time!

Margin	LTP rate
<= 5 mm	60% (21/35)
5-10 mm	10.5% (2/19)
>10 mm	0% (0/6)

Shady, Waleed, Elena N. Petre, Kinh Gian Do, Mithat Gonen, Hooman Yarmohammadi, Karen T. Brown, Nancy E. Kemeny, et al. "Percutaneous Microwave versus Radiofrequency Ablation of Colorectal Liver Metastases: Ablation with Clear Margins (A0) Provides the Best Local Tumor Control." *Journal of Vascular and Interventional Radiology* 29, no. 2 (February 2018): 268-275.e1.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Modeling ablations: Basics in heat transfer

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Modeling MWA: Mechanism of heating

Ablation Modality	Max temperature	Mechanism of Heating	Risk:
Microwave Ablation	>100 °C	Thermal Conduction + Active Heating + Water Vapor	Inadvertent damage, thrombosis

Factors that make MWA amenable to modeling

- <u>Tissue-specific heating</u> based on antenna design
- Less susceptibility to the heat-sink effect

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Basic computational setup and output

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Tool Optimization: Organ-specific design

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Tool Optimization: Shape-specific design

Chiang et al. Radiology 268:382-89, 2013.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

0 cm

March 12, 2023

3

0 cm

Comparison between lung-tuned and liver-tuned antennas

J. Chiang, L. Song, F. Abtin and Y. Rahmat-Samii, "Efficacy of Lung-Tuned Monopole Antenna for Microwave Ablations: Analytical Solution and Validation in a Ventilator-Controlled ex-vivo Porcine Lung Model," in *IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology (in press)*

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Tunable Microwave Antennas

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Thermal ablations and the heat-sink effect

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Calculating time-dependent temperature maps

$\bigcirc \bigcirc \bigcirc$

Continuum approach: Use Pennes bioheat equation to create time-dependent ablation isotherms:

$$\nabla \cdot k \nabla T - \rho_b c_b \omega_b (T_{a0} - T) + q_m + \mathbf{Q} = \rho c \frac{\partial T}{\partial t}$$

Thermal

Blood flow

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Calculating time-dependent temperature maps

Vascular approach: Model the impact of each vessel individually – mimic the *patient-specific* vascular anatomy for each ablation zone

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

2D Phase Contrast

- One directional through-plane (Z) velocity encoding sequence
 - Acquisition of 2 images:
- • • 1 Magnitude image
 - 1 Phase image

Region of Interest: Targeting vessel or anatomy

Magnitude image: Signal intensity proportional to velocity but no directional information

Phase image: blood flow shows directional information

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Azarine A, Garçon P, Stansal A, Canepa N, Angelopoulos G, Silvera S, Sidi D, Marteau V, Zins M. Four-dimensional Flow MRI: Principles and Cardiovascular Applications. Radiographics. 2019 May-Jun;39(3):632-648. doi: 10.1148/rg.2019180091. Epub 2019 Mar 22

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

4D flow MRI: Neuro applications

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

4D flow: Liver Applications

Physiological variation in blood flow through the portal vein due to the increased resistance in two patients with <u>portal</u> <u>hypertension</u>. a: Reversed (hepatofugal) flow is seen in the portal and splenic veins. Conservation of mass analysis showed good agreement (4.57%) between QPV and QSMV b QSV. b: Reversed QSV with reduced QPV and normal QSMV.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

4D flow: Liver Applications

Four-dimensional–flow MR imaging– based visualization and quantification of hemodynamics in the portal system **before and after TIPS placement** in a 54-year-old man with portal hypertension and refractory ascites.

A) Segmentation of 4D-flow angiograms obtained before (pre) and 2 weeks after (post) TIPS placement show arteries (red), veins (blue), portal vasculature (yellow), and TIPS (gray).

B) Velocity-coded 4D-flow MR images obtained before and 2 weeks after TIPS placement show velocity distribution in the portal circulation. Note the high velocity in the TIPS, with a signal dropout at the proximal end of the TIPS due to disordered flow.

Post

Roldán-Alzate, Alejandro, Christopher J. Francois, Oliver Wieben, and Scott B. Reeder. "Emerging Applications of Abdominal 4D Flow MRI." *AJR. American Journal of Roentgenology* 207, no. 1 (July 2016): 58–66.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Velocity [m/s] 0.5

0.0

4D flow: Ablation-related hemodynamics

4D Flow images showing flow within the portal veins and IVC.

MWA zone (blue arrow) creating water vapor (yellow arrow) that is recondensing while in the hepatic vein.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

4D flow: Ablation-related hemodynamics

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Predicting ablation volume

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Modeling Heat and Mass Transfer

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Modeling MWA: Incorporating water vapor

Solve heat transfer equation in porous media

 $(\rho c)_{eq} \frac{\partial T}{\partial t} + \rho_L C_{\rho L} \boldsymbol{u} \cdot \nabla T = \nabla \cdot (k_{eq} \nabla T) + Q$

Solve for liquid water and water vapor diffusion through liver tissue

 $\frac{\partial c}{\partial t} + \boldsymbol{u} \cdot \nabla c = \nabla \cdot (D \nabla c) + R$

Chiang, Jason, Sohan Birla, Mariajose Bedoya, David Jones, Jeyam Subbiah, and Christopher L. Brace. "Modeling and Validation of Microwave Ablations with Internal Vaporization." *IEEE Transactions on Bio-Medical Engineering* 62, no. 2 (February 2015): 657–63.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Water vapor diffusion = Contraction

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Contraction in Clinical Practice

UCLA Department of Radiology

 $\bigcirc \bigcirc \bigcirc$

MRI Optimization of Interventional Oncology Procedures

Current state of microwave planning and modeling

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Integrating contraction into MWA planning

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Back to original case: Diagnostic evaluation

UCLA Department of Radiology

Transarterial chemoembolization + ablation

UCLA Department of Radiology

Post-embolization ablation

UCLA Department of Radiology

Post-ablation CT scan

 $\bullet \bullet \bullet$

UCLA Department of Radiology

Perfusion MRI

UCLA Department of Radiology

Modeling Perfusion with Tofts model

$$C_{t}(t) = v_{p}C_{p}(t) + K^{trans} \int_{0}^{t} C_{p}(\tau)e^{-(K^{trans}/v_{e})(t-\tau)}d\tau$$

- $C_{\tau}(\tau)$ is the total tissue contrast agent concentration
- C_ρ(t) is the time-varying blood plasma concentration after a bolus of gadolinium is administered
- Ktrans (min-1) is the forward rate constant
- k_{ep} (min-1) is the backward rate constant.

Calculating free parameters Ktrans and kep required an assumption of the arterial plasma concentration Cp(t), for which a population-derived arterial input function

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Study Question

Can pre-ablation perfusion MRI predict the microwave ablation zone sizes near liver vessels in an in-vivo liver model?

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023

Modeling the effects of perfusion

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Histopathology and modeling

Chiang J, Sparks H, Rink JS, Meloni MF, Hao F, Sung KH, Lee EW. Dynamic Contrast-Enhanced MR Imaging Evaluation of Perfusional Changes and Ablation Zone Size after Combination Embolization and Ablation Therapy. J Vasc Interv Radiol. 2023 Feb;34(2):253-260. doi: 10.1016/j.jvir.2022.10.041.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Correlating DCE-MRI parameters with ablation volume

Chiang J, Sparks H, Rink JS, Meloni MF, Hao F, Sung KH, Lee EW. Dynamic Contrast-Enhanced MR Imaging Evaluation of Perfusional Changes and Ablation Zone Size after Combination Embolization and Ablation Therapy. J Vasc Interv Radiol. 2023 Feb;34(2):253-260. doi: 10.1016/j.jvir.2022.10.041.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Validation of numerical models

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Oncopig tumor model

Nurili F, Monette S, Michel AO, Bendet A, Basturk O, Askan G, Cheleuitte-Nieves C, et al. Transarterial Embolization of Liver Cancer in a Transgenic Pig Model. J Vasc Interv Radiol. 2021 Apr;32(4):510-517.e3.

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Oncopig validation of immunoadjuvant therapy

- Oncopig contains P53 and Kras mutations, common mutations seen in human pancreatic ductal adenocarcinoma.
- "Immune cold" tumor lowest response rates to current immunotherapies
- The immune response can be potentiated with the immunostimulant CpG oligodeoxynucleotides (ODN)
 - TLF9 agonist that can induce powerful dendritic cell antigen presentation and proinflammatory cytokine production

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Summary: MR guided interventions

- Modeling of microwave ablations can more accurately characterize the impact of energy delivery strategies in a complex biological environment.
 - Patient-specific parameters (vascular anatomy, tissue properties, water vapor movement, contraction)
 - Give physicians a tool to predict when more aggressive needle placement or power settings are warranted.
 - Repeat in silico instead of in patient.
 - Fusion imaging can facilitate the adoption of numerical modeling into current ablation workflow
 - Validation is critical to any model large animal model studies required to truly move the needle forward

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Acknowledgements

$\bigcirc \bigcirc \bigcirc$

- o NIH
 - o F30 CA165548
 - o UL1TR001881
- o UCLA Department of Radiology
- UCLA Clinical and Translational Science Institute (CTSI)
- University of Wisconsin Department of Radiology
- o Radiological Society of North America

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

Thank You

UCLA Department of Radiology

MRI Optimization of Interventional Oncology Procedures

March 12, 2023