Stroke-Related Vascular MRI

Zhaoyang Fan Ph.D.

Associate Professor Director, MR Imaging Research Radiology | Radiation Oncology | Biomedical Engineering Mar 15, 2023

Outline

Background on Stroke

MR Luminal Imaging

- Non-contrast MRA
- Contrast-enhanced MRA
- Susceptibility-based imaging

* MR Vessel Wall Imaging (VWI)

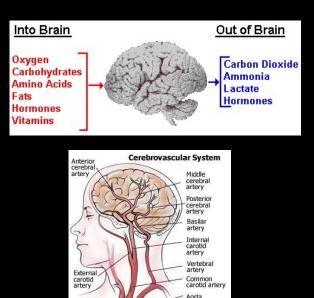
- Carotid VWI
- Intracranial VWI
- Aortic VWI

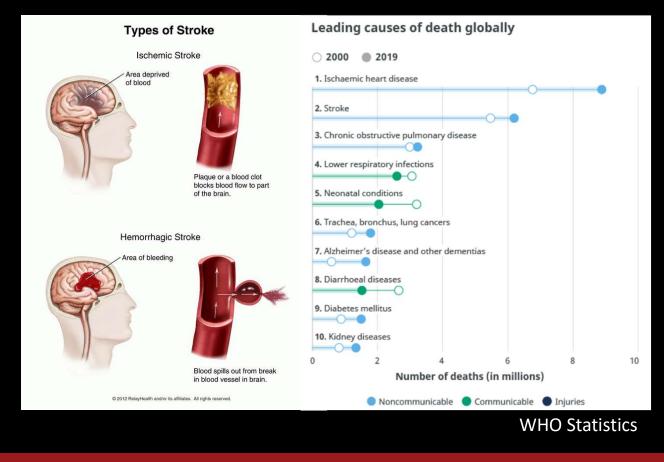
Summary

Outline

Background on Stroke

- MR Luminal Imaging
 - Non-contrast MRA
 - Contrast-enhanced MRA
 - Susceptibility-based imaging
- MR Vessel Wall Imaging (VWI)
 - Carotid VWI
 - Intracranial VWI
 - Aortic VWI

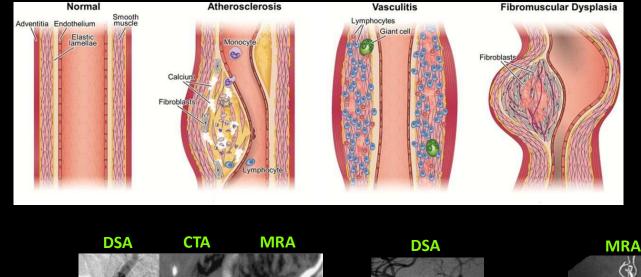

Summary



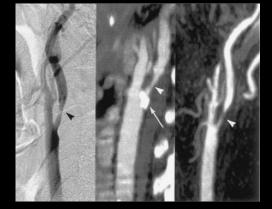
Stroke

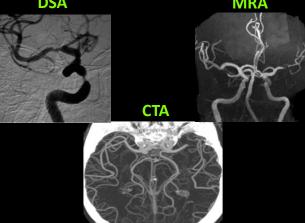
Facts about our brain:

- 2% of body weight
- Consumes 50% of glucose
- Consumes 20% of oxygen
- All nutrients supplied by the blood
- 15% cardiac output


USC

Major Causes of Stroke: Vascular Pathologies


- Atherosclerosis
- Dissection
- Vasculitis
- Vasospasm
- Aneurysm


•

- Moyamoya disease
- Kawasaki disease

Luminal narrowing, dilation, or irregularity

DSA: digital subtraction angiography; CTA: CT angiography; MRA: MR angiography

Routine Imaging Techniques for Diagnosing Vascular Diseases

X-ray Angiography – the gold standard Advantages

- High spatial resolution
- High temporal resolution

Transcranial Doppler Advantages

• Non-invasive, low cost, easy

CT Angiography (CTA) Advantages

- High spatial resolution
- Non-invasive
- Speed of examination

MR Angiography (MRA) Advantages

- Non-invasive
- No radiation exposure
- 3D evaluation

Disadvantages

- Invasive, high cost (used with therapeutic intervention)
- Ionizing radiation
- Nephrotoxic iodinated contrast agents

Disadvantages

• Operator expertise dependent

Disadvantages

- Ionizing radiation
- Nephropathy
- Blooming artifacts due to calcium

Disadvantages

- Low spatial resolution
- Unsuited for arteries with metallic stents
- Potential risk of nephrotoxic systemic fibrosis

Outline

Background on Stroke

MR Luminal Imaging

- Non-contrast MRA
- Contrast-enhanced MRA
- Susceptibility-based imaging

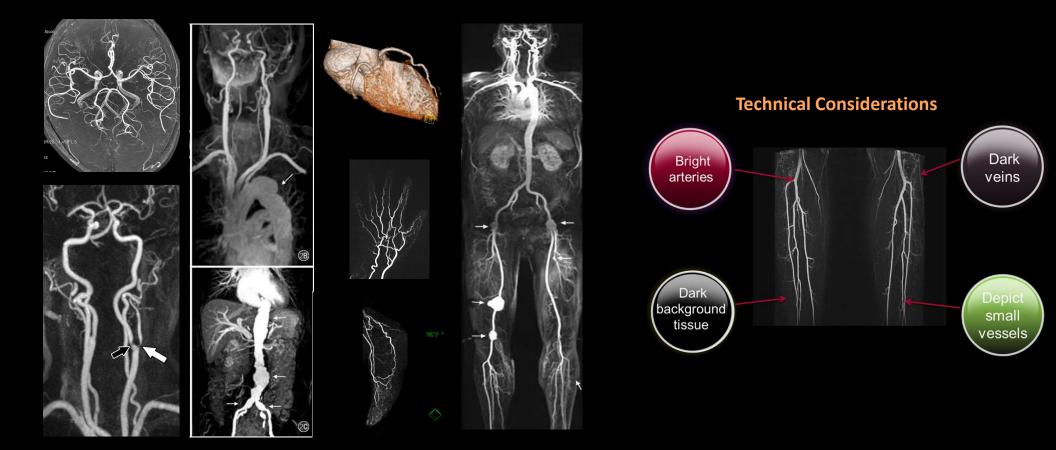
MR Vessel Wall Imaging (VWI)

- Carotid VWI
- Intracranial VWI
- Aortic VWI

Summary

Luminal Imaging

***** To visualize the vessel lumen to detect any luminal abnormalities

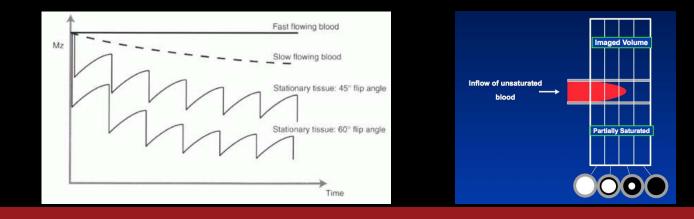

- Stenosis
- Occlusion
- Dilation
- Rupture
- Anastomosis
- •

USC

Approaches

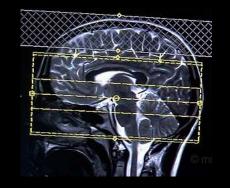
- Non-contrast MRA
- Contrast-enhanced MRA
- Susceptibility-based imaging

MRA

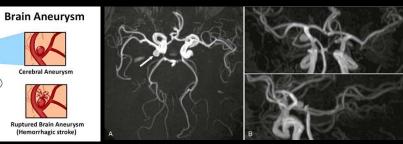


USC

Time-of-Flight (TOF) MRA – A Non-contrast MRA Method


- "TOF" relates to time of inflow
- Gradient-recalled echo (GRE) with repetitive RF pulses excitations
- TR short relative to tissue T1
 - Static tissue is saturated → weak signal
- ✤ TR long enough for flow to replenish slice
 - TR > (slice or volume thickness / flow speed)

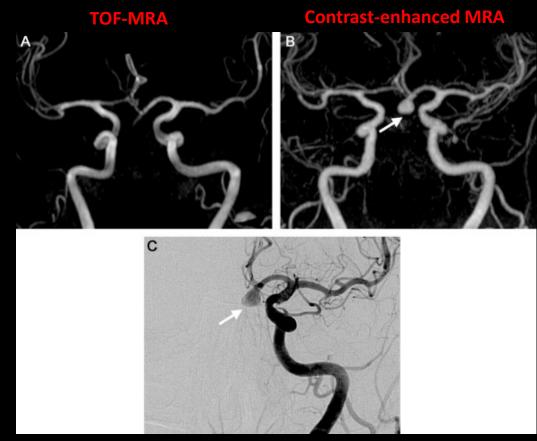
3D TOF MRA



Advantages

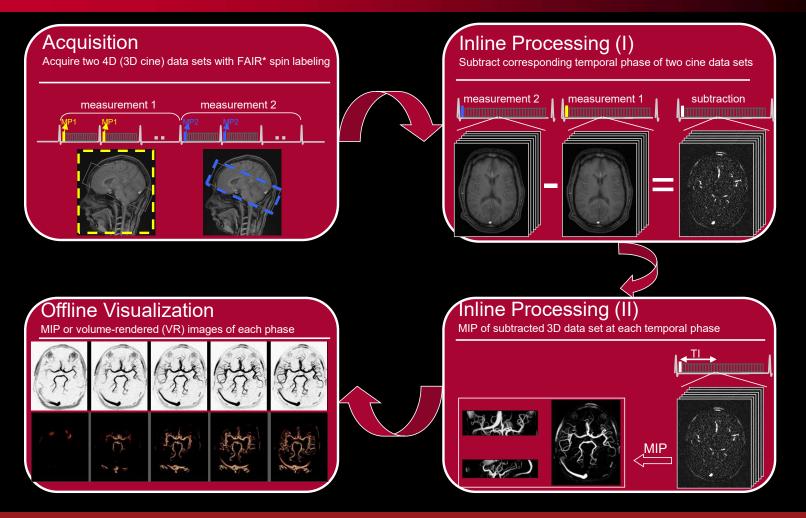
- Higher spatial resolution
- Good for intermediate and fast flow
- Multi-slab for more coverage

Aneurysm

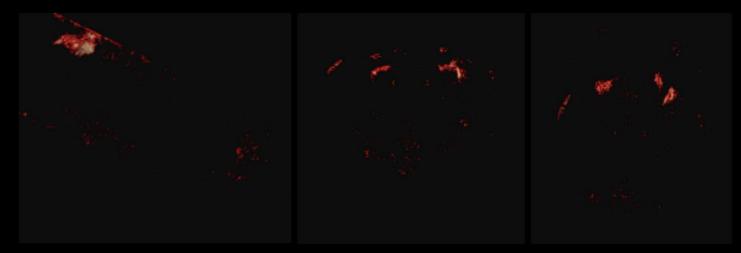


3D TOF MRA

✤ Disadvantages


- Poor for slow flow
- More susceptible to motion

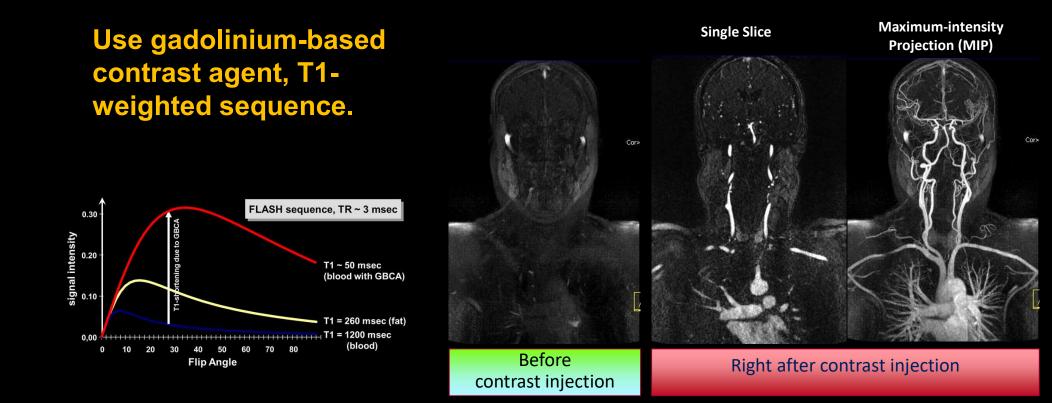
DSA


Non-contrast 4D MRA

USC

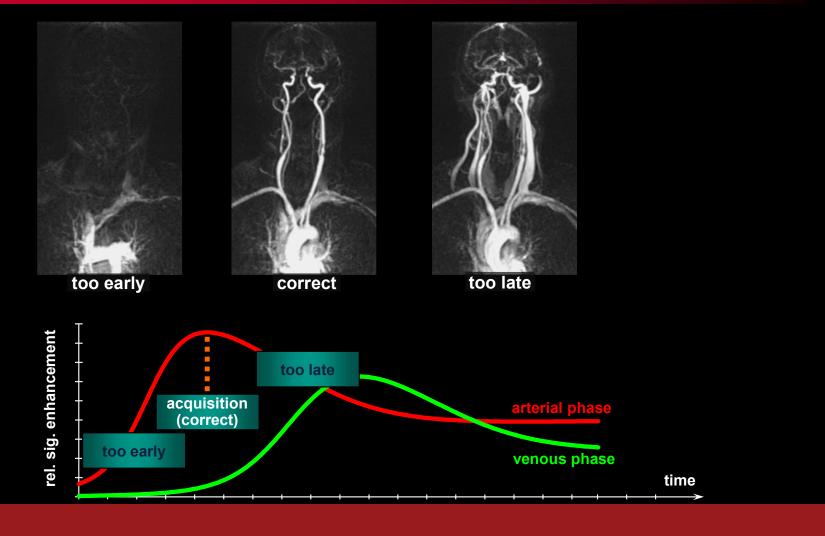
Non-contrast 4D MRA

Temporal resolution: 51.4 msec Voxel size: 1.25 x 1.25 x 1.25 mm³ Imaging time: 5'12"

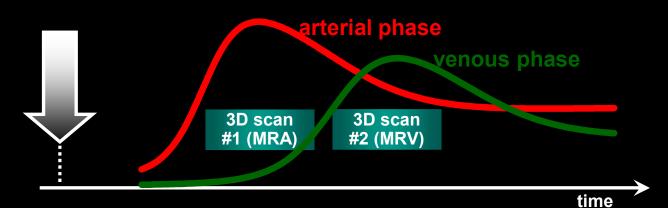


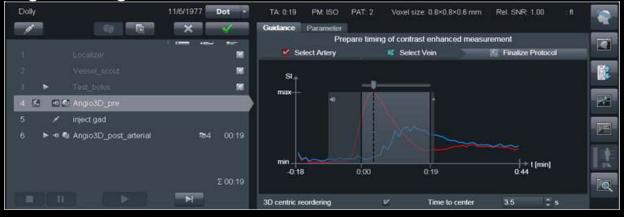
VR images reformatted using InSpace software (Siemens AG Healthcare)

Bi X et. al, MRM 63: 835; 2010



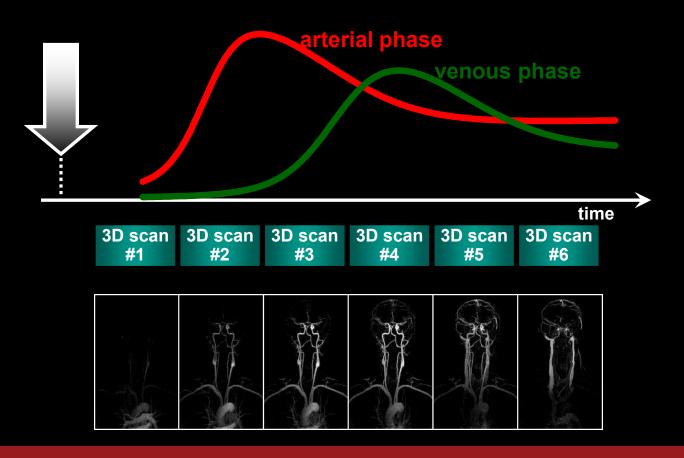
Contrast-Enhanced (CE) MRA


Contrast Timing is Extremely Important

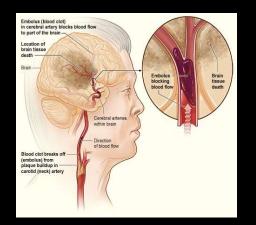

USC

Timing Strategy

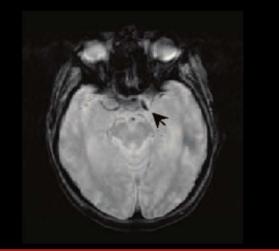
3D measurement with user-specified timing (test bolus, care bolus)

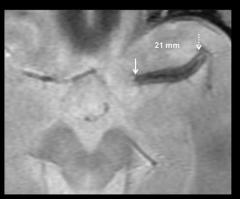

Angio Dot Engine

USC


Timing Strategy

Time-resolved 3D measurements (TWIST): both vessel patency and functional information

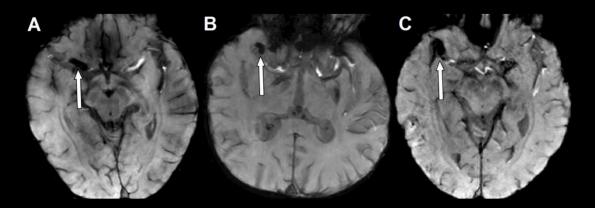



Susceptibility-based Imaging

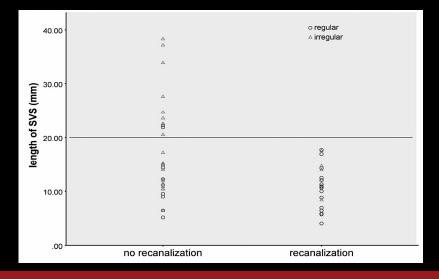
T2* shortening in thrombus due to susceptibility effect of deoxyHb or metHb

Susceptibility vessel sign (SVS): hypointensity within the course of an artery

MR SVS



The mean length: SVS: 17.1 ± 7.2 mm vs. DSA: 15.4 ± 7.1 mm ICC = 0.88


WSC Schellinger PD et al. AJNR 2005;26:618-624

Naggara O et al. PLOS ONE 2013;8(10):e76727

Susceptibility-based Imaging

Long vs. Short SVS Regular vs. Irregular SVS

- None of the patients with an MCA SVS >20 mm achieved recanalization 24hr after IV-tPA
 - \rightarrow direct triage patient to endovascular therapy ?

 For patients with SVS < 20 mm, the recanalization rate for the irregular groups was 29.4% versus 69.6% for the regular group

→ need ancillary endovascular therapy?

Outline

Background on Stroke

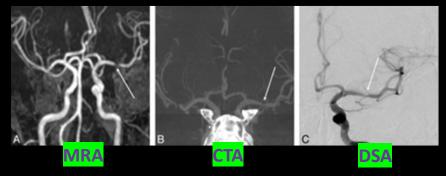
- MR Luminal Imaging
 - Non-contrast MRA
 - Contrast-enhanced MRA
 - Susceptibility-based imaging

MR Vessel Wall Imaging (VWI)

- Carotid VWI
- Intracranial VWI
- Aortic VWI

Summary

Why Do We Need MR-VWI


* Limited information on wall pathologies from luminal imaging

* Stenosis or luminal irregularity can be caused by diverse etiologies

- Atherosclerosis
- Dissection
- Moyamoya's
- Vasculitis

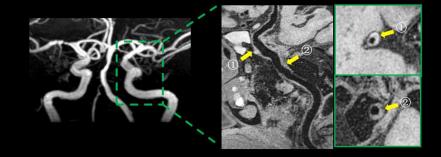
USC

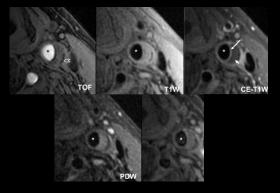
Vasospasm

A 55-year-old man presented with rightsided h<u>emiparesis.¹</u>

* Stenotic severity is not equal to disease severity or risk

Positive Remodeling²

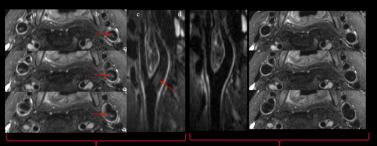

1. Jeon JS et al. Am J Neuroradiol 2013;34:129 2. Glagov et al. N Engl J Med. 1987;316:1371


VWI – Beyond the Lumen

- Provide geometric and signal features associated with various vascular diseases

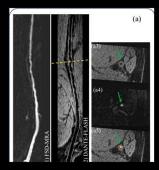
Black-Blood Contrast in Cardiovascular MRI

Markus Henningsson, PhD,^{1,2,3*} Shaihan Malik, PhD,³ Rene Botnar, PhD,³ Daniel Castellanos, MD,⁴ Tarique Hussain, MD,^{4,5} and Tim Leiner, MD, PhD⁶ J. MAGN. RESON. IMAGING 2020.



Wide Application of VWI

Carotid VWI



SPACE

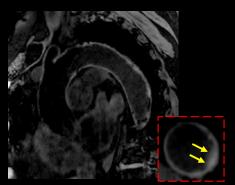
ACE FSD-SPACE

Fan Z et al. J Magn Reson Imaging 2010;31:645

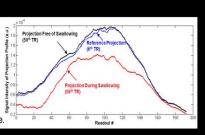
Peripheral VWI

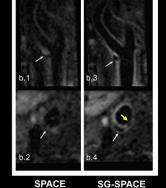
Xie G, Fan Z et al. J Magn Reson Imaging 2016;43:343

Intracranial VWI


Fan Z et al. Magn. Reason. Med. 2017;77:1142

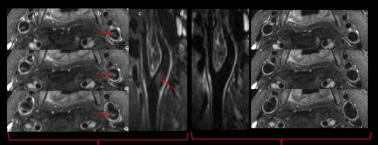
Coronary VWI




Xie G, Fan Z et al. Magn Reson Med. 2016;75:997

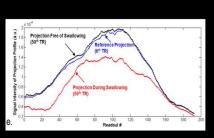
Aortic VWI

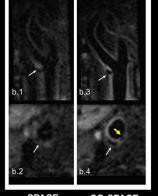
Hu Z, Fan Z et al. Magn Reson Med 2020;84:2376-2388 Hu Z, Fan Z et al. Magn Reson Med 2022; Nov 6.



Fan Z et al. Magn Reson Med. 2012;67:490

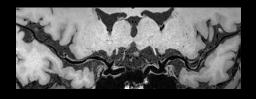
Wide Application of VWI

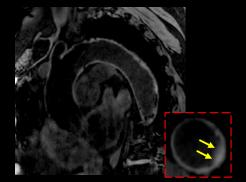

Carotid VWI



SPACE

FSD-SPACE

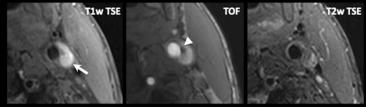

Fan Z et al. J Magn Reson Imaging 2010;31:645


SPACE SG-SPACE

Intracranial VWI

Fan Z et al. Magn. Reason. Med. 2017;77:1142

Aortic VWI

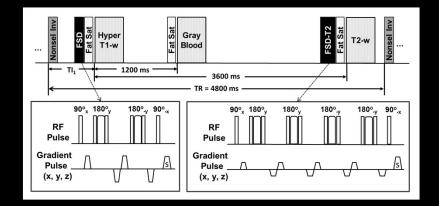

Hu Z, Fan Z et al. Magn Reson Med 2020;84:2376-2388 Hu Z, Fan Z et al. Magn Reson Med 2022; Nov 6.

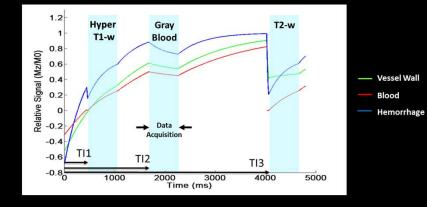
Fan Z et al. Magn Reson Med. 2012;67:490

Multi-contrast atherosclerosis characterization (MATCH)

Conventional approach: Multiple 2D scans with >15 min

	Conventional Multi-Contrast							
Component	T1-w	T2-w	TOF	CE				
IPH	+	-/+	+	=				
CA	-	-	-	-				
LM	=	+	=	+				
LRNC w/o IPH	=/+	-	=	-				


IPH: intraplaque hemorrhage, CA: calcification, LRNC: lipid-rich necrotic core, +: hyperintense; -: hypointense; =: isointense



Fan Z et al. J Cardiovasc Magn Reson 2014;16:53

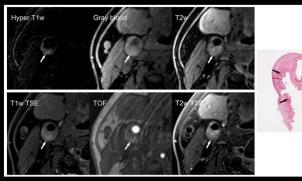
USC

***** Multi-contrast atherosclerosis characterization (MATCH)

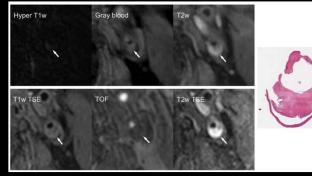
 MATCH:
 Multi-contrast 3D

 Multi-contrast 3D
 Imaging within one

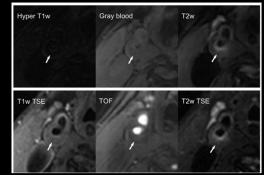
 5-min scan
 Image: Second Se


	МАТСН				Conventional Multi-Contrast			
Component	Hyper T1-w	Gray Blood	T2-w		T1-w	T2-w	TOF	CE
IPH	+		+ (recent) -/= (acute)		+	-/+	+	=
CA		-			-	-	-	-
LM	=		+		=	+	=	+
LRNC w/o IPH	=		-		=/+	-	=	-

IPH: intraplaque hemorrhage, CA: calcification, LRNC: lipid-rich necrotic core, +: hyperintense; -: hypointense; =: isointense


Fan Z et al. J Cardiovasc Magn Reson 2014;16:53

Multi-contrast atherosclerosis characterization (MATCH)


IPH

Loos matrix

LRNC

CA

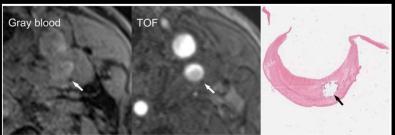
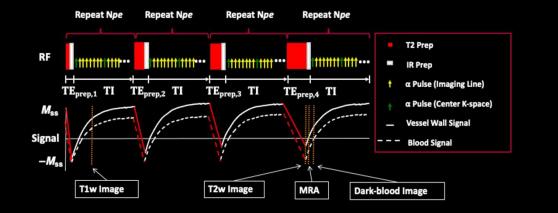
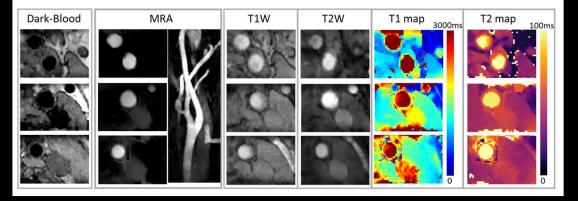


TABLE 2. Comparison of MATCH and Conventional Multicontrast Protocol in Identifying Plaque Components Using Histological Findings as Reference Standard

	Accuracy (%)		Sensitivity (%)		Specificity (%)		PPV (%)		NPV (%)	
	MATCH	Conv.	MATCH	Conv.	MATCH	Conv.	MATCH	Conv.	MATCH	Conv.
IPH	82.5	77.5	84.2	73.7	81.0	81.0	80.0	77.8	85.0	77.3
LRNC	82.5	80.0	84.2	77.3	81.0	83.3	80.0	85.0	85.0	75.0
LM	80.0	90.0	90.9	81.8	75.9	93.1	58.8	81.8	95.7	93.1
CA	90.0	82.5	100.0	82.4	81.8	82.6	81.8	77.8	100.0	86.4

Conv.: conventional multicontrast protocol; IPH: intraplaque hemorrhage; LRNC: lipid-rich necrotic core; LM: loose matrix; CA: calcification; PPV: positive predictive value; NPV: negative predictive value.

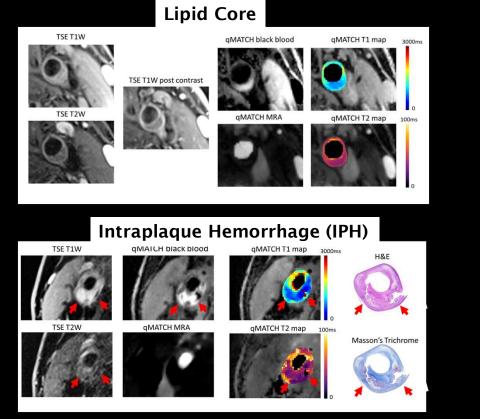


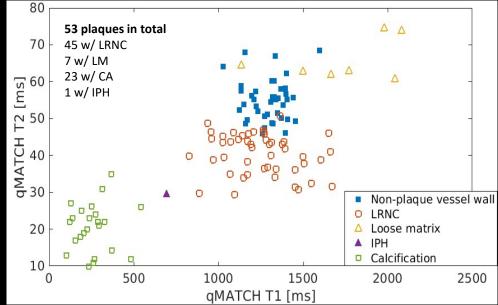

Dan Y et al. J Magn Reason Imaging 2017;45:764

Multi-contrast atherosclerosis characterization (MATCH)

Parameter	Reader	Protocol	Mean ± SD	95% CI of difference	P-value	ICC (95% CI)	P-value	
Total vessel wall volume (mm ³)	1	Multi-sequence	1335.1±379.5	(-140.6)-(-31.6)	0.003	0.93 (0.89-0.96)	<0.01	
	-	MATCH	1421.3±433.0	(140.0) (31.0)		0.55 (0.05 0.50)	10.01	
	2	Multi-sequence	1453.7±307.7	(-230.0)-(31.0)	0.01	0.76 (0.58-0.86)	<0.01	
	2	MATCH	1584.2±474.1	(-230.0)-(31.0)				
	1	Multi-sequence	67.8±174.4	(-8.5)-(29.9)	0.27	0.95 (0.92-0.97)	<0.01	
Total LRNC volume (mm ³)	1	MATCH	57.1±146.2			0.95 (0.92-0.97)		
	2	Multi-sequence	50.5±154.5	(-19.8) - (31.2)	0.7	0.88 (0.79-0.93)	<0.01	
	2	MATCH	44.8±115.2	(-19.0) - (51.2)	0.7			
	1	Multi-sequence	30.1±94.1	(10 1) (E 9)	0.60	0.97 (0.96-0.99)	<0.01	
Total IPH volume (mm ³)	1	MATCH	32.2±95.6	(-10.1)-(5.8)				
	2	Multi-sequence	24.0±94.1	(15 2) (27 0)	0.6	0.84 (0.77-0.90)	<0.01	
	2	MATCH	17.5±44.4	(-15.3)-(27.0)				
	1	Multi-sequence	24.1±37.5	(-91.2)-(32.9)	0.35	0.38 (0.23-0.46)	0.4	
	1	MATCH	53.2±226.5				0.4	
Total calcifications volume (mm ³)	2	Multi-sequence	23.5±39.9	(-58.5)-(-13.7)	<0.01	0.37 (-0.1-0.64)	0.06	
		MATCH	59.6±80.4					
	1	Multi-sequence	1227.8±345.4	(-336.6)-(-90.6)	0.001	0.59 (0.29-0.76)	<0.01	
Tatal filmous tionus uslums (mm3)		MATCH	1441.5±473.0					
Total fibrous tissue volume (mm ³)	2	Multi-sequence	1369.6±283.8	(-161.8)-(33.8)	0.2	0.70 (0.48-0.83)	<0.01	
		MATCH	1433.6±428.2					
	1	Multi-sequence	57.6±9.0	(-3.7)-(-0.2)	0.03	0.85 (0.74-0.91)	<0.01	
		MATCH	59.5±8.8					
Percent wall volume (PWV) %	2	Multi-sequence	60.5±7.8	(-3.4)-(-0.6)	<0.01	0.87 (0.78-0.93)	<0.01	
		MATCH	62.5±7.3					
Normalized wall index (NWI)		Multi-sequence	0.58±0.1		0.06	0.85 (0.74-0.91)	<0.01	
	1		0.60±0.1	(-0.5)-(0.0)				
		Multi-sequence	0.60±0.1	(-0.04)-(-0.0)	0.01	0.82 (0.68-0.90)	<0.01	Kassem M, Fan, Z, Ko
	2	•	0.62±0.1					M, ISMRŃ 2022;1747

qMATCH* for carotid T1/T2 mapping (Yibin Xie et al. Cedars-Sinai)

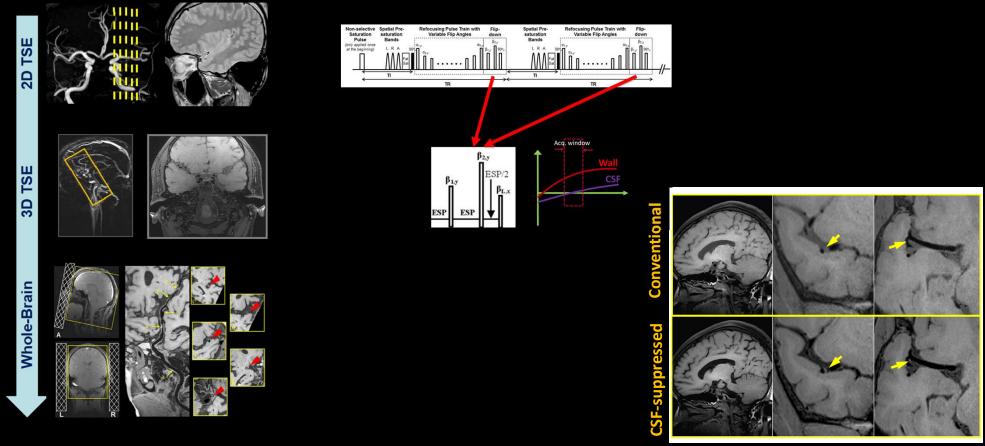




Xie Y et al. ISMRM 2017;3122. Christodoulou, AG., et al. Nature Biomedical Engineering 2.4 (2018): 215.

USC

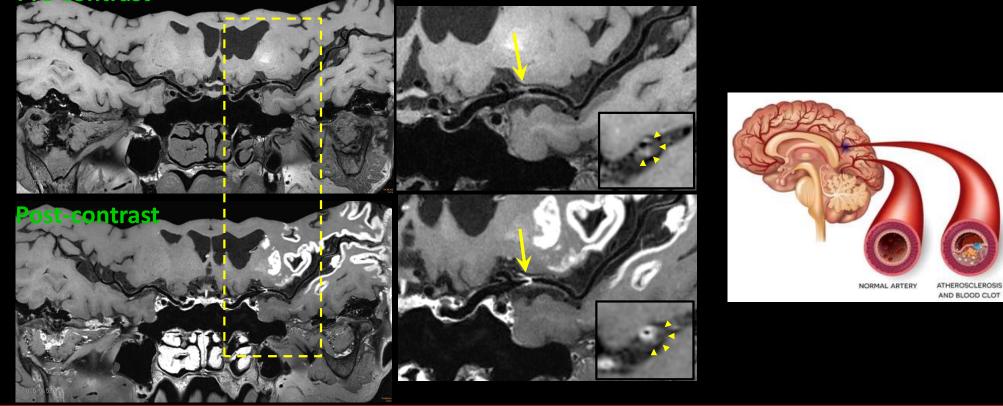
qMATCH* for carotid T1/T2 mapping (Yibin Xie et al. Cedars-Sinai)



Xie Y et al. ISMRM 2017;3122

Break

USC

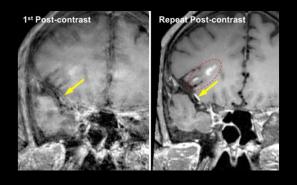


Whole-brain VWI with CSF suppression

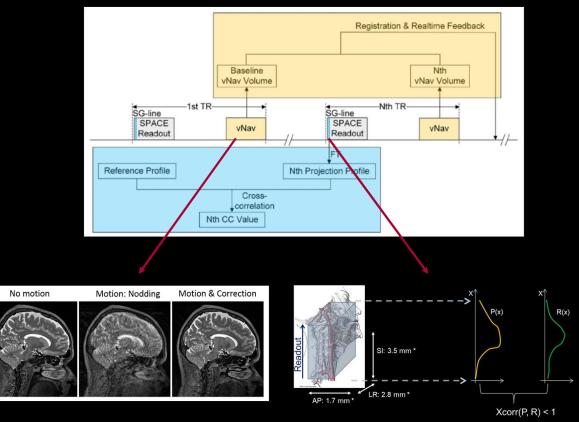
Fan Z et al. Magn. Reason. Med. 2017;77:1142 (submitted Sept 2015, accepted Feb 2016)

Whole-brain VWI with CSF suppression

Pre-contrast



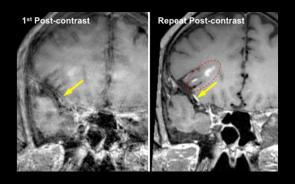
Fan Z et al. Magn. Reason. Med. 2017;77:1142


Motion compensation

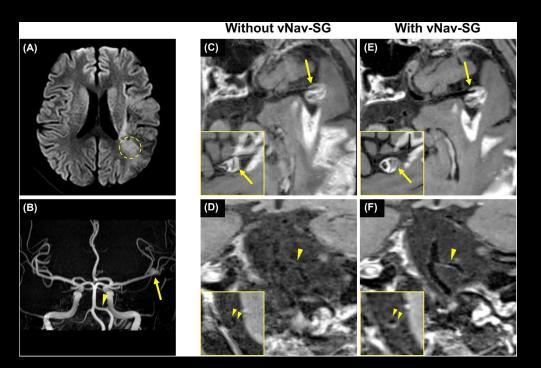
- Motion (bulk motion, swallow, cough) is common during neuroanatomical MRI
- 3D imaging is inherently motion susceptible
- Higher risk of motion due to the lengthy scan

• Our solution:

Self-gating (SG) + volumetric navigator (vNav)



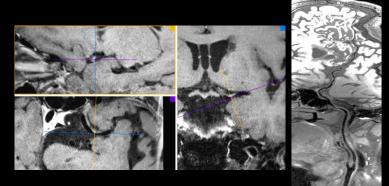
Hu Z, Fan Z et al. Magn. Reson. Med. 2021;86:637-647


Motion compensation

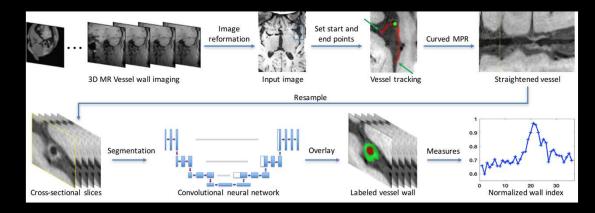
- Motion (bulk motion, swallow, cough) is common during neuroanatomical MRI
- 3D imaging is inherently motion susceptible
- Higher risk of motion due to the lengthy scan

• Our solution:

Self-gating (SG) + volumetric navigator (vNav)

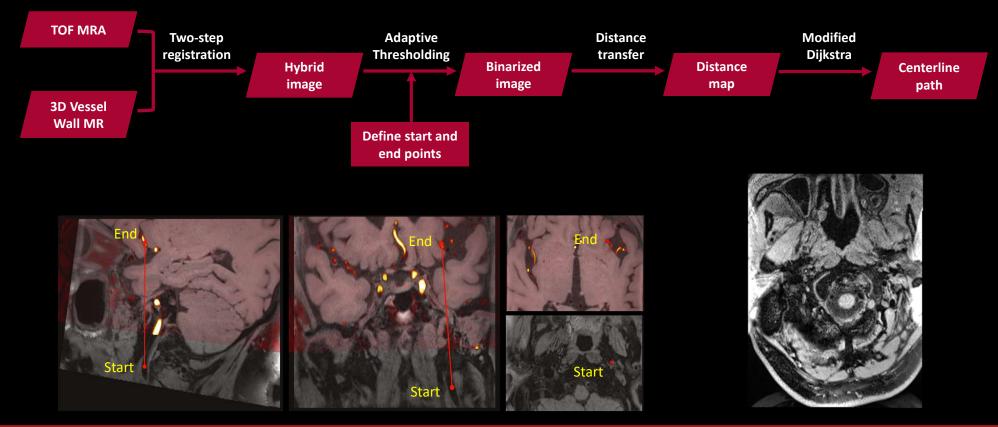


Hu Z, Fan Z et al. Magn. Reson. Med. 2021;86:637-647


Automated vessel wall analysis

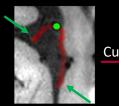
- Manual image processing and review: time-consuming.
- Qualitative disease evaluation: experience-dependent.
- Not well reproducible and not suited for longitudinal studies.

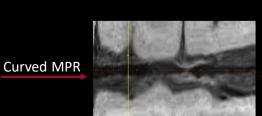
• Our solution:


Machine learning-driven automatic or semi-automatic review and analysis.

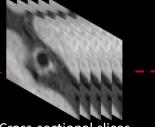
Shi F, Fan Z et al. IEEE Trans Biomed Eng 2019;66:2840

Automated vessel center-line tracking

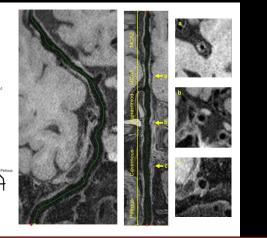


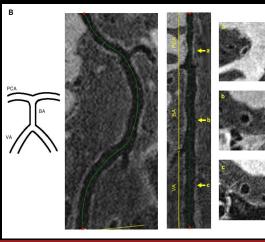

Shi F, Fan Z et al. IEEE Trans Biomed Eng 2019;66:2840

Automated vessel center-line tracking


Α

Vessel tracking


Straightened vessel



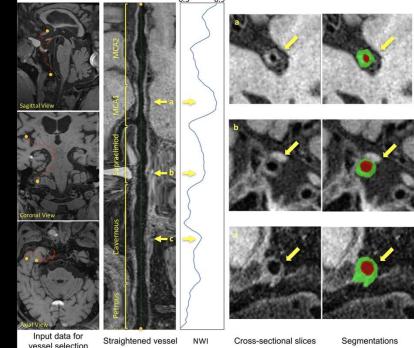
Cross-sectional slices

Subsequent Plaque Assessment

Anterior Circulation



Posterior Circulation



Shi F, Fan Z et al. IEEE Trans Biomed Eng 2019;66:2840

Automated vessel segmentation

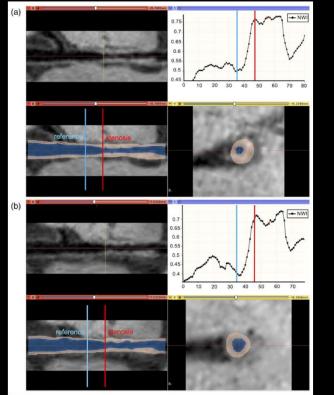
2D Unet Model (Fully convolutional network)

DICE Coefficient: 0.889 (lumen) and 0.767 (vessel wall)

Shi F, Fan Z, et al. ISMRM 2017; Shi F, Fan Z et al. IEEE Trans Biomed Eng 2019;66:2840

Automated vessel segmentation

x ³ x ⁴ x ³ x ⁴	UNet depth=4	MRI	Ground Truth	2DUNET DC loss	2.5DUNET DC loss	2.5DUNET D <u>C+HD loss</u>	2.5DUNET++ DC+HD loss
UNet+	X ^{1,0} X ^{2,0} X ^{2,0} X ^{3,0}	124					
	UNet++	157					۲
	x ³⁹	107					۲

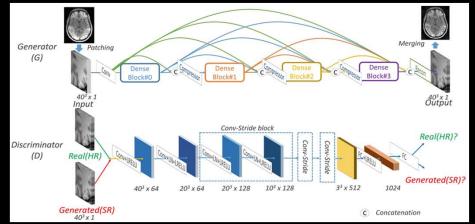

Model	Loss Function	Class	Metric						
		01000	DSC	HD_95 (mm)	MSD (mm)	MAE_NWI			
2D UNet	DC	Lumen	0.9163 ± 0.0522	0.3467 ± 0.5173	0.1034 ± 0.0787	0.0722 + 0.0204			
		Vessel Wall	0.7452 ± 0.1046	0.6146 ± 0.7147	0.1764 ± 0.1270	0.0732 ± 0.0294			
2.5D UNet++	DC + HD	Lumen	0.9172 ± 0.0598	0.3252 ± 0.5071	0.0940 ± 0.0781	0.0725 ± 0.0333			
		Vessel Wall	0.7833 ± 0.0867	0.4914 ± 0.5743	0.1408 ± 0.0917	0.0725 ± 0.0335			

Zhou H, Fan Z et al. IEEE ISBI 2021

Zhou H, Fan Z et al. Medical Physics 2022;1-11

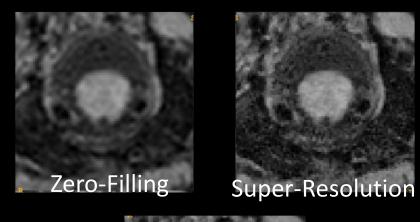
VWI-APP: Vessel wall imaging-dedicated automated processing pipeline for intracranial atherosclerotic plaque quantification

DS (%)		NWI		RR	RR		CR		
Manual	Pipeline	Manual	Pipeline	Manual	Pipeline	Manual	Pipeline	Manual	Pipeline
18.65	7.20	0.773	0.679	1.007	1.081	1.879	1.929	91.34	86.44
30.63	47.61	0.621	0.708	0.778	0.437	1.496	1.812	100.94	115.72
12.28	11.28	0.684	0.640	1.317	1.289	1.337	1.391	48.91	48.19
18.83	19.59	0.783	0.633	0.885	0.763	1.937	2.302	110.55	95.34
27.41	28.73	0.950	0.820	1.286	1.094	1.749	1.953	100.55	105.83
22.94	16.71	0.729	0.693	0.924	0.911	1.929	1.741	32.16	28.63
63.35	58.52	0.913	0.895	0.793	0.834	1.809	1.664	84.51	86.89
35.01	37.46	0.853	0.807	1.055	1.123	1.297	1.475	109.16	98.74
67.21	52.86	0.961	0.929	0.816	0.782	1.235	1.150	449.26	495.60
41.55	40.69	0.842	0.841	1.075	1.000	2.978	2.678	183.36	186.95
6.02 ± 6.10		0.064 ± 0.047		0.099 ± 0.095		0.188 ± 0.105		10.71 ± 12.81	
0.890		0.813		0.827		0.891		0.991	
[0.62, 0.97]		[0.41, 0.95]		[0.45, 0.95]		[0.62, 0.97]		[0.96, 1.00]	
	Manual 18.65 30.63 12.28 18.83 27.41 22.94 63.35 35.01 67.21 41.55 6.02 ± 6.10 0.890	Manual Pipeline 18.65 7.20 30.63 47.61 12.28 11.28 18.83 19.59 27.41 28.73 22.94 16.71 63.35 58.52 35.01 37.46 67.21 52.86 41.55 40.69 6.02 ± 6.10 0.890	Manual Pipeline Manual 18.65 7.20 0.773 30.63 47.61 0.621 12.28 11.28 0.684 18.83 19.59 0.783 27.41 28.73 0.950 22.94 16.71 0.729 63.35 58.52 0.913 35.01 37.46 0.853 67.21 52.86 0.961 41.55 40.69 0.842 6.02 \pm 6.10 0.064 \pm 0.047 0.890 0.813	Manual Pipeline Manual Pipeline 18.65 7.20 0.773 0.679 30.63 47.61 0.621 0.708 12.28 11.28 0.684 0.640 18.83 19.59 0.783 0.633 27.41 28.73 0.950 0.820 22.94 16.71 0.729 0.693 63.35 58.52 0.913 0.895 35.01 37.46 0.853 0.807 67.21 52.86 0.961 0.929 41.55 40.69 0.842 0.841 6.02 ± 6.10 0.064 \pm 0.047 0.890 0.813 0.813 0.813	Manual Pipeline Manual Pipeline Manual 18.65 7.20 0.773 0.679 1.007 30.63 47.61 0.621 0.708 0.778 12.28 11.28 0.684 0.640 1.317 18.83 19.59 0.783 0.633 0.885 27.41 28.73 0.950 0.820 1.286 22.94 16.71 0.729 0.693 0.924 63.35 58.52 0.913 0.895 0.793 35.01 37.46 0.853 0.807 1.055 67.21 52.86 0.961 0.929 0.816 41.55 40.69 0.842 0.841 1.075 6.02 \pm 6.10 0.064 \pm 0.047 0.099 \pm 0.095 0.890 0.813 0.827	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ManualPipelineManualPipelineManualPipelineManual18.657.200.7730.6791.0071.0811.87930.6347.610.6210.7080.7780.4371.49612.2811.280.6840.6401.3171.2891.33718.8319.590.7830.6330.8850.7631.93727.4128.730.9500.8201.2861.0941.74922.9416.710.7290.6930.9240.9111.92963.3558.520.9130.8950.7930.8341.80935.0137.460.8530.8071.0551.1231.29767.2152.860.9610.9290.8160.7821.23541.5540.690.8420.8411.0751.0002.978 6.02 ± 6.10 0.064 \pm 0.0470.099 \pm 0.0950.188 \pm 0.1050.8900.8130.8270.891	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$


Abbreviations: CI, confidence interval; CR, plaque wall contrast ratio; DS, diameter stenosis; ICC, intraclass correlation coefficient; MAE, mean absolute error; NWI, normalized wall index; RR, remodeling ratio; TPV, total plaque volume.

675.7±204.0 s with manual quantification 238.3±77.8 s with VWI-APP quantification

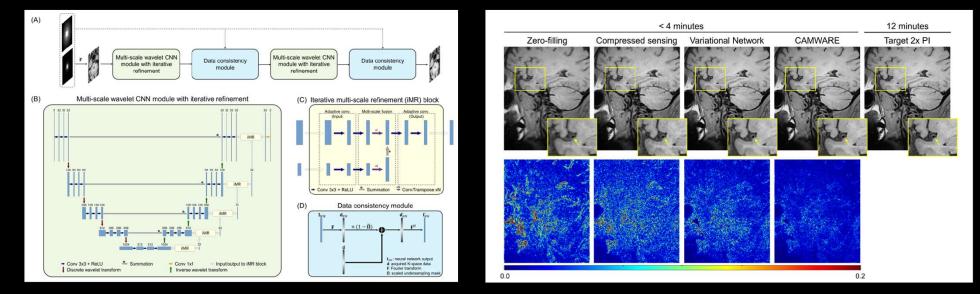
Zhou H, Fan Z et al. Medical Physics 2022


Super-resolution in VWI

mDCSRN-GAN

Potential benefits:

- Acquire a lower-resolution image: shorter scan time, higher signal-to-noise ratio, improved success rate
- Acquire a regular-resolution image and further increase to higher one



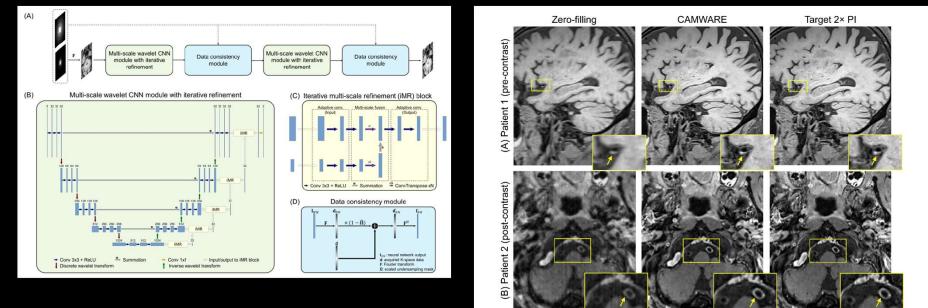
USC

Chen Y, Fan Z et al. ISMRM Annual Meeting 2018

Deep learning-based image reconstruction in VWI

Cascaded Multi-scale Wavelet with iterative Refinement reconstruction network (CAMWARE)

Potential benefits:


Shorter scan time (from 8 min to <4 min), improved success rate and clinical throughput

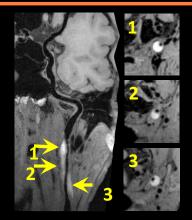
Hu Z, Fan Z et al. ISMRM 2021

Deep learning-based image reconstruction in VWI

Cascaded Multi-scale Wavelet with iterative Refinement reconstruction network (CAMWARE)

Potential benefits:

Shorter scan time (from 8 min to <4 min), improved success rate and clinical throughput

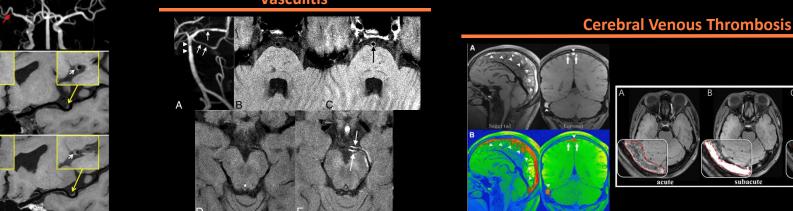

Hu Z, Fan Z et al. ISMRM 2021

Clinical Applications

High T1-signal Feature of ICAS

Contrast enhancement feature of ICAS

Dissection



Vasculitis

Aneurysm

Pre-contrast Post-contrast

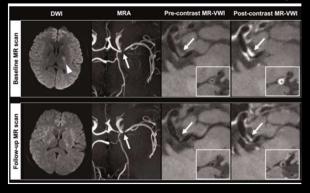
USC 1. Wu F, Fan Z et al. J Am Heart Assoc. 2018;7:e009705. 2. Wu F, Fan Z et al. Stroke 2018;49:905. 3. Yang Q, Fan Z et al. Stroke 2016;47:404.

On-going Project

NIH/NHLBI R01HL147355

Longitudinal and quantitative MR plaque imaging for prediction of response to medical management in symptomatic intracranial atherosclerosis

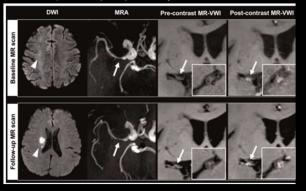
Clinical Aim: Enrollment of 100 patients with acute ischemic events secondary to intracranial atherosclerosis. Vessel wall imaging at 2 weeks (baseline), 3, 6, and 12 months of their index stroke or high-risk TIA

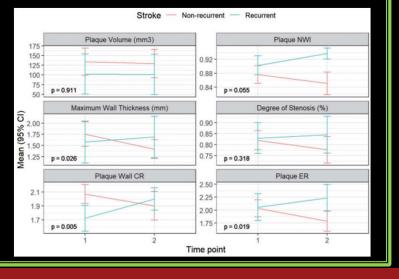


LISIA Study Longitudinal Imaging of Symptomatic Intracranial Atherosclerosis

Non-progression patient

32- year-old female


baseline scan (A-C)-- 24 days after stroke onset follow-up scan (D-F)- 9 months after stroke no recurrence within18 months clinical follow-up

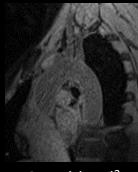

Progression patient

64- year-old male

baseline scan (A-C)-- 7 days after stroke onset stroke recurrent 10 months later follow-up scan (D-F)-- 4 days after recurrence

Pilot Results

USC

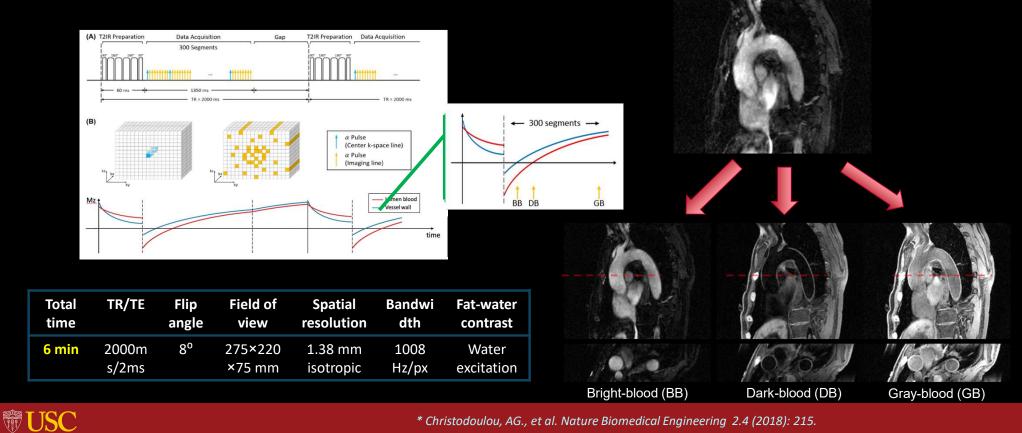

MR imaging is promising for evaluating thoracic aorta diseases

Bright-blood¹

Dark-blood²

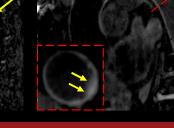
Gray-blood³

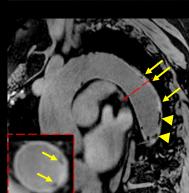
Cine⁴


Clinical adoption of this comprehensive imaging modality is hindered by:

- Long scan time motion compensation
- Motion artifacts
- Multiple scans with inter-scan misregistration

1. Krishnam, MS, et al. European Radiology 20.6 (2010): 1311-1320. 2. Francois, CJ, et al. Cardiology Clinics 25.1 (2007): 171-184. 3. Fan, Z, et al. ISMRM 2018 5589. 4. Dubourg, B, et al. European Congress of Radiology 2016, 2016.

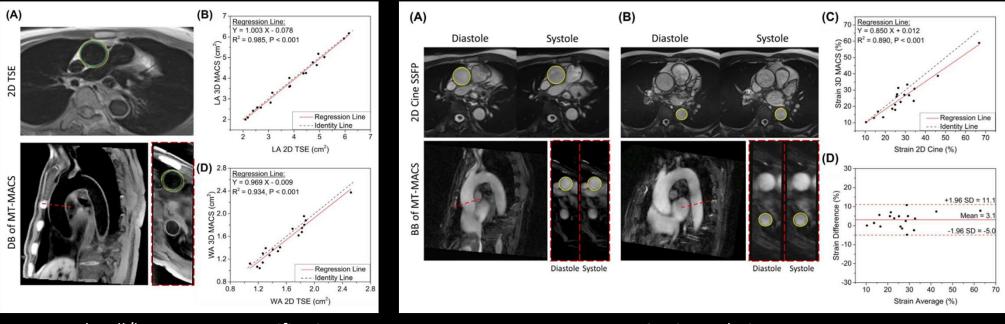

MR-Multitasking* based Multidimensional Assessment of Cardiovascular System (MT-MACS)



* Christodoulou, AG., et al. Nature Biomedical Engineering 2.4 (2018): 215.

MR-Multitasking* based Multidimensional Assessment of Cardiovascular System (MT-MACS) Bright-blood Dark-blood Gray-blood

Aortic aneurysm 38-year-old female Aortic atherosclerosis 87-year-old female

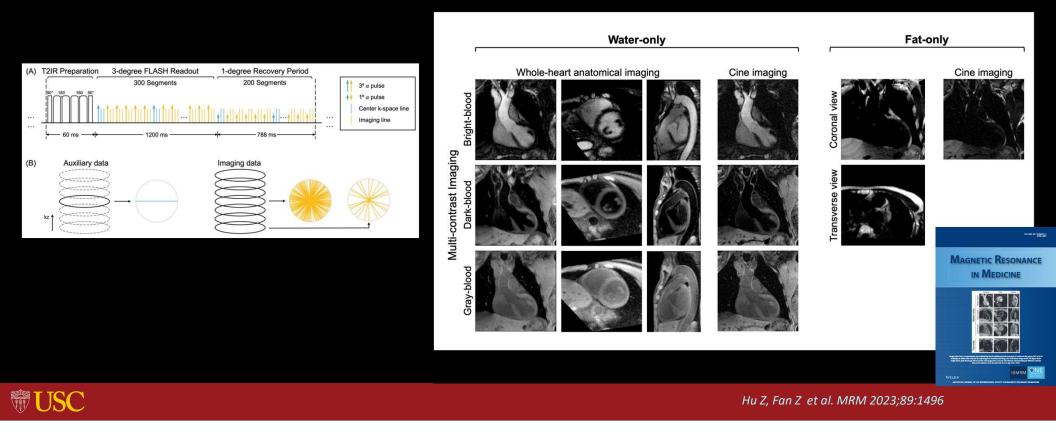


USC

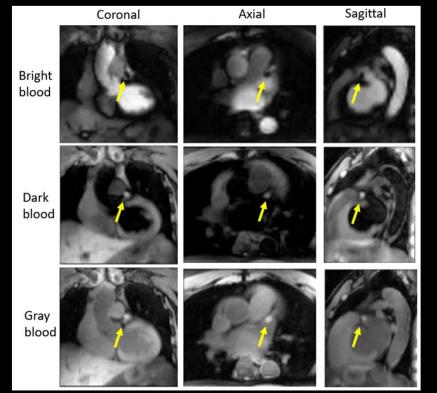
Hu Z, Fan Z et al. MRM 2020;84:2376-2388

MR-Multitasking* based Multidimensional Assessment of Cardiovascular System (MT-MACS)

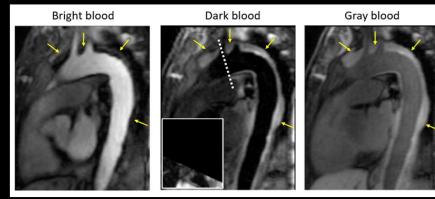
Vessel wall/lumen area quantification


Strain Analysis

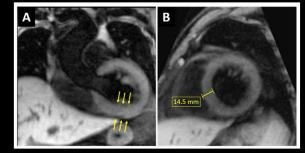
Hu Z, Fan Z et al. MRM 2020;84:2376-2388


* MT-MACS with extended spatial coverage and water-fat separation

ECG- and respiratory navigator-free, multi-dimensional (multiple contrast weightings, cine series, and water-fat images) imaging with a single 10-min scan.



* MT-MACS with extended spatial coverage and water-fat separation


LAA thrombus

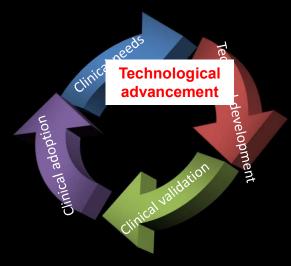
Aortic vasculitis

LV hypertrophy

USC

Hu Z, Fan Z et al. MRM 2022 Nov 6.

Outline


- Background on Stroke
- MR Luminal Imaging
 - Non-contrast MRA
 - Contrast-enhanced MRA
 - Susceptibility-based imaging
- MR Vessel Wall Imaging (VWI)
 - Carotid VWI
 - Intracranial VWI
 - Aortic VWI

Summary

Summary

- MR luminal imaging and vessel wall imaging can be highly useful for noninvasively evaluating vascular abnormalities causing a stroke.
- Vascular MR is becoming faster and more comprehensive through multidimensional imaging (multiple contrasts, multi-parametric mapping, motion resolved, ...) and advanced image reconstruction.
- Vascular MR needs to be more easy-to-use: larger spatial coverage, free-breathing, no ECG trigger, coregistered information, automated image analysis.
- Technological advancement is being driven by interdisciplinary collaboration among clinicians, MR scientists, and data scientists.

Keck School of Medicine of USC

