Introduction

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/8/2024

Department of Radiological Sciences David Geffen School of Medicine at UCLA

Introduction

- Your instructor
 - Kyung Sung
- Guest lecturers
 - Dr. Holden Wu
 - Dr. Albert Thomas
 - Dr. Xiaodong Zhong
 - Dr. Anthony Christodoulou

• You

- Your department
- Research lab (if you have)
- Years at UCLA
- Hometown
- Your favorite movie in recent 5 years

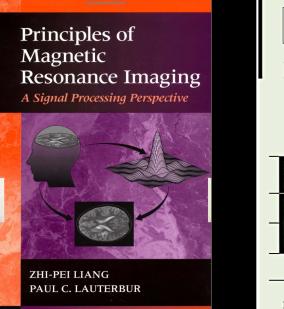
Course Overview

- https://mrrl.ucla.edu/pages/m219
- Assignments
 - 3 homework assignments (20 points each)
 - 1 final exam (30 points)
 - Class participation (10 points)
- Bring questions to class!
 - Slides will be available prior to lecture
- MATLAB
 - Required for homework

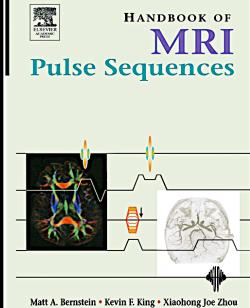
Learning Objectives

- To introduce the students to the fundamental principles of magnetic resonance imaging
- To demonstrate basic applications of MRI

Prerequisites


- Vectors and Vector Operations
 - dot product
 - cross product
- Basic Matrix Algebra
 - Determinant
 - Inverse
 - Transpose
 - Matrix Multiplication
 - Eigenvectors

Primary Books


Principles of Magnetic Resonance Imaging https://ee.stanford.edu/~dwight/ lulu.com - hardcover | paperback

Dwight G. Nishimura

Supplementary Books

Series in Biomedical Engineering

Course Schedule:			
Lecture	Date	Торіс	
#1	Jan 8, 2023	Introduction	
#2	Jan 10, 2023	MRI Systems I: B0 and Bulk Magnetization	
#3	Jan 15, 2023	MLK Holiday	
	Homework #1 out		
#4	Jan 17, 2023	MRI Systems II: Nuclear Precession and B1	
#5	Jan 22, 2023	Bloch Equations and Relaxation I	
#6	Jan 24, 2023	Bloch Equations and Relaxation II	
#7	Jan 29, 2023	MRI Systems III: Gradients	
	Homework #1 due, Homework #2 out		
#8	Jan 31, 2023	Imaging Principles	
#9	Feb 5, 2023	Spatial Localization I	
#10	Feb 7, 2023	Spatial Localization II	
#11	Feb 12, 2023	MRI Signal Equation and Basic Image Reconstruction (by Dr. Wu)	
#12	Feb 14, 2023	Fast Imaging and Advanced Image Reconstruction (by Dr. Wu)	
Homework #2 due, Homework #3 out			
#13	Feb 19, 2023	Presidents' Day Holiday	
#14	Feb 21, 2023	Spatial Localization and Imaging Sequences	
#15	Feb 26, 2023	Imaging Sequences II	
#16	Feb 28, 2023	Imaging Sequences III	
#17	Mar 4, 2023	Basics of MR Spectroscopy (by Dr. Thomas)	
#18	Mar 6, 2023	Fast MR Spectroscopic Imaging (by Dr. Thomas)	
	Homework #3 due		
#19	Mar 11, 2023	Basics of MRI Strain Imaging (by Dr. Zhong)	
#20	Mar 13, 2023	Basics of Quantitative MRI (by Dr. Christodoulou)	
	Mar 18-22	Final Exam	

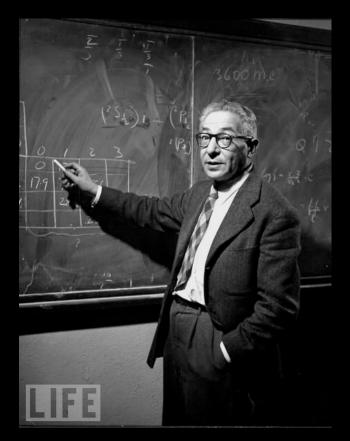
MRI Research

Technical Developments

Physics Contrast mechanisms Mathematical models Hardware Data acquisition Data reconstruction Data processing Quantitative analysis Data integration Software

Clinical Applications

Anatomical imaging Functional imaging Multi-modal imaging Quantitative imaging


for Diagnosis / screening Treatment planning Procedural guidance Treatment assessment Monitoring

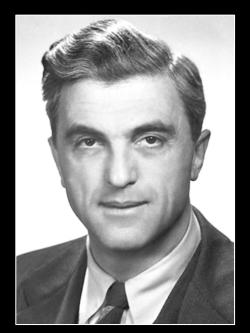
A Brief History of MRI

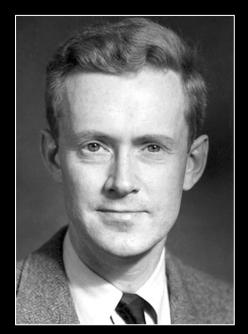
Detection of the Signal

1944 Nobel Prize in Physics

"for his resonance method for recording the magnetic properties of atomic nuclei"

Discovery of NMR


Isidor Isaac Rabi b. 22 Jul 1898 d. 11 Jan 1988



1952 Nobel Prize in Physics

"for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"

Felix Bloch b. 23 Oct 1905 d. 10 Sep 1983

Edward Purcell b. 30 Sep 1912 d. 07 Mar 1997

Improved NMR Detection

1991 Nobel Prize in Chemistry

"for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy"

Richard Ernst b. 14 Aug 1933 d. 4 June 2021

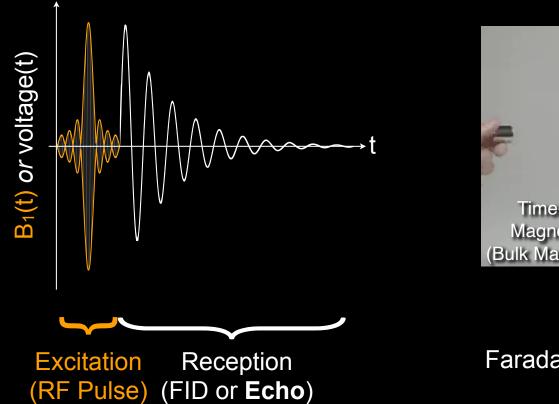
Magnetic Resonance Imaging

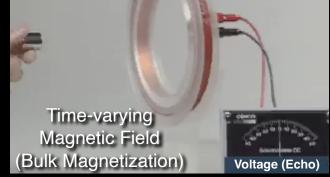
2003 Nobel Prize in Medicine

"for their discoveries concerning magnetic resonance imaging"

Paul C. Lauterbur b. 1929.05.06 d. 2007.03.27

Peter Mansfield
b. 1933.10.09
d. 2017.02.08




What is MRI?

- Magnetic
 - We need a big magnet
- Resonance
 - Excitation energy has to be on-resonance
- Imaging
 - We can make pretty pictures

What is MRI?

MRI follows a classic excitation-reception paradigm.

Loop of Wire

(Coil)

Faraday's Law of Induction

MRI encodes spatial information and image contrast in the echo.

Requirements for MRI

- NMR Active Nuclei
 - e.g. ¹H in H₂0
- Magnetic Field (B₀): Polarizer
- RF System (B₁): Exciter
- Coil: Receiver
- Gradients (G_X, G_Y, G_Z): Spatial Encoding

MRI Hardware

Cryostat Z-grad

Body Tx/Rx Coil (B₁) Main Coil (B₀)

Y-grad

X-grad

Image Adapted From: http://www.ee.duke.edu/~jshorey

Course Schedule:			
Lecture	Date	Торіс	
#1	Jan 8, 2023	Introduction	
#2	Jan 10, 2023	MRI Systems I: B0 and Bulk Magnetization	
#3	Jan 15, 2023	MLK Holiday	
	Homework #1 out		
#4	Jan 17, 2023	MRI Systems II: Nuclear Precession and B1	
#5	Jan 22, 2023	Bloch Equations and Relaxation I	
#6	Jan 24, 2023	Bloch Equations and Relaxation II	
#7	Jan 29, 2023	MRI Systems III: Gradients	
	Homework #1 due, Homework #2 out		
#8	Jan 31, 2023	Imaging Principles	
#9	Feb 5, 2023	Spatial Localization I	
#10	Feb 7, 2023	Spatial Localization II	
#11	Feb 12, 2023	MRI Signal Equation and Basic Image Reconstruction (by Dr. Wu)	
#12	Feb 14, 2023	Fast Imaging and Advanced Image Reconstruction (by Dr. Wu)	
Homework #2 due, Homework #3 out			
#13	Feb 19, 2023	Presidents' Day Holiday	
#14	Feb 21, 2023	Spatial Localization and Imaging Sequences	
#15	Feb 26, 2023	Imaging Sequences II	
#16	Feb 28, 2023	Imaging Sequences III	
#17	Mar 4, 2023	Basics of MR Spectroscopy (by Dr. Thomas)	
#18	Mar 6, 2023	Fast MR Spectroscopic Imaging (by Dr. Thomas)	
	Homework #3 due		
#19	Mar 11, 2023	Basics of MRI Strain Imaging (by Dr. Zhong)	
#20	Mar 13, 2023	Basics of Quantitative MRI (by Dr. Christodoulou)	
	Mar 18-22	Final Exam	

Questions?

- Related courses of interest
 - M229 Advanced Topics in MRI (<u>https://mrrl.ucla.edu/pages/m229</u>)
 - PBM 222 MR Spectroscopy
 - PBM 225 MR Contrast Mechanisms

Kyung Sung, Ph.D. <u>KSung@mednet.ucla.edu</u> http://mrrl.ucla.edu/sunglab