MRI Systems II – Nuclear Precession and B1

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/17/2024

Course Overview

- Course website
 - https://mrrl.ucla.edu/pages/m219
- 2024 course schedule
 - https://mrrl.ucla.edu/pages/m219_2024
- Assignments
 - Homework #1 due on 1/29
- Office hours, Fridays 10-12pm
 - In-person (Ueberroth, 1417B)
 - Zoom is also available

Main Field (B₀) - Principles

- B₀ is a strong magnetic field
 - >1.5T
 - Z-oriented
- B₀ generates bulk magnetization (\vec{M})
 - More B₀, more

 $\vec{B}_0 = B_0 \vec{k}$

$$\vec{M} = \sum_{\substack{n=1}}^{N_{total}} \vec{\mu}_n$$

- B₀ forces \vec{M} to precess
 - Larmor Equation

$$\omega = \gamma B$$

N_{total}=0.24x10²³ spins in a 2x2x10mm voxel But not all spins contribute to our measured signal...

B₀ Field OFF

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = 0$$

Spins point in all directions.

School of Medicine

B₀ Field ON

B₀ polarizes the spins and generates bulk magnetization.

$$\vec{M} = \sum_{n=1}^{N_{total}} \vec{\mu}_n = M_z$$

B₀ Field ON

Only a very small number are spin-up relative to spin-down.

To the board

Spin vs. Precession

- Spin
 - Intrinsic form of angular momentum
 - Quantum mechanical phenomena
 - No classical physics counterpart
 - Except by hand-waving analogy...
- Precession
 - Spin+Mass+Charge give rise to precession

Precession

The torque caused by the normal force – \Box \mathbf{F}_{g} and the weight of the top causes a change in the angular momentum \mathbf{L} in the direction of that torque. This causes the top to precess.

David Geffen School of Medicine

https://en.wikipedia.org/wiki/Precession

Larmor Equation

- Spin≠Precession
 - Protons *intrinsically* have spin
 - Protons <u>precess</u> in the presence of a B-field
- Larmor frequency increases with:
 - Larger B_0
 - Higher gyromagnetic ratio
 - Higher frequencies produce stronger signals...

$$\omega = \gamma B_0$$

 $\gamma = 267.52 \times 10^{6} \text{ rad} \cdot \text{s}^{-1} \cdot \text{T}^{-1}$ $\gamma/2\pi = 42.577 \text{ MHz/T}$

Equation of Motion for the Bulk Magnetization

$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$

Equation of motion for an ensemble of spins [Classical Description]

What is a general solution?

The *equation of motion* describes the bulk magnetization "behavior" in the presence of a B-field.

To the board

Signal Reception

 $M_{xy}\left(\vec{r},t
ight)$

V(t)

NMR Signal Detection

- Coil only detects M_{xy}
- Coil does not detect Mz
- Coil must be properly oriented

How does RF alter \vec{M} ? $\vec{B}_1(t)$

Generating B₁-Fields

MRI Hardware

Cryostat

Z-grad

▶ Y-grad

X-grad

Body Tx/Rx Coil (B₁) Main Coil (B₀)

Image Adapted From: http://www.ee.duke.edu/~jshorey

RF Shielding

- RF fields are close to FM radio
 - ¹H @ 1.5T ⇒ 63.85 MHz
 - ${}^{1}H @ 3.0T \Rightarrow 127.71 \text{ MHz}$
 - KROQ \Rightarrow 106.7 MHz
- Need to shield local sources from interfering
- Copper room shielding required

RF Birdcage Coil

- Most common design
- Highly efficient
 - Nearly all of the fields produced contribute to imaging

• Very uniform field

- Especially radially
- Decays axially
- Uniform sphere if L≈D

Generates a "quadrature" field

Circular polarization

Body Tx/Rx Coil (B1)

http://mri-q.com/birdcage-coil.html

B₁ Field - RF Pulse

- B₁ is a
 - radiofrequency (RF)
 - 42.58MHz/T (63MHz at 1.5T)
 - short duration pulse (~0.1 to 5ms)
 - small amplitude
 - <30 µT
 - circularly polarized
 - rotates at Larmor frequency
 - magnetic field
 - perpendicular to B₀

Basic RF Pulse $\overrightarrow{B} = \overrightarrow{B}_0 + \overrightarrow{B}_1(t)$ $\vec{B}_1(t) = B_1^e(t)[\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $B_{1}^{e}(t)$ pulse envelope function ω_{RF} excitation carrier frequency Ĥ initial phase angle

 B_1 is perpendicular to B_0 .

$$\overrightarrow{B}_0 = B_0 \hat{k}$$

Rect Envelope Function $B_1^e(t) = B_1 \sqcap \left(\frac{t - \tau_p/2}{\tau_p}\right) = \begin{cases} B_1, & 0 \le t \le \tau_p \\ 0, & otherwise \end{cases}$

Sinc Envelope Function $B_{1}^{e}(t) = \begin{cases} B_{1} \operatorname{sinc} \left[\pi f_{\omega} \left(t - \tau_{p}/2 \right) \right], & 0 \leq t \leq \tau_{p} \\ 0, & otherwise \end{cases}$

Rotating Frame

Lab vs. Rotating Frame

• The rotating frame simplifies the mathematics and permits more intuitive understanding.

Spins Precess

Observer Precesses

Note: Both coordinate frames share the same z-axis.

Combined B₀ & B₁ Effects

 $\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$ $= \vec{M} \times \gamma \left(\vec{B_0} + \vec{B_1} \right)$

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions $\vec{M}_{rot} \equiv \begin{bmatrix} M_{x'} \\ M_{y'} \\ M_{z'} \end{bmatrix}$ $\vec{B}_{rot} \equiv \begin{bmatrix} B_{x'} \\ B_{y'} \\ B_{z'} \end{bmatrix}$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

Applied B-field components in the rotating frame.

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \qquad \Longrightarrow \quad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

 $\vec{M}_{lab}(t) = R_{Z}(\omega_{RF}t) \cdot \vec{M}_{rot}(t)$

 $\overrightarrow{B}_{lab}(t) = R_Z(\omega_{RF}t) \cdot \overrightarrow{B}_{rot}(t)$

Bloch Equation (Rotating Frame)

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Equation of motion for an ensemble of spins (isochromats). [Laboratory Frame]

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \left(\frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \right) \overset{\text{Equation of motion for an}}{\underset{[\text{Rotating Frame}]}{\text{Equation of motion for an}}}$$

$$\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$$
Effective B-field that
M experiences in the rotating frame.
M experiences in the rotating frame.
M experiences in the rotating frame.
Fictitious field that demodulates the apparent effect of *B*₀

Bloch Equation (Rotating Frame) $\vec{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $\overrightarrow{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF} + \theta) \\ B_0 \end{pmatrix} \qquad \overrightarrow{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{bmatrix}$ $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$ Effective B-field that Applied B-field in the rotating frame. M experiences in the Fictitious field that demodulates rotating frame. the apparent effect of B_{0} .

Bloch Equation (Rotating Frame) $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$

Assume no RF phase ($\theta = 0$)

$$\vec{B}_{eff}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \\ & \omega_{RF} \\ B_0 \\ & \gamma \end{pmatrix}$$

- Related reading materials
 - Nishimura Chap 3 and 4

Kyung Sung, Ph.D. <u>KSung@mednet.ucla.edu</u> http://mrrl.ucla.edu/sunglab