MRI Systems II - Nuclear Precession and B1

M219 - Principles and Applications of MRI Kyung Sung, Ph.D.
1/17/2024

Course Overview

- Course website
- https://mrrl.ucla.edu/pages/m219
- 2024 course schedule
- https://mrrl.ucla.edu/pages/m2192024
- Assignments
- Homework \#1 due on 1/29
- Office hours, Fridays 10-12pm
- In-person (Ueberroth, 1417B)
- Zoom is also available

Main Field (B_{0}) - Principles

- B_{0} is a strong magnetic field
- >1.5T
- Z-oriented
- Bo generates bulk magnetization (\vec{M})
- More B_{0}, more

$$
\vec{M}=\sum_{n=1}^{N_{t o t a l}} \vec{\mu}_{n}
$$

- Bo forces \vec{M} to precess

$$
\omega=\gamma B
$$

- Larmor Equation

Bulk Magnetization

$$
\vec{M}=\sum_{n=1}^{N_{\text {total }}} \vec{\mu}_{n}
$$

$N_{\text {total }}=0.24 \times 10^{23}$ spins in a $2 \times 2 \times 10 \mathrm{~mm}$ voxel
But not all spins contribute to our measured signal...

Bo Field OFF

$$
\vec{M}=\sum_{n=1}^{N_{t o t a l}} \vec{\mu}_{n}=0
$$

Bo Field ON

David Geffen
School of Medicine

Bo polarizes the spins and generates bulk magnetization.

Bo Field ON

Only a very small number are
David Geffen
School of Medicine

UCLA

To the board

Spin vs. Precession

- Spin
- Intrinsic form of angular momentum
- Quantum mechanical phenomena
- No classical physics counterpart
- Except by hand-waving analogy...
- Precession
- Spin+Mass+Charge give rise to precession

Precession

Larmor Equation

- Spin\#Precession
- Protons intrinsically have spin
- Protons precess in the presence of a B-field
- Larmor frequency increases with:
- Larger Bo
- Higher gyromagnetic ratio
- Higher frequencies produce stronger signals...

$$
\omega=\gamma B_{0}
$$

$$
\begin{aligned}
& \gamma=267.52 \times 10^{6} \mathrm{rad} \cdot \mathrm{~s}^{-1} \cdot \mathrm{~T}^{-1} \\
& \gamma / 2 \pi=42.577 \mathrm{MHz} / \mathrm{T}
\end{aligned}
$$

Equation of Motion for the Bulk Magnetization

The equation of motion describes the bulk magnetization "behavior" in the presence of a B-field.

To the board

Signal Reception

Faraday's Law
of Induction

$M_{x y}(\vec{r}, t)$
$V(t)$

NMR Signal Detection

- Coil only detects M_{xy}
- Coil does not detect M_{z}
- Coil must be properly oriented

How does RF alter \vec{M} ?
 $\vec{B}_{1}(t)$

Generating B1-Fields

MRI Hardware

Image Adapted From: http://www.ee.duke.edu/~jshorey

RF Shielding

- RF fields are close to FM radio
- ${ }^{1} \mathrm{H}$ @ $1.5 \mathrm{~T} \Rightarrow 63.85 \mathrm{MHz}$
- ${ }^{1} \mathrm{H} @ 3.0 \mathrm{~T} \Rightarrow 127.71 \mathrm{MHz}$
- $\mathrm{KROQ} \Rightarrow 106.7 \mathrm{MHz}$
- Need to shield local sources from interfering
- Copper room shielding required

RF Birdcage Coil

- Most common design
- Highly efficient
- Nearly all of the fields produced contribute to imaging
- Very uniform field
- Especially radially
- Decays axially
- Uniform sphere if $\mathrm{L} \approx \mathrm{D}$
- Generates a "quadrature" field

- Circular polarization

B1 Field - RF Pulse

- B_{1} is a
- radiofrequency (RF)
- $42.58 \mathrm{MHz} / \mathrm{T}$ (63 MHz at 1.5 T)
- short duration pulse (~ 0.1 to 5 ms)
- small amplitude
- <30 $\mu \mathrm{T}$
- circularly polarized
- rotates at Larmor frequency
- magnetic field
- perpendicular to Bo

Basic RF Pulse $\vec{B}=\vec{B}_{0}+\vec{B}_{1}(t)$

$$
\vec{B}_{1}(t)=B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t+\theta\right) \hat{i}-\sin \left(\omega_{R F} t+\theta\right) \hat{j}\right]
$$

$\omega^{\omega} F$
 excitation carrier frequency

θ initial phase angle
B_{1} is perpendicular to B_{0}.

$$
\vec{B}_{0}=B_{0} \hat{k}
$$

Rect Envelope Function

$$
B_{1}^{e}(t)=B_{1} \Pi\left(\frac{t-\tau_{p} / 2}{\tau_{p}}\right)= \begin{cases}B_{1}, & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}
$$

Sinc Envelope Function

 $B_{1}^{e}(t)= \begin{cases}B_{1} \operatorname{sinc}\left[\pi f_{\omega}\left(t-\tau_{p} / 2\right)\right], & 0 \leq t \leq \tau_{p} \\ 0, & \text { otherwise }\end{cases}$

Rotating Frame

Lab vs. Rotating Frame

- The rotating frame simplifies the mathematics and permits more intuitive understanding.

Note: Both coordinate frames share the same z-axis.

Combined B_{0} \& B_{1} Effects

$\frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B}$

$$
=\vec{M} \times \gamma\left(\overrightarrow{B_{0}}+\overrightarrow{B_{1}}\right)
$$

Relationship Between Lab and Rotating Frames

$$
\begin{aligned}
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \\
& \text { Rotating Frame Definitions } \\
& \vec{M}_{r o t}=\left[\begin{array}{l}
M_{x^{\prime}} \\
M_{y^{\prime}} \\
M_{z^{\prime}}
\end{array}\right] \quad \vec{B}_{r o t}=\left[\begin{array}{c}
B_{x^{\prime}} \\
B_{y^{\prime}} \\
B_{z^{\prime}}
\end{array}\right] \\
& B_{z^{\prime}} \equiv B_{z} \\
& M_{z^{\prime}} \equiv M_{z} \\
& \vec{M}_{l a b}(t)=R_{\mathrm{Z}}\left(\omega_{R F} t\right) \cdot \vec{M}_{\text {rot }}(t) \\
& \vec{B}_{l a b}(t)=R_{Z}\left(\omega_{R F} t\right) \cdot \vec{B}_{r o t}(t) \\
& \text { Bulk magnetization } \\
& \text { components in the } \\
& \text { rotating frame. } \\
& \text { Applied B-field } \\
& \text { components in the } \\
& \text { rotating frame. } \\
& \frac{d \vec{M}}{d t}=\vec{M} \times \gamma \vec{B} \quad \longrightarrow \frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma \vec{B}_{e f f}
\end{aligned}
$$

Bloch Equation (Rotating Frame)

Equation of motion for an ensemble of spins (isochromats).
[Laboratory Frame]

$\frac{d \vec{M}_{r o t}}{d t}=\vec{M}_{r o t} \times \gamma\left(\frac{\vec{\omega}_{r o t}}{\gamma}+\vec{B}_{r o t}\right) \begin{gathered}\begin{array}{c}\text { Equation of motion for an } \\ \text { ensemble of spins (isochromats) } \\ \text { [Rotating Frame] }\end{array}\end{gathered}$

$$
\vec{B}_{e f f} \equiv \frac{\vec{\omega}_{r o t}}{\gamma}+\vec{B}_{r o t} \quad \vec{\omega}_{r o t}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right)
$$

Effective B-field that M experiences in the rotating frame.
$\varlimsup_{\text {Applied B- }}$
Fictitious field that demodulates
the apparent effect of $B 0$.

Bloch Equation (Rotating Frame)

$$
\begin{aligned}
& \vec{B}(t)=B_{0} \hat{k}+B_{1}^{e}(t)\left[\cos \left(\omega_{R F} t+\theta\right) \hat{i}-\sin \left(\omega_{R F} t+\theta\right) \hat{j}\right] \\
& \vec{B}_{l a b}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \cos \left(\omega_{R F} t+\theta\right) \\
-B_{1}^{e}(t) \sin \left(\omega_{R F}+\theta\right) \\
B_{0}
\end{array}\right) \quad \vec{B}_{\text {rot }}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \cos \theta \\
-B_{1}^{e}(t) \sin \theta \\
B_{0}
\end{array}\right) \\
& \vec{B}_{e f f} \equiv \frac{\vec{\omega}_{\text {rot }}}{\gamma}+\vec{B}_{\text {rot }} \quad \vec{\omega}_{\text {rot }}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right) \\
& \text { Effective B-field that } \\
& M \text { experiences in the } \\
& \text { rotating frame. } \\
& \text { Applied B-field in the rotating frame. } \\
& \text { Fictitious field that demodulates } \\
& \text { the apparent effect of } B \text {. }
\end{aligned}
$$

Bloch Equation (Rotating Frame)

$$
\vec{B}_{e f f} \equiv \frac{\vec{\omega}_{\text {rot }}}{\gamma}+\vec{B}_{r o t}
$$

Assume no RF phase ($\theta=0$)

$$
\begin{gathered}
\vec{B}_{r o t}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \\
0 \\
B_{0}
\end{array}\right) \quad \vec{\omega}_{r o t}=\left(\begin{array}{c}
0 \\
0 \\
-\omega_{R F}
\end{array}\right) \\
\vec{B}_{e f f}(t)=\left(\begin{array}{c}
B_{1}^{e}(t) \\
0 \\
B_{0} \\
\omega_{R F}
\end{array}\right)
\end{gathered}
$$

Questions?

- Related reading materials
- Nishimura Chap 3 and 4

Kyung Sung, Ph.D.
KSung@mednet.ucla.edu
http://mrrl.ucla.edu/sunglab

