Bloch Equations and Relaxation II

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 1/24/2024

Course Overview

- Course website
 - https://mrrl.ucla.edu/pages/m219
- 2024 course schedule
 - https://mrrl.ucla.edu/pages/m219_2024
- TA Ran Yan, <u>RanYan@mednet.ucla.edu</u>
 - Wed 4-6pm (Ueberroth, 1417)
- Assignments
 - Homework #1 is due on 1/29
- Office hours, Fridays 10-12pm
 - In-person (Ueberroth, 1417B) or Zoom

Relationship Between Lab and Rotating Frames

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}$$

Rotating Frame Definitions $\vec{M}_{rot} \equiv \begin{bmatrix} M_{x'} \\ M_{y'} \\ M_{z'} \end{bmatrix} \qquad \vec{B}_{rot} \equiv \begin{bmatrix} B_{x'} \\ B_{y'} \\ B_{z'} \end{bmatrix}$

$$B_{z'} \equiv B_z$$
$$M_{z'} \equiv M_z$$

Applied B-field

$$B_{lab}(t) = R_{Z}(\omega_{RF}t) \cdot B_{rot}(t)$$
components in the rotating frame.
$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B} \quad \blacksquare \quad \frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$

 $\overrightarrow{M}_{lab}(t) = \overrightarrow{R}_{Z}(\omega_{RF}t) \cdot \overrightarrow{M}_{rot}(t)$

Nishimura - Chap 6 (Appendix I)

Bloch Equation (Rotating Frame) $\vec{B}(t) = B_0 \hat{k} + B_1^e(t) [\cos(\omega_{RF}t + \theta)\hat{i} - \sin(\omega_{RF}t + \theta)\hat{j}]$ $\vec{B}_{lab}(t) = \begin{pmatrix} B_1^e(t)\cos(\omega_{RF}t + \theta) \\ -B_1^e(t)\sin(\omega_{RF}t + \theta) \\ B_0 \end{pmatrix} \qquad \vec{B}_{rot}(t) = \begin{pmatrix} B_1^e(t)\cos\theta \\ -B_1^e(t)\sin\theta \\ B_0 \end{pmatrix}$ $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot} \qquad \vec{\omega}_{rot} = \begin{pmatrix} 0 \\ 0 \\ -\omega_{RF} \end{pmatrix}$ Effective B-field that Applied B-field in the rotating frame. M experiences in the Fictitious field that demodulates rotating frame. the apparent effect of B_{0} .

Bloch Equation (Rotating Frame) $\vec{B}_{eff} \equiv \frac{\vec{\omega}_{rot}}{\gamma} + \vec{B}_{rot}$

Assume no RF phase ($\theta = 0$)

$$\vec{B}_{eff}(t) = \begin{pmatrix} B_1^e(t) \\ 0 \\ B_0 \\ & \omega_{RF} \\ B_0 \\ & \gamma \end{pmatrix}$$

Relaxation

- Magnetization returns exponentially to equilibrium:
 - Longitudinal recovery time constant is T1
 - Transverse decay time constant is T2
- Relaxation and precession are independent

T₁ Contrast

T2 Contrast

T2*<T2 (always!)

PATENTED FEB 5 1974

3,789,832

SHEET 2 OF 2

FIG. 2

Bloch Equations with Relaxation

$$\frac{d\vec{\mathbf{M}}}{dt} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}} - \frac{M_x \hat{\mathbf{i}} + M_y \hat{\mathbf{j}}}{T_2} - \frac{(M_z - M_0) \hat{\mathbf{k}}}{T_1}$$

- Differential Equation

 Ordinary, Coupled, Non-linear
- No analytic solution, in general.
 - Analytic solutions for simple cases.
 - Numerical solutions for all cases.
- Phenomenological
 - Exponential behavior is an approximation.

Bloch Equations - Lab Frame

- Precession
 - Magnitude of M unchanged
 - Phase (rotation) of M changes due to B
- Relaxation
 - T₁ changes are slow O(100ms)
 - T₂ changes are fast O(10ms)
 - Magnitude of M can be ZERO

Bloch Equations – Rotating Frame

Free Precession in the Rotating Frame with Relaxation

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$

$$\vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot}$$

$$\vec{\omega}_{rot} = \vec{\omega} = -\gamma \mathbf{B}_0 \hat{k} \qquad \vec{\mathbf{B}}_{rot} = \mathbf{B}_0 \hat{k}$$

 $\vec{B}_{eff} = \vec{0}$ $\frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$

The precessional term drops out in the rotating frame.

Free Precession in the Rotating Frame

- No precession
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, separable ODEs!

The precessional term drops out in the rotating frame.

Free Precession in the Rotating Frame

Solution:

$$M_{z'}(t) = M_z^0 e^{-t/T_1} + M_0 (1 - e^{-t/T_1})$$
$$M_{x'y'}(t) = M_{x'y'}(0_+) e^{-t/T_2}$$

The precessional term drops out in the rotating frame.

Forced Precession in the Rotating Frame with Relaxation

Forced Precession in the Rot. Frame with Relaxation

$$\begin{aligned} \frac{\partial \vec{M}_{rot}}{\partial t} &= \gamma \vec{M_{rot}} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1} \\ \vec{B}_{eff} \triangleq \frac{\vec{\omega}}{\gamma} + \vec{B}_{rot} \\ \vec{\omega}_{rot} &= \vec{\omega} = -\gamma B_0 \hat{k} \quad \vec{B}_{rot} = B_0 \hat{k} + B_1^e(t) \hat{i'} \\ \vec{B}_{eff} &= B_1^e(t) \hat{i'} \end{aligned}$$

The precessional term *does not* drop out in the rotating frame.

Forced Precession in the Rot. Frame with Relaxation

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$
$$\vec{B}_{eff} = B_1^e(t)\hat{i'}$$

- B1 induced nutation
- T₁ and T₂ Relaxation

David Geffen

- Drop the diffusion term
- System or first order, linear, coupled PDEs!
- When does this equation apply?

Forced Precession in the Rotating Frame with Relaxation

- RF pulses are short
 - $-100\mu s$ to 5ms
- Relaxation time constants are long
 - $-T_1 O(100s) ms$
 - $-T_2 O(10s) ms$
- Complicated Coupling
- Best suited for simulation

Free? Forced? Relaxation?

- We've considered all combinations of:
 - Free and forced precession
 - With and without relaxation
 - Laboratory and rotating frames
- Which one's concern M219 the most?
 - Free precession in the rotating frame with relaxation
 - Forced precession in the rotating frame without relaxation.
- We can, in fact, simulate all of them...

Spin Gymnastics - Lab Frame

Spin Gymnastics - Rotating Frame

$$M_Z(t) = M_Z^0 e^{-\frac{t}{T_1}} + M_0 \left(1 - e^{-\frac{t}{T_1}} \right)$$
$$M_{xy}(t) = M_{xy}^0 e^{-t/T_2}$$

Types of RF Pulses

- Excitation Pulses
- Inversion Pulses
- Refocusing Pulses
- Saturation Pulses
- Spectrally Selective Pulses
- Spectral-spatial Pulses
- Adiabatic Pulses

Excitation Pulses

- Tip M_z into the transverse plane
- Typically 200µs to 5ms
- Non-uniform across slice thickness
 - Imperfect slice profile
- Non-uniform within slice
 - Termed B₁ inhomogeneity
 - Non-uniform signal intensity across FOV

90° Excitation Pulse

Small Flip Angle Excitation

Inversion Pulses

- Typically, 180° RF Pulse
 - non-180° that still results in -M_Z
- Invert M_Z to -M_Z
 - Ideally produces no M_{XY}
- Hard Pulse
 - Constant RF amplitude
 - Typically non-selective
- Soft (Amplitude Modulated) Pulse
 - Frequency selective
 - Spatially Selective

Inversion Pulses

Refocusing Pulses

- Typically, 180° RF Pulse
 - Provides optimally refocused M_{XY}
 - Largest spin echo signal
- non-180°
 - Partial refocusing
 - Lower SAR
 - Multiple non-180° produce stimulated echoes
- Refocus spin dephasing due to
 - imaging gradients
 - local magnetic field inhomogeneity
 - magnetic susceptibility variation
 - chemical shift

Refocusing Pulses

Frequency Selectivity of RF Pulses

Matlab Demo

- Related reading materials
 - Nishimura Chap 4 and 5
 - Nishimura Chap 6 (Appendix I)

Kyung Sung, Ph.D. <u>KSung@mednet.ucla.edu</u> http://mrrl.ucla.edu/sunglab