Spatial Localization I

M219 - Principles and Applications of MRI Kyung Sung, Ph.D. 2/5/2024

Course Overview

- 2024 course schedule
 - https://mrrl.ucla.edu/pages/m219_2024
- Assignments
 - Homework #2 is due on 2/14
- TA office hours, Weds 4-6pm
- Office hours, Fridays 10-12pm

3 Types of Magnetic Fields

- B₀ Large static field
- e.g., I.5 Tesla or 3 Tesla
- B₁ Radiofrequency field e.g., 0.16 G

G_{x,y,z} - Gradient fields

e.g., 4 G/cm

- Selective Excitation

Frequency and Phase Encoding

To the Board

MR Signal Equation

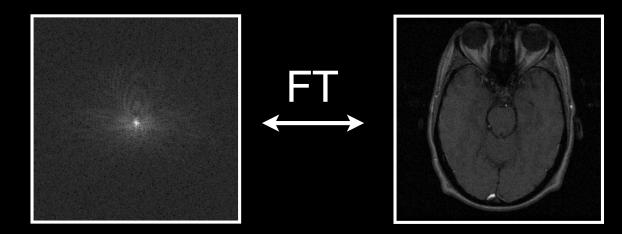
$$s(t) = \int_{x} \int_{y} M(x, y) e^{-i2\pi (k_{x}(t) \cdot x + k_{y}(t) \cdot y)} dx dy$$

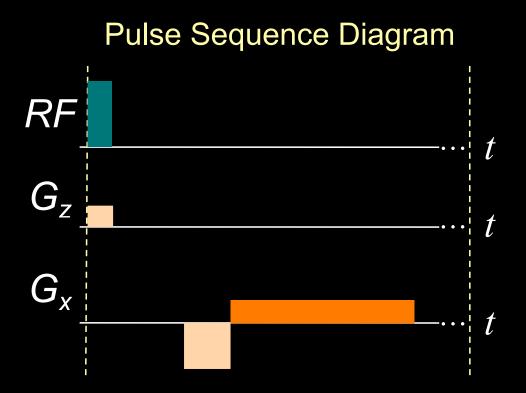
$$\gamma \int_{x} \int_{y}^{t} \sigma(x, y) e^{-i2\pi (k_{x}(t) \cdot x + k_{y}(t) \cdot y)} dx dy$$

$$k_x(t) = \frac{\gamma}{2\pi} \int_0^{\infty} G_x(\tau) d\tau \quad k_y(t) = \frac{\gamma}{2\pi} \int_0^{\infty} G_y(\tau) d\tau$$

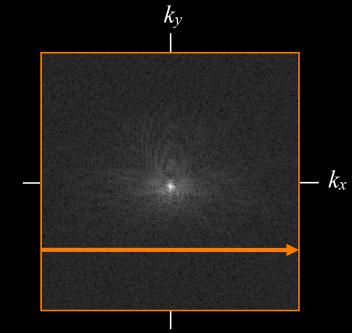
$$s(t) = m(k_x(t), k_y(t))$$

$$m = \mathcal{FT}(M(x, y))$$

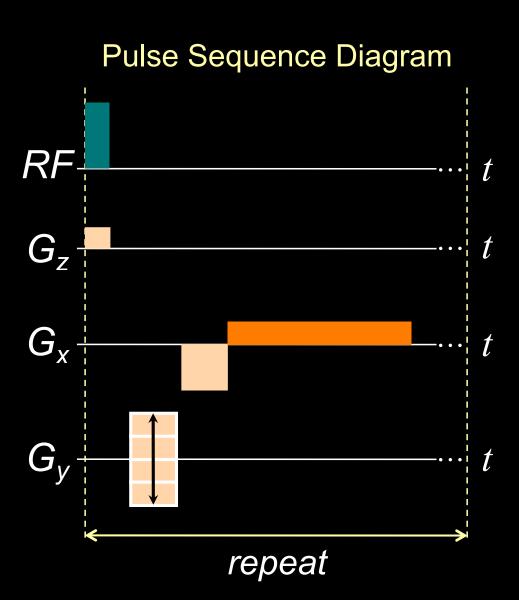


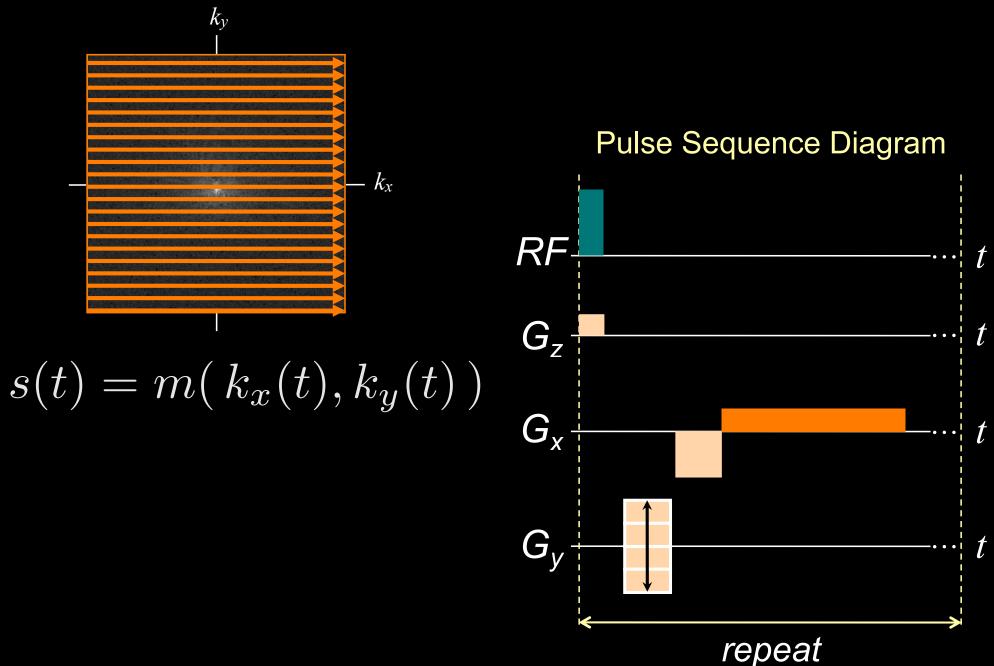


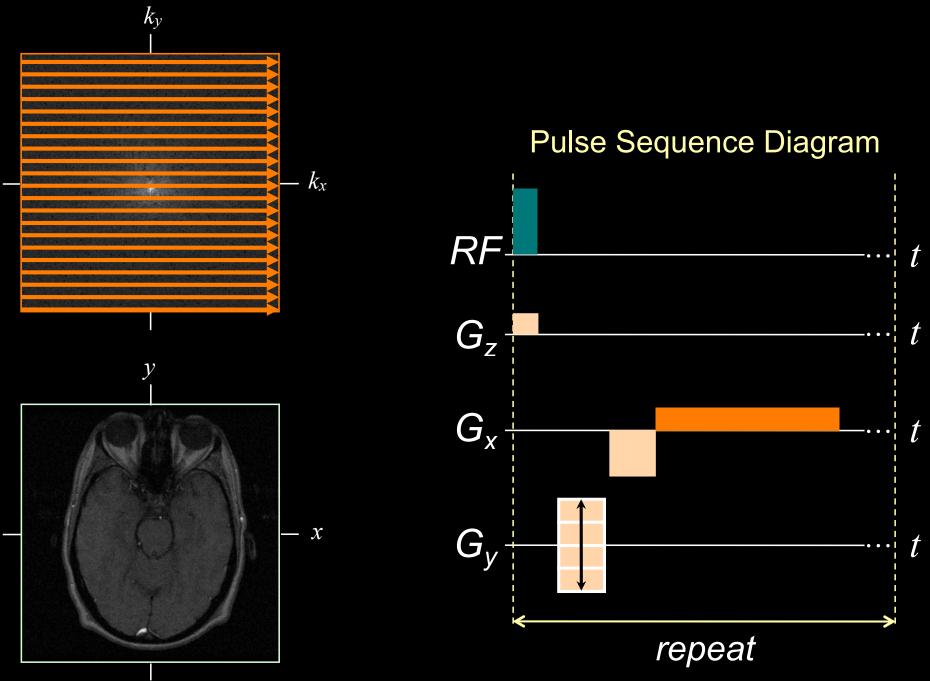
$$s(t) = m(k_x(t))$$

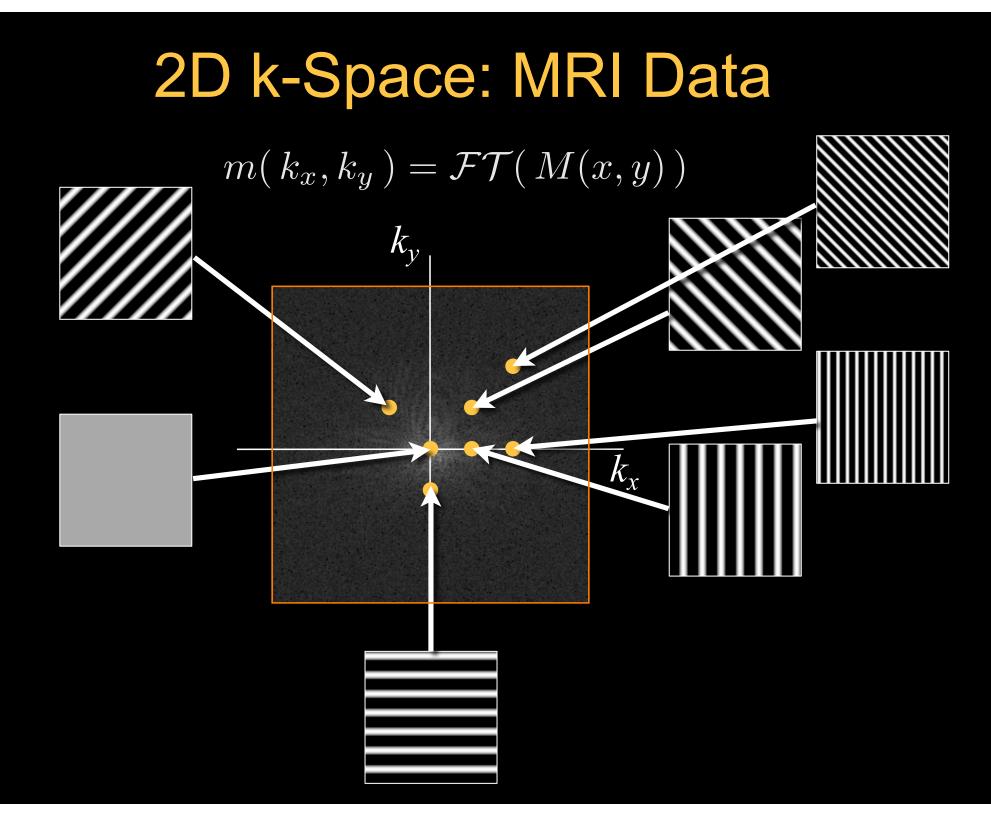


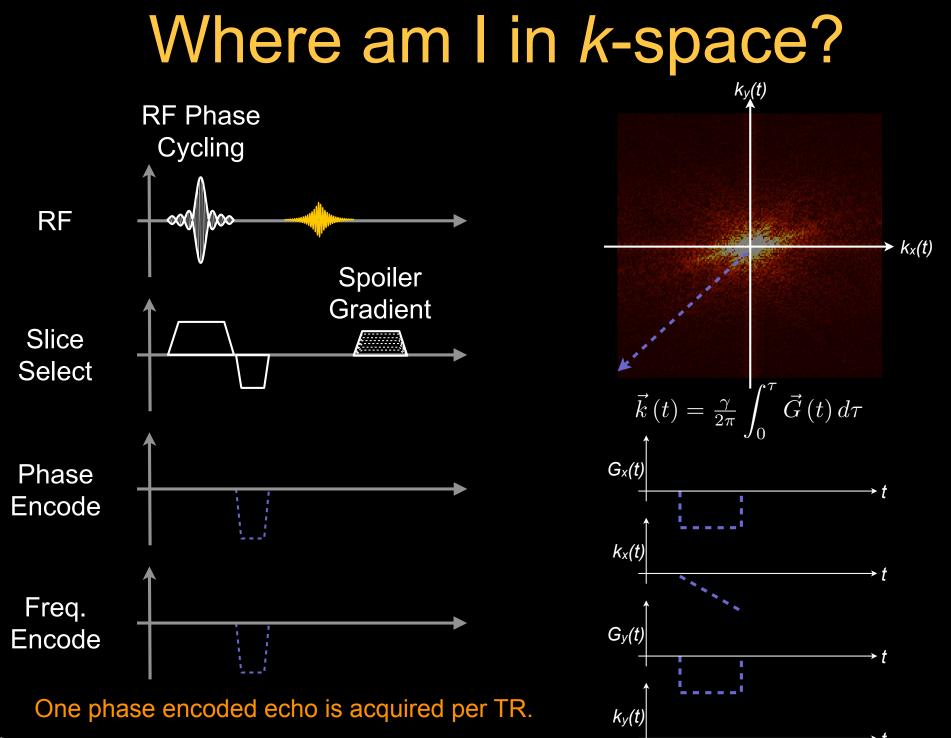
 $s(t) = m(k_x(t), k_y(t))$





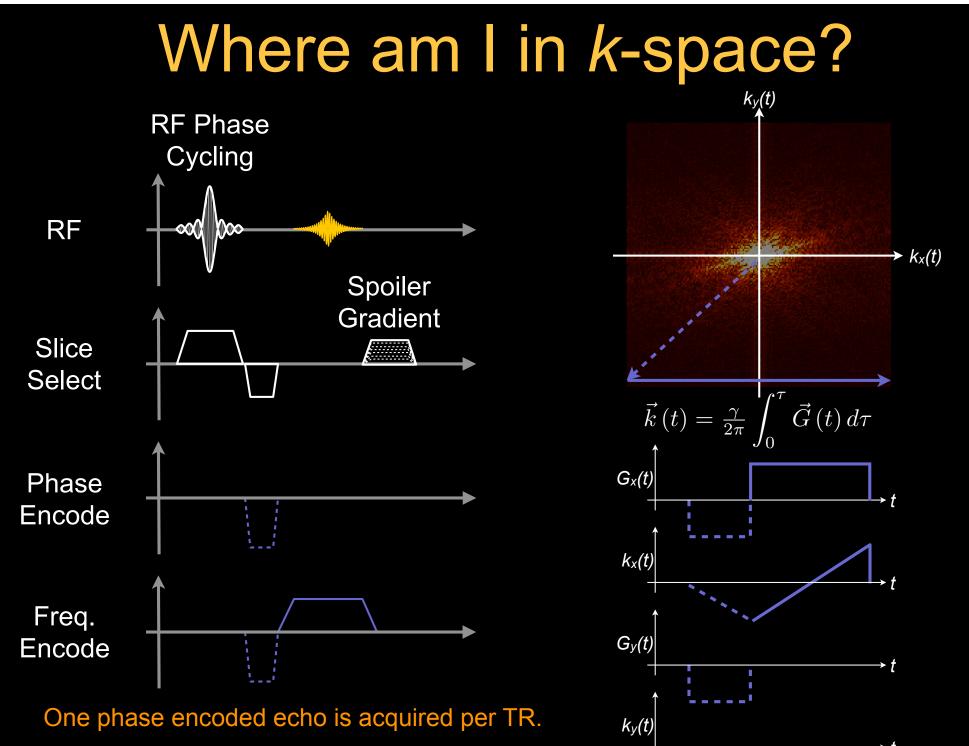




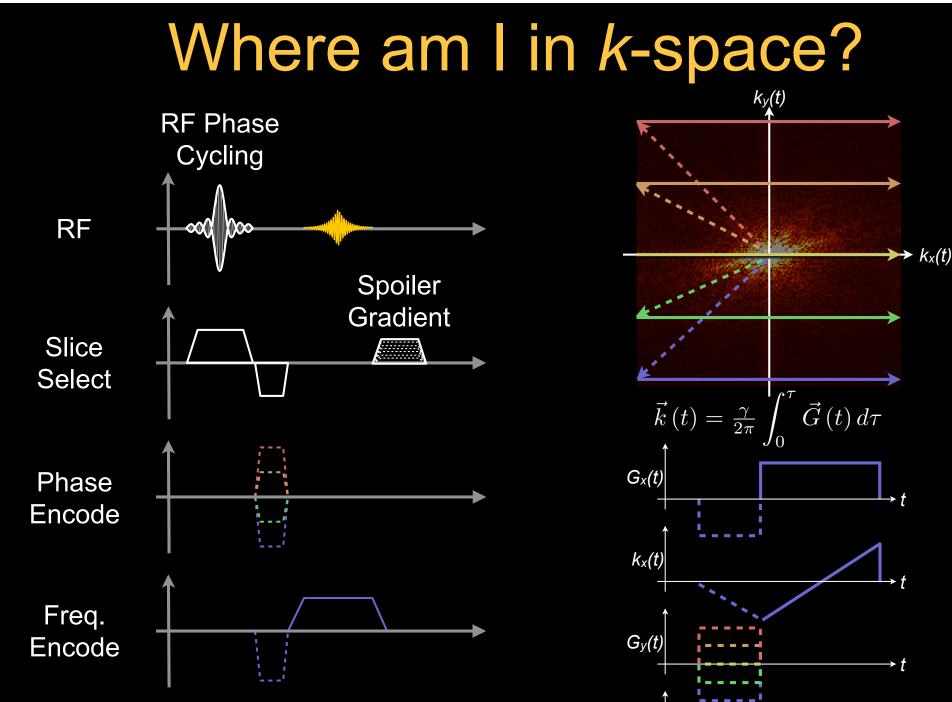


IICI A

Radioloa



Radiology



 $k_y(t)$

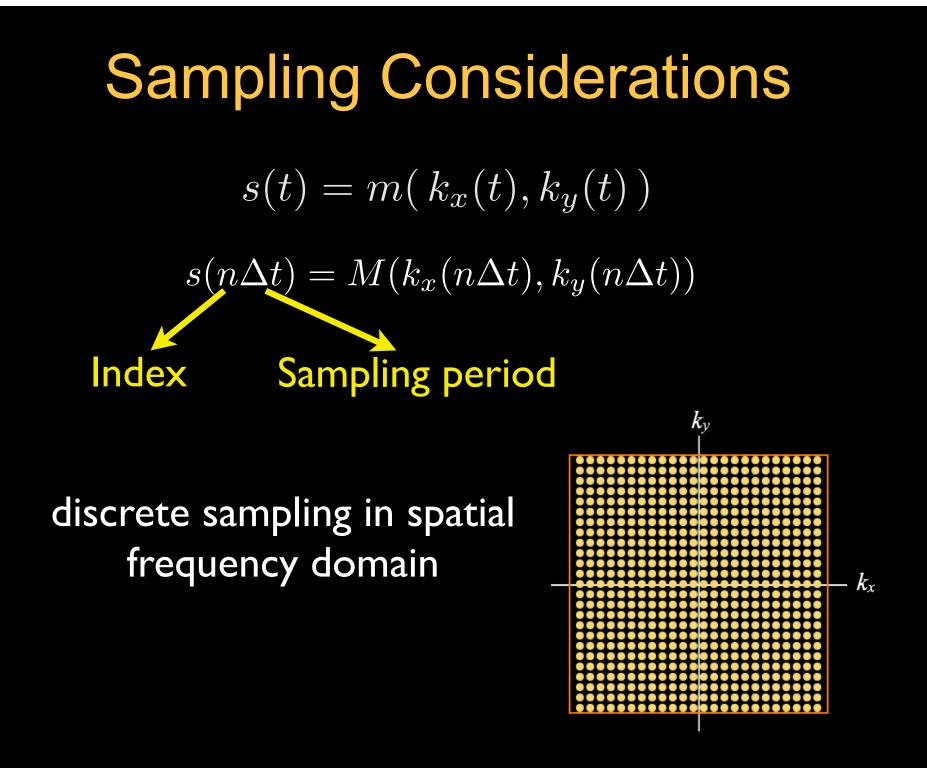
One phase encoded echo is acquired per TR.

MRI Sampling Requirements

Remember that the collected data in MRI is discrete

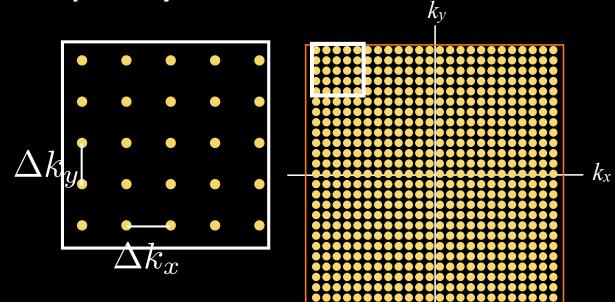
Discrete sampling can lead to artifacts if not careful

Sampling considerations - Field of View - Spatial Resolution



Sampling Considerations

discrete sampling in spatial frequency domain



$$w_{k_x} = N_{read} \times \Delta k_x$$
$$w_{k_y} = N_{PE} \times \Delta k_y$$

Review: Properties of DFT

Convolution

$$f(x) * h(x) \longleftrightarrow F(k_x) H(k_x)$$

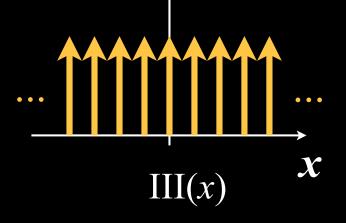
$$\frac{\text{Similarity (scaling)}}{f(ax)} \longleftrightarrow \frac{1}{|a|} F(\frac{k_x}{a})$$

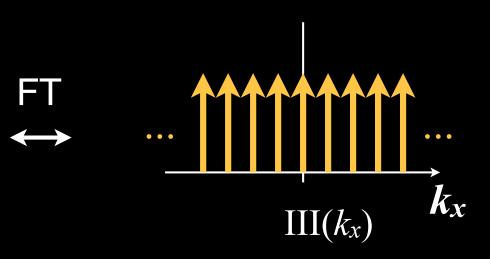
<u>Shift</u>

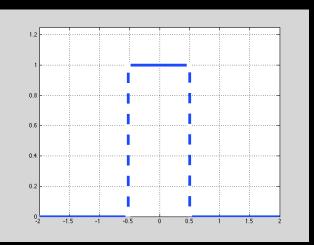
$$f(x-a) \longleftrightarrow \exp(-i2\pi(ak_x)) \cdot F(k_x)$$

Review: Properties of DFT

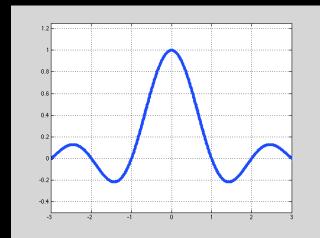
comb or "Shah"



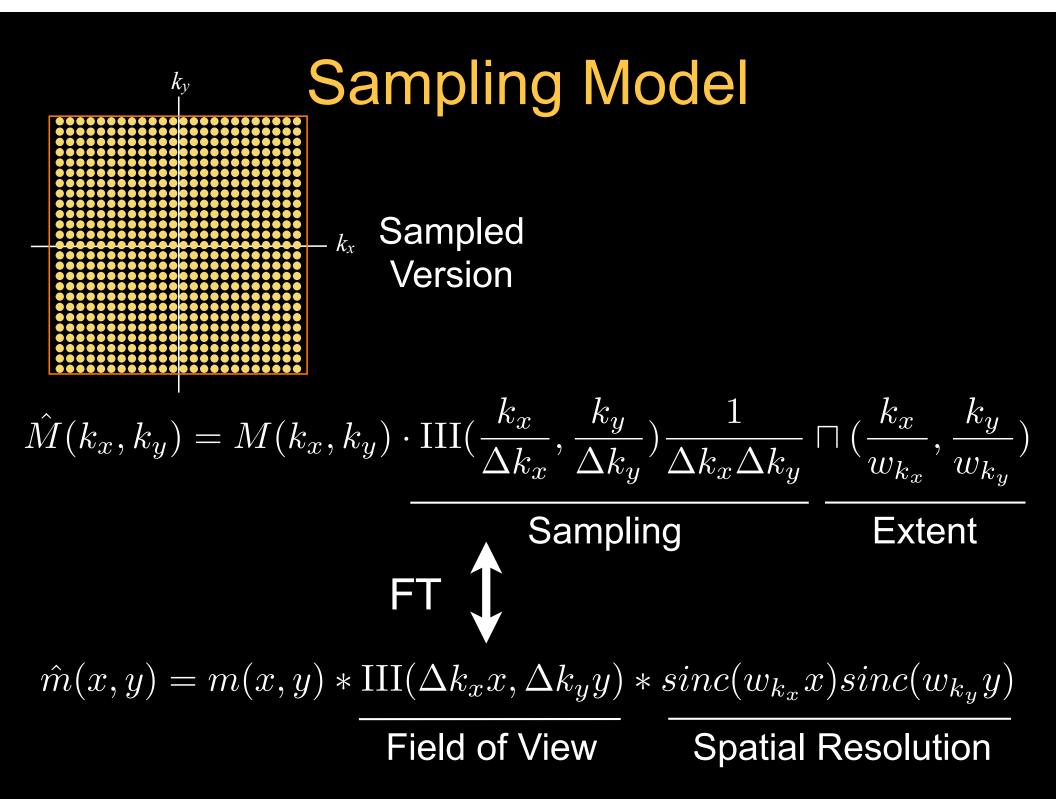




rect

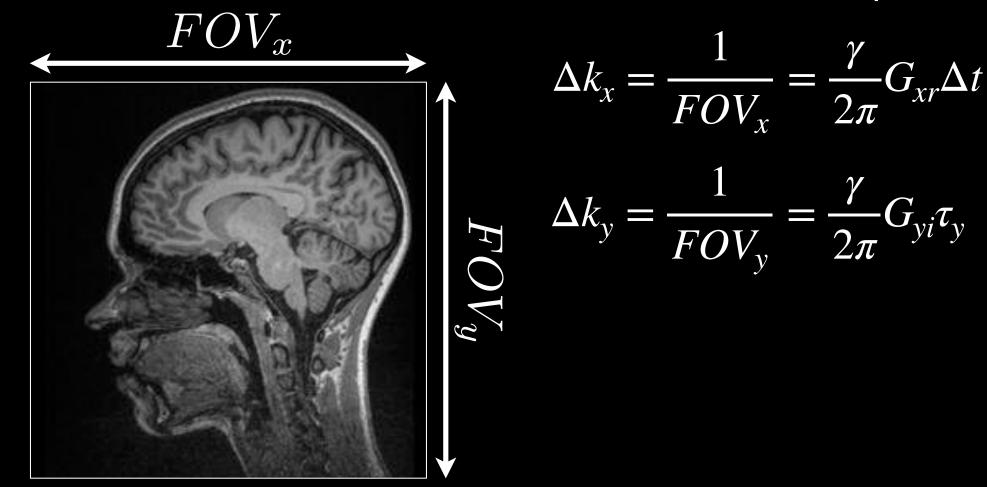


 $\operatorname{sinc}(k_x) = \frac{\sin(\pi k_x)}{\pi k_x}$



 $m(x,y) * III(\Delta k_x x, \overline{\Delta k_y y})$

Eq. 5.76



To the Board

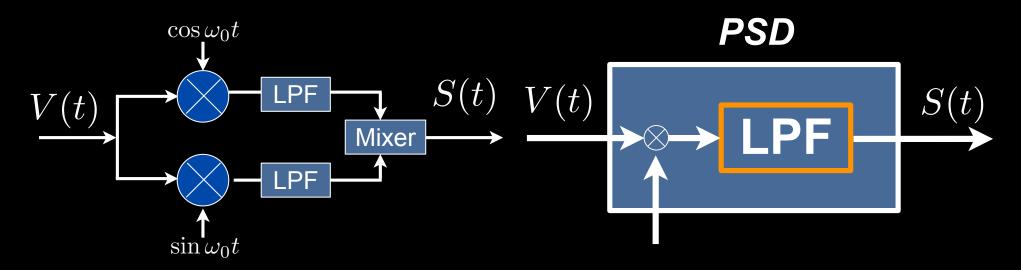
To avoid any aliasing artifacts:

In phase encoding, - Reduce Δk_y

Either lose spatial resolution or increase scan time

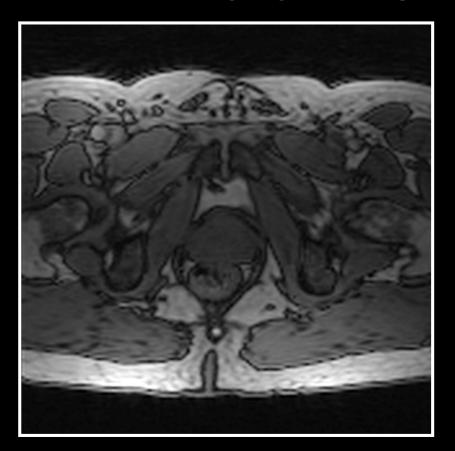
To avoid any aliasing artifacts:

In frequency encoding, - Reduce Δk_x - Utilize LPF (low pass filter)



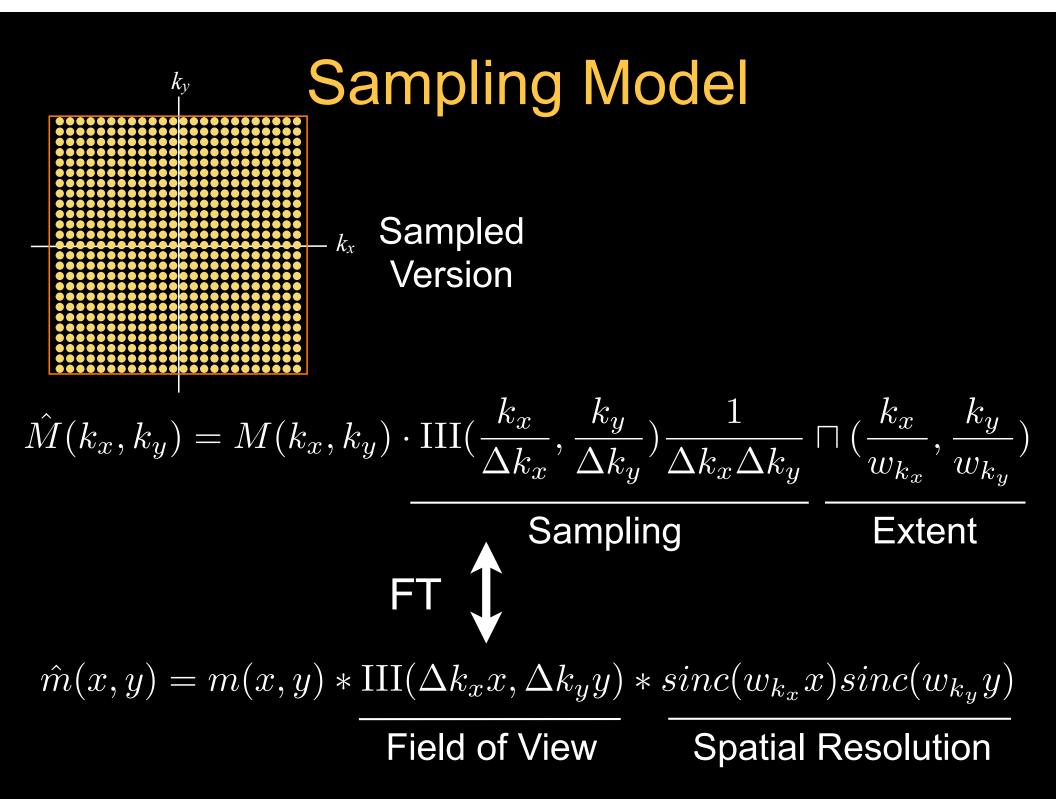
Typically, put long axis of object in readout direction

Prostate Imaging Example



Which direction will be readout direction?

Spatial Resolution



Point Spread Function (PSF)

$$\hat{M}(k_x, k_y) = M(k_x, k_y) \cdot \text{III}(\frac{k_x}{\Delta k_x}, \frac{k_y}{\Delta k_y}) \frac{1}{\Delta k_x \Delta k_y} \sqcap (\frac{k_x}{w_{k_x}}, \frac{k_y}{w_{k_y}})$$
Extent

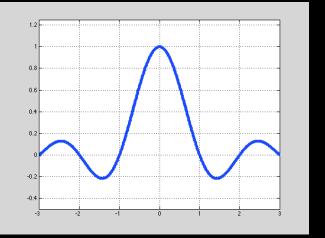
$$\hat{M}'(k_x, k_y) = \hat{M}(k_x, k_y) \cdot \text{window}$$

 $\text{PSF} = \text{FT}(\text{window})$

Point spread function can show the extent of blurring of the image

Spatial Resolution

 $m(x,y) * sinc(w_{k_x}x)sinc(w_{k_y}y)w_{k_x}w_{k_y}$



Main lobe causes blurring! (spatial resolution)

Spatial resolution: δ_x , δ_y $\delta_x = \frac{1}{w_{k_x}}$ $\delta_y = \frac{1}{w_{k_y}}$

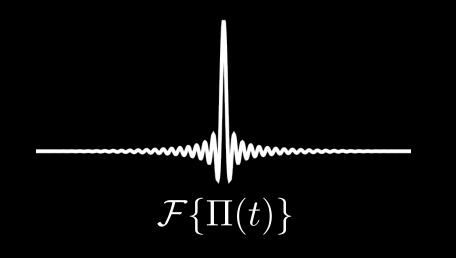
Spatial Resolution

 Spatial resolution of an imaging system is the smallest separation δx of two point sources necessary for them to remain resolvable in the resultant image.

$$\hat{I}(x) = I(x) * h(x)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$Point$$
Image Object Spread
Function



Narrower central peak, but lots of ringing

Reduced ringing, but broader central peak

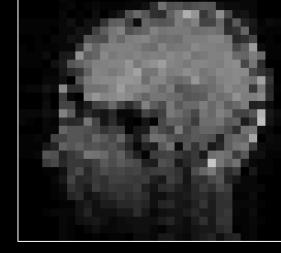
PSFs

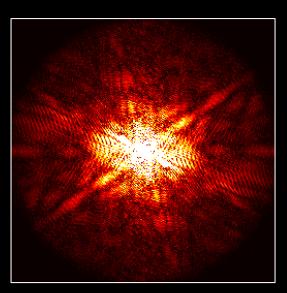
Filters can be used to reduce ringing artifacts but often at the expense of spatial resolution

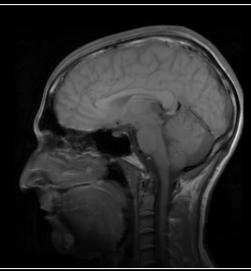
Hamming window seems to have good balance in reducing ringing

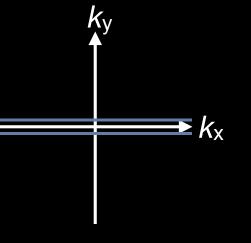
Finite Sampling

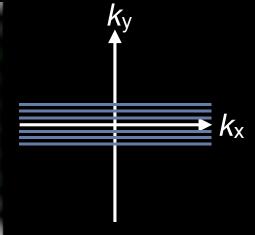
$$W_h = \frac{1}{N\Delta k} = \frac{FOV}{N}$$

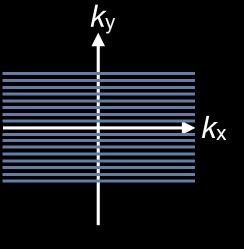


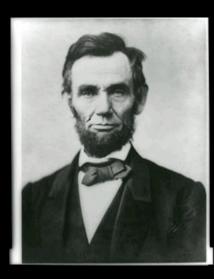


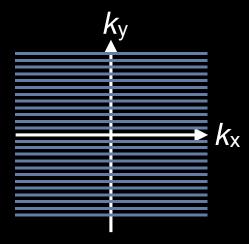


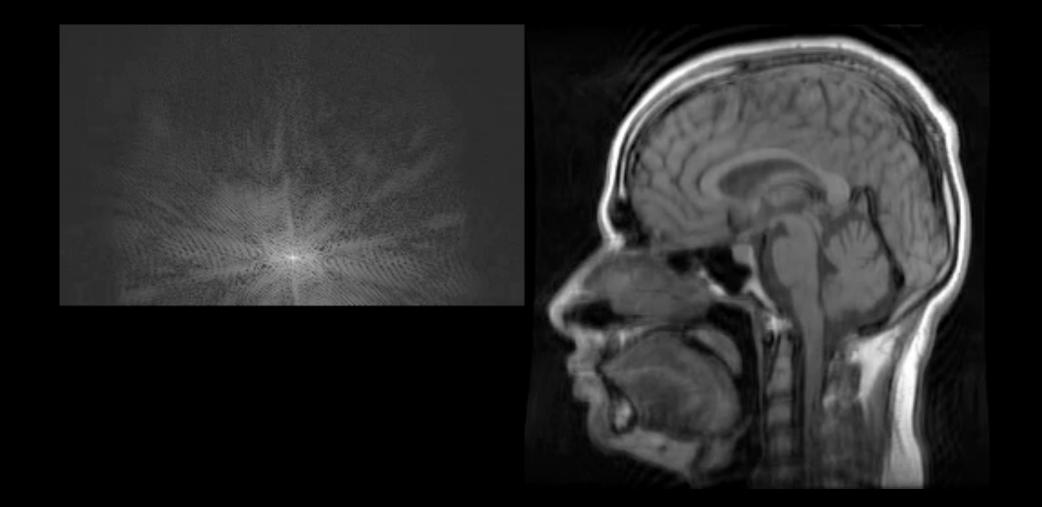


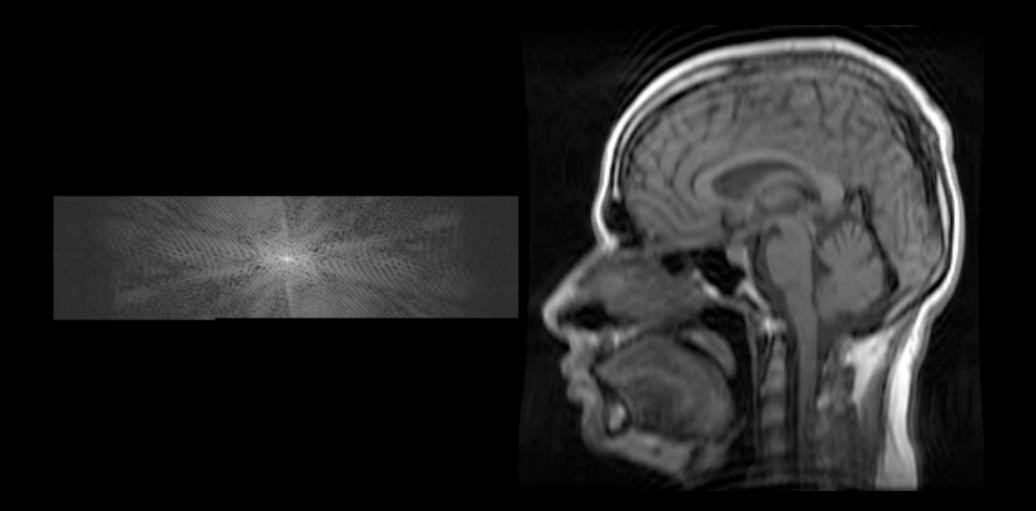




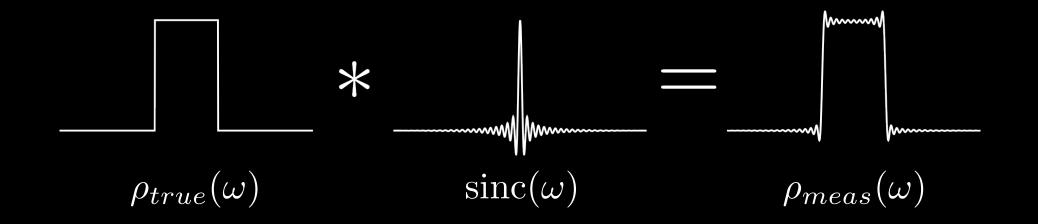






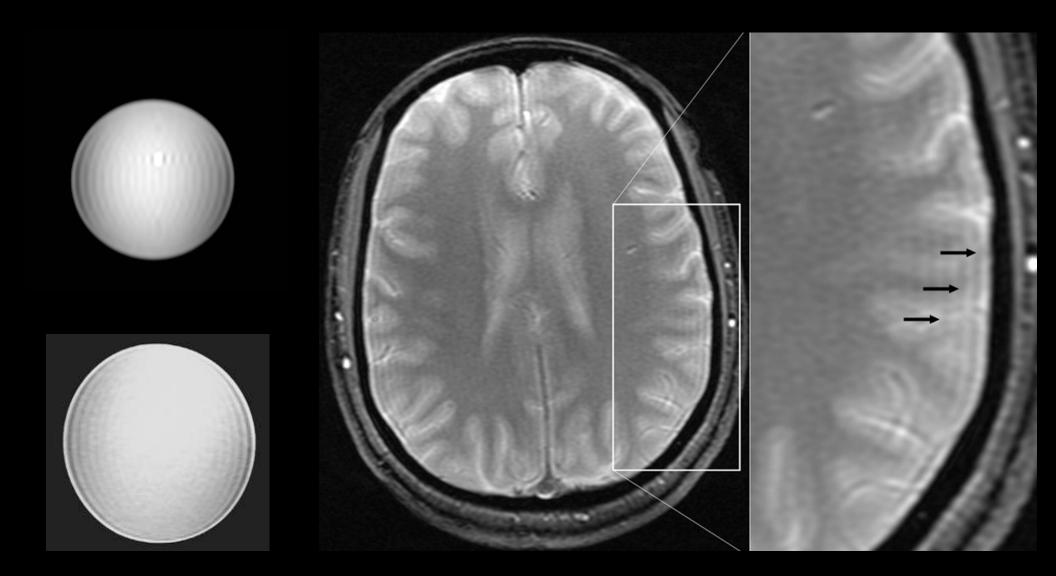


Distortions in the profile arising from the finite sampling of the data

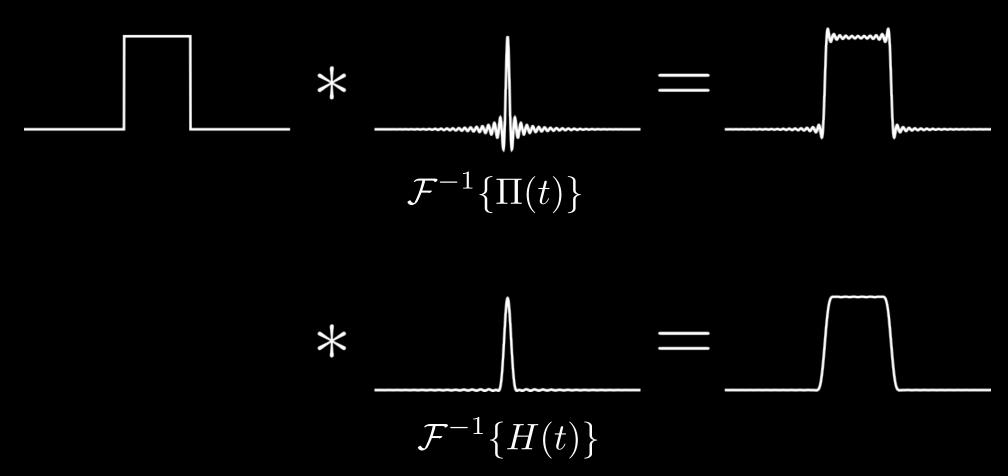


This type of distortion is most commonly referred to as Gibb's ringing

Examples of Gibb's Ringing



how to reduce ringing



Hamming window can be used to reduce ringing

- Related reading materials
 - Nishimura Chap 5

Kyung Sung, Ph.D. KSung@mednet.ucla.edu http://mrrl.ucla.edu/sunglab