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Review: Basic Recon



Image Reconstruction
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Finite Sampling
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This is the fundamental image reconstruction equation for MRI.

Eqn. 6.20



Sampling Considerations
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Noise Considerations

• Signal-to-Noise Ratio (SNR)  
- A fundamental measure of image quality 

-  

-

SNR ≜
signal amplitude

σ of noise

SNRdB = 20 ⋅ log(SNR)

Nishimura Ch. 7.5



Noise Considerations

• Summary of Acquisition Time Effects 
-  

-  

• Effect of Spatial Resolution 
-  

• Other factors 
-

SNR ∝ Nave ⋅ Tread

SNR ∝ measurement time

SNR ∝ (δx)(δy)(δz)

SNR ∝ f(ρ, T1, T2, . . . )
Nishimura Ch. 7.5
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Zero-Pad
32          64         128         256

32 

64 

128 

256



Hamming Window & Zero-Pad
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Multi-Coil Reconstruction

Each coil element (channel) has a unique sensitivity profile – 

Coil-1

Coil-2

Coil-3 Coil-4 Coil-5 Coil-6

Coil-7

Coil-8

~Br (~r)



Outline

• Fast Imaging 
- Non-Cartesian MRI 
- Echo-planar imaging (EPI)  

• Advanced MR Image Reconstruction  
- Parallel imaging  
- Compressed sensing 



Overview
• Motivation  

- MRI is relatively slow; need to accelerate  

• Strategies 
- Efficient pulse sequences   
- Fast k-space sampling trajectories  
- Data undersampling + advanced recon 

• Many challenges and trade-offs 

• Key drivers for MRI research 



Fast Imaging
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k-Space Sampling

set of s(t) covers m(kx, ky) s(t) = m( kx(t), ky(t) )



Image Reconstruction
ky y

Complex data Complex data

xkx

FT



Cartesian Sampling
ky
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ky

kx

Cartesian 2DFT

kz
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Cartesian 3DFT



MR Signal Equation
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Non-Cartesian Sampling
ky

kx

2D Concentric Rings 2D Spiral2D Radial

ky
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and much more ...



Non-Cartesian Sampling

3D Cones
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3D Stack of Rings

and much more ...
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3D Stack of Stars



Radial: Real-time MRI

courtesy of Samantha Mikaiel

Radial FLASH 
- golden-angle ordering 
- 192 x 192 matrix 
- TR = 3.1 ms 
  (1 spoke per TR) 
- 3.0 T 

Reconstruction 
- sliding window of 20 TRs 
  (display at 16 frames/sec) 
- parallel imaging (SPIRiT) 
  (300 spokes for Nyquist) 

255 spokes/frame 
(791 ms/frame)

144 spokes/frame 
(446 ms/frame)

89 spokes/frame 
(276 ms/frame)

55 spokes/frame 
(171 ms/frame)



Spirals: 3D LGE MRI

courtesy of Joelle Barral & Juan Santos (HeartVista)

3D Spiral IR-GRE 
- 6-interleaf VD spiral 
- 7.5-ms readout 
- 90 x 90 x 11 matrix 
- outer volume suppr 
- water-only RF exc 
- TR = 15.48 ms 
- 8-HB BH scan 

Reconstruction 
- SPIRiT (R = 2) 
- ~5-sec recon

1.5 T



3D Stack-of-Radial: Liver MRI

courtesy of Tess Armstrong

Axial

Coronal

Sagittal

Free-breathing 3D Stack-of-Radial MRI3D Cartesian MRI

Insufficient breath-holding



3D Radial: Coronary MRA
Contrast-Enhanced MRA at 3.0T

ECG-gated, fat-saturated, inversion-recovery prepared spoiled gradient echo sequence 
(1.0 mm)3 spatial resolution, 1D self navigation, CG-SENSE recon, 5.4 min scan time

courtesy of Debiao Li and J Pang (Cedars-Sinai)



Wu HH et al., MRM 2013; 69: 1083-1093

3D Cones: Coronary MRA
Multi-Phase Thin-Slab MIP Reformats



Echo-Planar Imaging

• Echo-Planar Imaging (EPI)1 

• Ultra-fast imaging (<100 ms/frame) 

• Imperfections and artifacts 

• Ongoing topic of rapid MRI research

1Mansfield P,  J Phys C: Solid State Phys 1977



Gradient Echo
θ

Gy

RF

Gx

ADC

…

…

…

…
T2* decay

TR

TE

• Utilization of transverse 
magnetization 

- With Ts = 8 µs and Nx = 
128, Tacq = 1.024 ms 

- <2% of T2* in brain at 3 T!1  

• Scan time 
- TGRE = Npe x TR 
- TR = 10 ms, Npe = 256: 

TGRE = 2.56 sec

1Peters, et al., Proc ISMRM 2006



Multi-echo Gradient Echo

θ

Gy

RF

Gx

TE1

…

…

…

…

Can perform T2* mapping

ΔTE can be non-uniform

ADC
T2* decay

TE2 TE3 TE4

TR



Gradient-Echo EPI

θ

Gy

RF

Gx

…

…
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T2* decay

ADC

“bipolar” readout

TR

TEeff



EPI Sequence Parameters

θ

Gy

RF

Gx

TEeff

…

…

…

…ADC
TR

x Nshot

Echo train length (ETL)
Echo spacing (ESP)

Number of shots (Nshot)
Effective TE (TEeff)

ESP ETL



EPI k-Space Sampling

ky

kx

• ETL can be 4-64 or 
higher 
- Limited by T2* decay, off-

resonance effects 
- aka “EPI factor” 

• ESP typically ~1 ms 
- Must accommodate RF, 

gradients, ADC 
- Short ESP facilitates high 

ETL



Fast Sampling Trajectories
• Benefits 

- Reduced scan time 
- Robustness to 

motion and flow 
- Short echo time 

• Applications 
- Dynamic MRI 
- Real-time MRI 
- Cardiovascular MRI 
- Short-TE MRI 

• Challenges 
- Hardware performance 
- Gradient fidelity 
- Off-resonance effects 
- Design and implementation 

• Challenges addressed 

• On-going research 

• Use judiciously!



Parallel Imaging
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Multi-coil Sensitivity

k ~B (~r) k



Multi-coil Imagesm1(x) m2(x)

m3(x) m4(x)

ms(x)



Accelerate Imaging with Array 
Coils

kx

ky y

x



Accelerate Imaging with Array 
Coils

• Parallel Imaging 
- Coil elements provide some localization 

- Undersample in k-space, producing aliasing  

- Sort out in reconstruction

kx

ky y

x



Parallel Imaging

• Many approaches: 
- Image domain - SENSE 

- k-space domain - SMASH, GRAPPA 

- Hybrid - ARC 

• We will introduce one: 
- SENSE: optimal if you know coil sensitivities

Pruessmann et al. MRM 1999 
https://pubmed.ncbi.nlm.nih.gov/10542355/



Cartesian SENSE
m1( ~x1) = C1( ~x1)m( ~x1) + C1( ~x2)m( ~x2)

m1C1

x1x1 x2

m

m2( ~x1) = C2( ~x1)m( ~x1) + C2( ~x2)m( ~x2)

m2C2

x1x1 x2

m
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ms = Cm+ n

OR

L x 1 L x 2 L x 1
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m̂(~x) = (C⇤ �1C)�1C⇤ �1ms(~x)

2 x 2 2 x L L x 1

L aliased reconstruction resolves 2 image pixels

For an N x N image, we solve (N/2 x N) 
2 x 2 inverse systems

For an acceleration factor R, we solve (N/R x N) 
R x R inverse systems



SENSE Reconstruction

m̂(~x) = (C⇤ �1C)�1C⇤ �1ms(~x)



SNR Cost

• How large can R be? 

• Two SNR loss mechanisms 
- Reduced scan time 

- Condition of the SENSE decomposition 

• SNR Loss

Geometry
Factor

Reduced 
Scan Time



1/g-factor Map for R=4



g-factor and its impact on images



Parallel Imaging

• Utilizes coil sensitivities to increase the 
speed of MRI (typical R=2-4) 

• Cases for parallel imaging 
- Higher patient throughput  

- Real-time imaging/Interventional imaging 

- Motion suppression 

• Cases against parallel imaging 
- Low SNR applications



Compressed Sensing (CS)



What is CS?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis

Donoho, IEEE TIT, 2006
Candes et al., Inverse Problems, 2007



What is CS?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis

x

=

Φy

x = Φ-1y 

8 Equations 
8 Unknowns



What is CS?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis

x

=

Φy

x = Φ-1y 

4 Equations 
8 Unknowns

Sparse or 
Compressible

Incoherent
Measurement



What is CS?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis

x

=

Φy

4 Equations 
8 Unknowns

Sparse or 
Compressible

Incoherent
Measurement

We still can find 8 unknowns!



Compressed Sensing MRI

Inverse Fourier  
Transform Φ-1

k-space Image

x = Φ-1y 



Compressed Sensing MRI
k-space Image

x = Φ-1y 

Inverse Fourier  
Transform Φ-1



Compressed Sensing MRI

x = Φ-1y 

Inverse Fourier  
Transform Φ-1

k-space Image

Choose the most compressible
image matching the acquired data 
(systematic optimization)



CS-MRI Reconstruction

x: Imagey: k-space

w = Ψx

w: Wavelet

|y - Φx|2 < Ɛ

L1-norm
minimize |Ψx|1



CS-MRI Reconstruction

x: Imagey: k-space w: Wavelet

x = Ψ-1wy’ = FT(x)

minimize F(x): |y - Φx|2  +  R(x)



• Three key elements of Compressed Sensing:

Compressibility

Incoherence

Nonlinear Reconstruction

Three Tenets of CS

Data  
Consistency

Compressibility 
Constraint

minimize F(x): |y - Φx|2  +  R(x)2



CS-MRI Reconstruction
minimize F(x): |y - Φx|2  +  R(x)

• Minimizing F(x)  is non-trivial since R(x) is not differentiable 
- Linear programming is challenging due to high 

computational complexity 

• Simple gradient-based algorithms have been developed: 
- Re-weighted L1 / FOCUSS 

- IST / IHT / AMP / FISTA 

- Split Bregman / ADMM

I.F. Gorodnitsky, et al., J. Electroencephalog. Clinical Neurophysiol. 1995 Daubechies I, 
et al. Commun. Pure Appl. Math. 2004

Elad M, et al. in Proc. SPIE 2007
T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2009

2



State-of-the-Art CS-MRI

• Reducing possible reconstruction failure 
- Improve sparse transformations  

- Develop k-space undersampling schemes 

• Integrating CS with DL/parallel imaging 
- Develop compatible undersampling patterns 

- Develop reconstruction methods



State-of-the-Art CS-MRI

• Methods to evaluate CS reconstructed images 
- RMSE / SSIM / Mutual Information 

• Reducing reconstruction time 
- Reduce computational complexity 

- Parallelize reconstruction problems 

• Developing stable reconstruction algorithms 
- Minimize / avoid the number of regularization 

parameters



Thanks!

• Interested in more? M229 in Spring 
- Fast imaging sequences  
- Fast sampling trajectories  
- Parallel imaging  
- Constrained reconstruction  
- Deep learning-based methods 



Thanks!
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