

Basics of Quantitative MRI

Anthony G. Christodoulou, PhD Department of Radiological Sciences David Geffen School of Medicine University of California, Los Angeles

PBM M219 13 March 2024

Quantitative vs Qualitative Imaging

More objective

 Measures absolute parameters associated with pathophysiological tissue properties and disease states

More reproducible¹

 Directly compares subjects, sites, and times

More sensitive^{2,3}

 Detects mild or diffuse alteration of tissue properties

¹Metere R et al., PLoS One 2017 ²Singh P et al., *Biomed Res Int* 2013 ³h-Icí DO et al., *Eur Heart J CVI* 2014

 \vee

question: is jodie foster really short or is jennifer lawrence really tall?

8:31 PM - 4 Mar 2018

Qualitative imaging

Qualitative imaging

Normal tissue must be present for comparison

• Not appropriate for diffuse disease

Cannot compare pixel values from:

- different patients
- different scanners
- different times

Dependent on contrast weighting selection

• subtle changes may go undetected, e.g., during early stages of disease

Quantitative imaging: Measuring the actual property

Pixel value has a unit. We can make absolute measurements.

Quantitative imaging: Measuring the actual property

Qualitative vs. Quantitative imaging

Qualitative

Normal tissue must be present for comparison

Cannot compare pixel values from:

- different patients
- different scanners
- different times

Dependent on contrast weighting selection

subtle changes may go undetected, e.g., during early stages of disease

Quantitative

No need for normal tissue: can detect diffuse disease

Can compare pixel values, allowing:

- patient comparisons
- scanner independence
- longitudinal monitoring

Incorporates multiple contrast weightings

more sensitive to subtle changes, so promising for early detection

What tissue properties can we map?

Various tissue processes and tissue parameters, e.g.:

- Relaxation (T1, T2, T2*)
- Diffusion (ADC, helix angle, diffusion angle)
- Mechanical properties (stress, strain, stiffness)
- Flow (tissue perfusion or flow in larger vessels)
- Kinetics (K^{trans}/permeability)
- Tissue composition (water-fat, ECV, plasma volume)
- (and more)
- Multi-parametric imaging:
- Combines parameters for comprehensive assessment of tissue state and accurate diagnosis

	Diseases	Т1	Т2	Т2*	ADC	SWI/ QSM	FF
Neuro	Stroke	+	+		+	+	
	Traumatic brain injury	+	+		+	+	
	Epilepticus	+	+		+	+	
	Multiple Sclerosis	+	+			+	
	Glioblastoma	+	+	+	+	+	
Cardiovascular	Iron overload cardiomyopathy	+	+	+			
	Myocarditis	+	+				
	Sarcoidosis		+				
	Intramyocardial Hemorrhage		+	+		+	
	Acute/chronic myocardial infarction	+	+		+		
	Dilated Cardiomyopathy	+	+				
	Hypertrophic Cardiomyopathy	+	+		+		
	Amyloidosis	+					
	Systemic lupus erythematosus	+			+		
	Diabetic cardiomyopathy /obesity/cardiac steatosis						+
	Cardiotoxicity	+					
Body	Liver iron overload	+	+	+		+	
	<u>Cancer</u> Breast	+	+		+		
	Prostate	+	+		+	+	
	Liver	+	+	+	+	+	
	Liver fibrosis	+	+		+	+	
	Hepatic Carcinoma	+	+	+	+	+	
	Hepatic/pancreatic steatosis						+

Cardiac T1 and T2 examples

Normal

Fabry disease Iron overload

Fatty metaplasia

Diffuse Myocarditis

Takotsubo

 T_1 w/Gd

Perfusion/DCE

Bulluck H et al., Circ J 2015 Thavendiranathan P et al., Circ Cardiovasc Imaging 2012

Myocardial fibrosis

Schelbert EB, Messroghli DR, Radiol 2017

Extracellular volume fraction (ECV)

Schelbert EB, Messroghli DR, Radiol 2017

Liver cancer T1 and T2 examples

T1 map

T2 map

Fan Z, et al. ISMRM 2019 #698 UCLA David Geffen School of Medicine

To quantify MRI, we must collect multiple contrast weightings

Scope of the lecture

- There are MANY pulse sequences available for mapping particular parameters
- We are <u>not</u> going to cover them all today (although we will see some variations at the end)
- We will cover important principles of mapping using T1, T2, and T2* as examples
 - Basic equation forms for "canonical sequences"
 - T1 mapping: Inversion-recovery spin echo (IR-SE)
 - T2 mapping: Spin echo (SE)
 - T2* mapping: Gradient echo (GE)
 - Types of error: accuracy/bias, precision, repeatability
 - How to choose the "best" images for quantification

T_1 mapping

Signal model:

- Equation: What are these parameters?
 - Unknown A, B, T_1
 - Known/chosen τ 's
- Acquisition: Which τ 's should we choose?
- Analysis: Extracting A, B, T_1 by nonlinear optimization

*T***₁ mapping: Equation**

At steady state $(\tau \rightarrow \infty)$: S = A.

• A combines proton density, T_2 or T_2^* weighting, coil sensitivity, and $\sin(\alpha_{exc})$

Immediately after preparation ($\tau = 0$): S = A(1 - B).

- Assuming steady-state was reached: $B = 1 \cos(\alpha_{\text{prep}})$
 - For inversion recovery: $B = 1 \cos(180^\circ) = 1 (-1) = 2$
 - For saturation recovery: $B = 1 \cos(90^\circ) = 1 0 = 1$

T₁ mapping: Acquisition

Signal model:

$$S = A \left(1 - B e^{-\tau/T_1} \right)$$

How many τ 's do we need to do mapping?

- Three unknowns: A, B, T_1
- Generally need at least as many τ 's (\Box 3 in this example)

Which τ 's do we need?

- Intuition will only get us so far
- Optimal design/information theory can tell us how to maximize precision
 - e.g. Fisher information, Cramer-Rao analysis

T₁ mapping: Acquisition

 $\tau \rightarrow 0$: informative about *B*

T₁ mapping: Analysis

Typically: voxelwise nonlinear least-squares fitting $S(\tau) = A (1 - Be^{-\tau/T_1})$

Two-point fitting:

Assume
$$B = 1 - \cos(\alpha_{\text{prep}})$$

$$\arg\min_{A,T_1} \sum_{\tau} |S(\tau) - A(1 - Be^{-\tau/T_1})|^2$$

Three-point fitting:

$$\arg\min_{A,B,T_1}\sum_{\tau} \left|S(\tau) - A\left(1 - Be^{-\tau/T_1}\right)\right|^2$$

Errors in quantitative mapping

T₁ mapping: Analysis

Typically: voxelwise nonlinear least-squares fitting $S(\tau) = A(1 - Be^{-\tau/T_1})$

Two-point fitting:

Assume
$$B = 1 - \cos(\alpha_{\text{prep}})$$
 Potential nonrepeatable bias
 $\arg\min_{A,T_1} \sum_{\tau} |S(\tau) - A(1 - Be^{-\tau/T_1})|^2$

Three-point fitting:

arg min
A,B,T₁
$$\sum_{\tau} |S(\tau) - A(1 - Be^{-\tau/T_1})|^2$$

More params. ~ less precision

UCLA David Geffen School of Medicine

T₁ mapping: Acquisition

 $\tau \rightarrow 0$: informative about *B*

Optimal design tool: Fisher information

How much information does $S = A(1 - Be^{-\tau/T_1})$ carry about T1?

Under very narrow conditions*, Fisher information is

$$I(T_1) = \left| \frac{\partial S}{\partial T_1} \right|^2$$

In other words: how sensitive is S to T_1 ?

• We will want to choose the τ that maximizes sensitivity/information

• This maximizes T_1 precision!

• $I(T_1)$ is common notation, but is not just a function of T_1 , as we will see

*single parameter, single data point, Gaussian noise

Optimal design tool: Fisher information

$$I(T_1) = \left| \frac{\partial S}{\partial T_1} \right|^2$$

$$\frac{\partial S}{\partial T_1} = \frac{\partial}{\partial T_1} A (1 - B e^{-\tau/T_1})$$
$$= -\frac{AB}{T_1^2} \tau e^{-\tau/T_1}$$

$$I(T_1) = \frac{|A|^2 B^2}{T_1^4} \tau^2 e^{-2\tau/T_1}$$

$$S = A(1 - Be^{-\tau/T_1}) \quad \tau$$

$$I(T_1) \propto \tau^2 e^{-2\tau/T_1} \quad \tau$$

Consistent with our intuition!

There is no information about T_1 :

- at steady-state, when S = A
- right after prep, when $S = A(\overline{1 B})$ But there is information in between!

Optimal design tool: Fisher information

$$I(T_1) = \left| \frac{\partial S}{\partial T_1} \right|^2$$

$$\frac{\partial S}{\partial T_1} = \frac{\partial}{\partial T_1} A (1 - B e^{-\tau/T_1})$$
$$= -\frac{AB}{T_1^2} \tau e^{-\tau/T_1}$$

$$I(T_1) = \frac{|A|^2 B^2}{T_1^4} \tau^2 e^{-2\tau/T_1}$$

To maximize $I(T_1)$ over τ , we need to take another partial derivative over τ and set to 0:

$$\frac{\partial}{\partial \tau} \tau^2 e^{-2\tau/T_1} = 0$$

$$\frac{2\tau e^{-2\tau/T_1}}{T_1} (T_1 - \tau) = 0$$

$$\tau = T_1$$

T_1 mapping: Theoretical optimal acquisition

 $\tau \rightarrow 0$: informative about *B*

T_1 mapping: Practical optimal acquisition

 $\tau \rightarrow 0$: informative about *B*

We cannot wait forever, so what is most efficient? SNR efficiency (SNRe):

$$SNRe = \frac{SNR}{\sqrt{T}} = \frac{\mu}{\sigma\sqrt{T}}$$

Scan time is included, because shorter scans can be repeated and averaged

What are the SNR and SNRe of our parameter maps?

• The Cramér–Rao bound ($\sigma^2 \ge I^{-1}$) is helpful here:

$$\sigma^2 \ge I^{-1} \rightarrow SNRe \le \sqrt{\frac{I}{T}}$$
, so we should maximize information "rate" I/T

Maximizing information rate on A

Assuming* scan time \propto longest τ , let's maximize $\frac{I(A)}{\tau}$, the information rate on A:

Last inversion time should be 2-5x T1 for good SNR efficiency

*Ignores recovery time required after reading out

Preview: Full optimal design

Simplified version of Fisher information

- For one parameter at a time
 - e.g., information on T1 with known A, B
- For one τ at a time
 - Doesn't take entire set of timings into account
- Does not take into account which parameters we care about clinically
 - T1 more than A or B

Complete Fisher information/Cramér–Rao analysis: $S(A, B, T_1; \tau)$ for sequence timings/params $\tau = [\tau_1, \tau_2, ..., \tau_N]^T$

$$I([A, B, T_1]^T) = \begin{bmatrix} \frac{\partial S^T}{\partial A} \\ \frac{\partial S^T}{\partial B} \\ \frac{\partial S^T}{\partial T_1} \end{bmatrix} \begin{bmatrix} \frac{\partial S}{\partial A} & \frac{\partial S}{\partial B} & \frac{\partial S}{\partial T_1} \end{bmatrix}$$
$$\begin{bmatrix} Var(A) & Cov(A, B) & Cov(A, B) \end{bmatrix}$$

$$I = I([A, B, T_1]^T)^{-1} = \begin{bmatrix} \operatorname{Var}(A) & \operatorname{Cov}(A, B) & \operatorname{Cov}(A, T_1) \\ \operatorname{Cov}(B, A) & \operatorname{Var}(B) & \operatorname{Cov}(B, T_1) \\ \operatorname{Cov}(T_1, A) & \operatorname{Cov}(T_1, B) & \operatorname{Var}(T_1) \end{bmatrix}$$

$$\hat{\boldsymbol{\tau}} = \arg\min_{\boldsymbol{\tau}} \operatorname{Var}(T_1)$$

T₂ mapping

Basic form of equation for spin-echo sequences:

Α

$$S = \underline{A}e^{-T_{\rm E}/T_2}$$

A combines:

- proton density
- coil sensitivity
- $sin(\alpha_{exc})$

The same as T2 mapping, but with a gradient-echo sequence:

$$S = Ae^{-T_{\rm E}/T_2^*}$$

A combines:

- proton density
- coil sensitivity
- $sin(\alpha_{exc})$

Parameter mapping in moving organs

Parameter mapping in moving organs

Standard approach: "freeze" the motion

- Synchronize imaging with ECG
- Ask the patient to hold their breath
- Often: capture as few processes as possible

Incomplete list of options:

MOLLI ¹	shMOLLI ²	SASHA ³	SAPPHIRE ⁴
<i>T</i> ₂prep-SSFP⁵	QALAS ⁶	IR-7 ₂ prep ⁷	SR-T ₂ prep ⁸
Fingerprinting ⁹			

¹Messroghli DL et al., *MRM* 2004 ²Piechnik SK et al., *JCMR* 2010 ³Chow K, et al., *MRM* 2014 ⁴Weingärtner S et al., *SCMR* 2013 ⁵Giri S et al., *JCMR* 2009 ⁶Kvernby S et al., *JCMR* 2014 ⁷Blume U et al., *JMRI* 2010 ⁸Akçakaya M et al., *MRM* 2015 ⁹Hamilton JI et al., *MRM* 2016

T₁ mapping: Look–Locker effect

What if we take a shortcut, collecting images throughout the same recovery period?

T1 mapping example: MOLLI

Messroghli DR et al. Magn Reson Med 2004 Kellman P, et al. J Cardiovasc Magn Reson 2014

T2 mapping example: T2prep-SSFP

Breath-hold, ECG-triggered T2 maps in 7 heart beats

Giri S et al., J Cardiovasc Magn Reson 2009

Multiparameter mapping example: Fingerprinting

Breath-hold, ECG-triggered T1-T2 maps in 16 heart beats

Multiparameter mapping example: Multitasking

Multidimensional framework for motion-resolved quantitative imaging

• e.g., free-breathing, non-ECG myocardial T_1 - T_2 mapping

...reorganized as multiple time dimensions ("tasks")

Multiple overlapping dynamics...

Christodoulou AG et al., Nature BME 2018

Multiparameter mapping example: Multitasking

6-D imaging example:

2 spatial dimensions + cardiac motion + respiration + T_1 recovery + T_2 prep duration

Reconstructs a low-rank/factorizable image tensor (grows ~linearly, not exponentially) Processes can be isolated after image reconstruction

Produces co-registered, synchronized cine maps

