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Quantitative vs Qualitative Imaging

More objective

• Measures absolute parameters 

associated with pathophysiological 

tissue properties and disease states

More reproducible
1

• Directly compares subjects, sites, 

and times

More sensitive
2,3

• Detects mild or diffuse alteration of 

tissue properties

Qualitative

Unitless pixel values

Quantitative

Pixel values have units

1
Metere R et al., PLoS One 2017

2
Singh P et al., 2013

3
h-Icí DO et al., 2014
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Qualitative imaging

Pixel brightness has no units. We can only make relative measurements.
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Qualitative imaging

Normal tissue must be present for comparison

•  Not appropriate for diffuse disease

Cannot compare pixel values from:

•  different patients

•  different scanners

•  different times

Dependent on contrast weighting selection

•  subtle changes may go undetected, e.g., during early stages of disease



Quantitative imaging: Measuring the actual 
property

Pixel value has a unit. We can make absolute measurements.
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Quantitative imaging: Measuring the actual 
property
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Qualitative vs. Quantitative imaging

Qualitative

Normal tissue must be present for comparison

Cannot compare pixel values from:

•  different patients

•  different scanners

•  different times

Dependent on contrast weighting selection

•  subtle changes may go undetected, e.g., during 

early stages of disease

Quantitative

No need for normal tissue: can detect diffuse 

disease

Can compare pixel values, allowing:

•  patient comparisons

•  scanner independence

•  longitudinal monitoring

Incorporates multiple contrast weightings

•  more sensitive to subtle changes, so promising 

for early detection



What tissue properties can we map?

Various tissue processes and tissue parameters, e.g.:

•  Relaxation (T1, T2, T2*)

•  Diffusion (ADC, helix angle, diffusion angle)

•  Mechanical properties (stress, strain, stiffness)

•  Flow (tissue perfusion or flow in larger vessels)

•  Kinetics (K
trans

/permeability)

•  Tissue composition (water-fat, ECV, plasma volume)

•  (and more)

Multi-parametric imaging:

•  Combines parameters for comprehensive assessment 

of tissue state and accurate diagnosis



Cardiac T1 and T2 examples

T1

Normal Fabry disease Iron overload Fatty metaplasia Diffuse Myocarditis Takotsubo

T2

Bulluck H et al., Circ J 2015

Thavendiranathan P et al., Circ Cardiovasc Imaging 2012

T1 w/Gd

1 – HCT Native T1 Post-contrast 

T1

Extracellular 

volume (ECV)

Perfusion/DCE



Myocardial fibrosis

Schelbert EB, Messroghli DR, Radiol 2017

Δ𝑅1 ∝ 𝐺𝑑



Extracellular volume fraction (ECV)

Schelbert EB, Messroghli DR, Radiol 2017

hematocrit (red blood cell volume)
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Liver cancer T1 and T2 examples

Fan Z, et al. ISMRM 2019 #698



To quantify MRI, we must collect multiple contrast weightings

T1 recovery
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Scope of the lecture

• There are MANY pulse sequences available for mapping particular parameters

• We are not going to cover them all today (although we will see some variations at the end)

• We will cover important principles of mapping using T1, T2, and T2* as examples

◦ Basic equation forms for “canonical sequences”

• T1 mapping: Inversion-recovery spin echo (IR-SE)

• T2 mapping: Spin echo (SE)

• T2* mapping: Gradient echo (GE)

◦ Types of error: accuracy/bias, precision, repeatability

◦ How to choose the “best” images for quantification



T1 mapping

Signal model:

         𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

•Equation: What are these parameters?

◦ Unknown 𝐴, 𝐵, 𝑇1

◦ Known/chosen 𝜏’s

•Acquisition: Which 𝜏’s should we choose?

•Analysis: Extracting 𝐴, 𝐵, 𝑇1 by nonlinear optimization

𝜏

Signal

𝐴

𝐴 1 − 𝐵



T1 mapping: Equation

Signal model:

         𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

 At steady state (𝜏 → ∞):    𝑆 = 𝐴.

•  𝐴 combines proton density, 
2
 or 

2
* weighting, coil sensitivity, and sin 𝛼exc

 Immediately after preparation (𝜏 = 0):     𝑆 = 𝐴 1 − 𝐵 .

•  Assuming steady-state was reached:    𝐵 = 1 − cos 𝛼prep  

◦  For inversion recovery:    𝐵 = 1 − cos 180° = 1 − −1 = 2

◦  For saturation recovery:    𝐵 = 1 − cos 90° = 1 − 0 = 1

𝜏

Signal

𝐴

𝐴 1 − 𝐵



T1 mapping: Acquisition

Signal model:

         𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

How many 𝜏’s do we need to do mapping?

• Three unknowns: 𝐴, 𝐵, 𝑇1

• Generally need at least as many 𝜏’s (≥3 in this example)

Which 𝜏’s do we need?

• Intuition will only get us so far

• Optimal design/information theory can tell us how to maximize precision

◦ e.g. Fisher information, Cramer-Rao analysis

𝜏

Signal

𝐴

𝐴 1 − 𝐵



T1 mapping: Acquisition

𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

𝜏

𝐴

𝐴 1 − 𝐵

𝜏 → 0: informative about B

𝜏 → ∞: informative about 𝐴

Strongly T1-weighted images

are informative about 𝑇1  (more on this later)



T1 mapping: Analysis

Typically: voxelwise nonlinear least-squares fitting

𝑆 𝜏 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

Two-point fitting:

Assume 𝐵 = 1 − cos 𝛼prep

arg min
𝐴,𝑇1



𝜏

𝑆 𝜏 − 𝐴 1 − 𝐵𝑒−𝜏/𝑇1
2

Three-point fitting:

arg min
𝐴,𝐵,𝑇1



𝜏

𝑆 𝜏 − 𝐴 1 − 𝐵𝑒−𝜏/𝑇1
2



Errors in quantitative mapping

21

Accurate (unbiased) Systematic bias Nonrepeatable bias

Imprecise

Precise



T1 mapping: Analysis

Typically: voxelwise nonlinear least-squares fitting

𝑆 𝜏 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

Two-point fitting:

Assume 𝐵 = 1 − cos 𝛼prep

arg min
𝐴,𝑇1



𝜏

𝑆 𝜏 − 𝐴 1 − 𝐵𝑒−𝜏/𝑇1
2

Three-point fitting:

arg min
𝐴,𝐵,𝑇1



𝜏

𝑆 𝜏 − 𝐴 1 − 𝐵𝑒−𝜏/𝑇1
2

Potential nonrepeatable bias

More params. ~ less precision



T1 mapping: Acquisition

𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

𝜏

𝐴

𝐴 1 − 𝐵

𝜏 → 0: informative about B

𝜏 → ∞: informative about 𝐴

Which of these 𝜏’s is most informative about 𝑇1?

(Which of these 𝜏’s will maximize 𝑇1 precision?)



Optimal design tool: Fisher information

How much information does 𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1  carry about T1?

Under very narrow conditions*, Fisher information is

𝐼 𝑇1 =
𝜕𝑆

𝜕𝑇1

2

In other words: how sensitive is 𝑆 to 𝑇1?

•We will want to choose the 𝜏 that maximizes sensitivity/information

◦ This maximizes 𝑇1 precision!

•𝐼 𝑇1  is common notation, but is not just a function of 𝑇1, as we will see

*single parameter, single data point, Gaussian noise



Optimal design tool: Fisher information

𝐼 𝑇1 =
𝜕𝑆

𝜕𝑇1

2

𝜕𝑆

𝜕𝑇1
=

𝜕

𝜕𝑇1
𝐴 1 − 𝐵𝑒−𝜏/𝑇1

= −
𝐴𝐵

𝑇1
2 𝜏𝑒−𝜏/𝑇1

𝐼 𝑇1 =
𝐴 2𝐵2

𝑇1
4 𝜏2𝑒−2𝜏/𝑇1

Consistent with our intuition!

There is no information about 𝑇1:

• at steady-state, when 𝑆 = 𝐴

• right after prep, when 𝑆 = 𝐴 1 − 𝐵

But there is information in between!

𝜏

𝐼 𝑇1 ∝ 𝜏2𝑒−2𝜏/𝑇1

𝜏
𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1



Optimal design tool: Fisher information

To maximize 𝐼 𝑇1  over 𝜏, we need to take 

another partial derivative over 𝜏 and set to 0:

𝜕

𝜕𝜏
𝜏2𝑒−2𝜏/𝑇1 = 0

2𝜏𝑒−2𝜏/𝑇1

𝑇1
𝑇1 − 𝜏 = 0

𝜏
𝜏 = 𝑇1

𝐼 𝑇1 =
𝜕𝑆

𝜕𝑇1

2

𝜕𝑆

𝜕𝑇1
=

𝜕

𝜕𝑇1
𝐴 1 − 𝐵𝑒−𝜏/𝑇1

= −
𝐴𝐵

𝑇1
2 𝜏𝑒−𝜏/𝑇1

𝐼 𝑇1 =
𝐴 2𝐵2

𝑇1
4 𝜏2𝑒−2𝜏/𝑇1



T1 mapping: Theoretical optimal acquisition

𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

𝜏

𝐴

𝐴 1 − 𝐵

𝜏 → 0: informative about B

𝜏 → ∞: informative about 𝐴

𝜏 ≈ 𝑇1: informative about 𝑇1



T1 mapping: Practical optimal acquisition

𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

𝜏

𝐴

𝐴 1 − 𝐵

𝜏 → 0: informative about B

𝜏 → ∞: informative about 𝐴

𝜏 ≈ 𝑇1: informative about 𝑇1



Optimal design tool: Cramér–Rao

We cannot wait forever, so what is most efficient?

SNR efficiency (SNRe):

𝑆𝑁𝑅𝑒 =
𝑆𝑁𝑅

𝑇
=

𝜇

𝜎 𝑇

Scan time is included, because shorter scans can be repeated and averaged

What are the SNR and SNRe of our parameter maps?

•The Cramér–Rao bound 𝜎2 ≥ 𝐼−1
 is helpful here:

𝜎2 ≥ 𝐼−1  →  𝑆𝑁𝑅𝑒 ≤∝
𝐼

𝑇
, so we should maximize information “rate” 𝐼/𝑇



𝜏
0 𝑇1 2𝑇1 3𝑇1 4𝑇1 5𝑇1

1 − 2𝑒−𝜏/𝑇1
2

𝜏

Assuming* scan time ∝ longest 𝜏, let’s maximize 
𝐼 𝐴

𝜏
, the information rate on 

𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1

𝐼 𝐴

𝜏
=

𝜕𝑆/𝜕𝐴 2

𝜏
=

1 − 𝐵𝑒−𝜏/𝑇1
2

𝜏

Last inversion time should be 2–5x T1 for good SNR efficiency

Maximizing information rate on A

*Ignores recovery time required after reading out



Preview: Full optimal design

Simplified version of Fisher information

• For one parameter at a time

◦ e.g., information on T1 with known A, B

• For one 𝜏 at a time

◦ Doesn’t take entire set of timings into 

account

• Does not take into account which 

parameters we care about clinically

◦ T1 more than A or B

Complete Fisher information/Cramér–Rao analysis:

𝑆 𝐴, 𝐵, 𝑇1; 𝛕  for sequence timings/params 𝛕 = 𝜏1, 𝜏2, … , 𝜏𝑁
𝑇

𝐼 𝐴, 𝐵, 𝑇1
𝑇 =

𝜕𝑆𝑇

𝜕𝐴
𝜕𝑆𝑇

𝜕𝐵
𝜕𝑆𝑇

𝜕𝑇1

𝜕𝑆

𝜕𝐴

𝜕𝑆

𝜕𝐵

𝜕𝑆

𝜕𝑇1

𝐶 = 𝐼 𝐴, 𝐵, 𝑇1
𝑇 −1 =

Var 𝐴 Cov 𝐴, 𝐵 Cov 𝐴, 𝑇1

Cov 𝐵, 𝐴 Var 𝐵 Cov 𝐵, 𝑇1

Cov 𝑇1, 𝐴 Cov 𝑇1, 𝐵 Var 𝑇1

ො𝛕 = arg min
𝛕

Var 𝑇1



T2 mapping

Basic form of equation for spin-echo sequences:

      𝑆 = 𝐴𝑒−𝑇E/𝑇2

𝐴 combines:

◦ proton density

◦ coil sensitivity

◦ sin 𝛼exc

𝑇E

Signal

𝐴

𝑇E → 0: informative about A

𝑇E ≈ 𝑇2: informative about 𝑇2 

𝑇E

𝑇E = 𝑇2

𝐼 𝐴
𝐼 𝑇2



T2
*
 mapping

The same as T2 mapping, but with a gradient-echo sequence:

      𝑆 = 𝐴𝑒−𝑇E/𝑇2
∗

𝐴 combines:

◦ proton density

◦ coil sensitivity

◦ sin 𝛼exc

𝑇E

Signal

𝐴

𝑇E → 0: informative about A

𝑇E ≈ 𝑇2
∗: informative about 𝑇2

∗ 

𝑇E

𝑇E = 𝑇2
∗

𝐼 𝐴
𝐼 𝑇2

∗



Parameter mapping in moving organs

T1 recovery

time



Parameter mapping in moving organs

Standard approach: “freeze” the motion

•  Synchronize imaging with ECG

•  Ask the patient to hold their breath

•  Often: capture as few processes as possible

Incomplete list of options:

 

1Messroghli DL et  al., MRM 2004 2Piechnik SK et al., JCMR 2010 3Chow K, et al., MRM 2014 4Weingärtner S et al., SCMR 2013
5Giri S et al., JCMR 2009 6Kvernby S et al., JCMR 2014 7Blume U et al., JMRI 2010 8Akçakaya M et al., MRM 2015
9Hamilton JI et al., MRM 2016

MOLLI1 shMOLLI2 SASHA3 SAPPHIRE4

T2prep-SSFP5 QALAS6 IR-T2prep7 SR-T2prep8

Fingerprinting9



T1 mapping: Look–Locker effect

What if we take a shortcut, collecting images throughout the same recovery period?

adapted from mri-q.com

𝑆 = 𝐴 1 − 𝐵𝑒−𝜏/𝑇1
∗

Post-fitting conversion:

𝑇1 ≈ (𝐵/𝐴 − 1)𝑇1
∗



T1 mapping example: MOLLI

Breath-hold, ECG-triggered T1 maps in 11–17 heart beats

Messroghli DR et al. Magn Reson Med 2004

Kellman P, et al. J Cardiovasc Magn Reson 2014



T2 mapping example: T2prep-SSFP

Breath-hold, ECG-triggered T2 maps in 7 heart beats

Giri S et al., J Cardiovasc Magn Reson 2009

T2 prep :

+90°x

180°180°

–90°x

TE /4 TE /2 TE /4

Stores T2 weighting in 

longitudinal magnetization



Multiparameter mapping example: Fingerprinting

Breath-hold, ECG-triggered T1-T2 maps in 16 heart beats

Hamilton JI et al., Magn Reson Med 2017



Multiparameter mapping example: Multitasking

Multidimensional framework for motion-resolved quantitative imaging

•  e.g., free-breathing, non-ECG myocardial 
1
-

2
 mapping

time

cardiac motion

respiration

1
recovery

2
decay

time

Multiple overlapping dynamics…

cardiac

respiration

1
 

recovery

2
 decay

…reorganized as multiple time dimensions (“tasks”)

Christodoulou AG et al., 2018



Multiparameter mapping example: Multitasking

6-D imaging example:

2 spatial dimensions + cardiac motion + respiration + 
1

recovery + 
2
prep duration

2500 

ms

0 ms

75 ms

0 ms

1

2

×
×

×

=

Reconstructs a low-rank/factorizable image tensor

(grows ~linearly, not exponentially)

Processes can be isolated 

after image reconstruction

Produces co-registered, 

synchronized cine maps

…

…

Image tensor Factored basis function representation

Christodoulou AG et al., 2018
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