

Principles of Image Reconstruction

Anthony G. Christodoulou, PhD

Department of Radiological Sciences David Geffen School of Medicine University of California, Los Angeles

M219 05 March 2025

Lecture goals

Goals for today:

- Review and build upon image reconstruction methods you have previously seen ightarrow
 - (Fourier reconstruction, parallel imaging)
- Introduce formal principles of image reconstruction ightarrow
 - Conditions for solution existence
 - Uniqueness of solutions
 - Probabilistic interpretations of data and images
- Increase understanding of advanced techniques (e.g., compressed sensing) •

Continuous domain image reconstruction \bullet \bullet \bullet

System view

Going from arithmetic to algebra

Forward problem: 3(2) = ?Inverse problem: 3x = 6 $x = 6 \div 3 = 2$

Can we do this in MRI?

 $I(\vec{r})$

measured signal $S(\vec{k})$

Measured within finite window

Can we do this in MRI?

An inverse function $\mathcal{T}^{-1}\{\cdot\}$ doesn't always exist!

Feasible solution

Encoding: $\mathcal{T}{I} \rightarrow S$ **Reconstruction:** $Recon{S} \rightarrow \hat{I}$

What if you re-encode \hat{I} ? What does $\mathcal{T}{\{\hat{I}\}}$ equal?

Feasible solution

Fourier encoding: $\mathcal{F}{I} \cdot \text{rect} \to S$ Fourier reconstruction: $\mathcal{F}^{-1}{S} \to \hat{I} = I * \text{sinc}$

What if you re-encode \hat{I} ? What does $\mathcal{T}\{\hat{I}\}$ equal? $\mathcal{T}\{\hat{I}\} = \mathcal{T}\{I * \text{sinc}\} = \mathcal{F}\{I * \text{sinc}\} \cdot \text{rect} = \mathcal{F}\{I\} \cdot \text{rect} = S$

Our reconstruction \hat{I} did not recover the original image I, but \hat{I} is exactly consistent with the measured signal: $\mathcal{T}{\{\hat{I}\}} = S$

 $\hat{I}(\vec{r})$ is a <u>feasible solution</u>

Image reconstruction objectives

Objective of feasible image reconstruction:

Reconstruct an image which is consistent with the data

More formally:

• Find an image \hat{I} such that $\mathcal{T}\{\hat{I}\} = S$

Feasible solution(s)

How many images satisfy $\mathcal{T}{\{\hat{I}\}} = S$?

• Infinite! We can put anything outside our measured region and retain feasibility

Feasible solution

How many images satisfy $\mathcal{T}{\{\hat{I}\}} = S$?

• Infinite! We can put anything outside our measured region and retain feasibility

In the continuous domain, feasible solution is not unique

However! Some feasible solutions are "better" than others

• The solution assuming zeros outside measured region is the *minimum norm solution*

Image reconstruction objectives

Objective of feasible image reconstruction:

• Find an image \hat{I} such that $\mathcal{T}\{\hat{I}\} = S$

With infinite solutions, we need a **second objective** as well, e.g.

- Of all the images \hat{I} such that $\mathcal{T}\{\hat{I}\} = S$, choose the one with minimum norm $\|\hat{I}(\vec{r})\| = \sqrt{\int |I(\vec{r})|^2 d\vec{r}}$
- In other words, pick the "smallest" solution

 $\hat{I} = \arg\min_{I} ||I|| \text{ s.t. } \mathcal{T}\{I\} = S$

"Solution = argument *I* which minimizes ||I|| such that $\mathcal{T}{I} = S$ "

i.e, keep the data you measured and fill the unknown values with zeros!

Feasibility is not everything! (e.g., ringing)

Sometimes a second objective is important

• Additional information/additional goal (e.g., minimize ringing)

Feasibility is not everything! (e.g., noise)

Data are corrupted by noise

"Perfect" noiseless reconstruction is not "feasible"

 $\mathcal{T}{I} + N = S$, where *N* is noise distributed according to $\mathcal{N}(0, \sigma^2)$ $S - \mathcal{T}{I} = N$

Can modify data consistency objective

- Noiseless: Find an image \hat{I} such that $\mathcal{T}\{\hat{I}\} = S$
- Noisy: Find an image \hat{I} which minimizes $\|S \mathcal{T}{\{\hat{I}\}}\|^2 = \|N\|^2$
 - Has maximum likelihood interpretation for additive white Gaussian noise (AWGN)

$$\hat{I} = \arg\min_{I} \left\| S - \mathcal{T}\{\hat{I}\} \right\|^2$$

"Least-squares solution". This will still produce a feasible solution if one exists!

Maximum likelihood interpretation

Each measured data point is a Gaussian RV:

$$S \sim \mathcal{N}(\mathcal{T}\{I\}, \sigma^2) \qquad p(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{|z-\mu|^2}{2\sigma^2}}$$

Likelihood (probability of signal given image):

$$\mathcal{L}(I|S) = p(S|I) = \prod_{N_k} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{|S - \mathcal{T}\{I\}|^2}{2\sigma^2}}$$

Maximum likelihood:

$$\arg\max_{I} \mathcal{L}(I|d) = \arg\max_{I} \prod_{N_{k}} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{-\frac{|S-\mathcal{T}\{I\}|^{2}}{2\sigma^{2}}}$$
$$\arg\max_{I} \mathcal{L}(I|d) = \arg\max_{I} \sum_{N_{k}} \left[\left(\log \frac{1}{1} \right) - \frac{|S-\mathcal{T}\{I\}|^{2}}{2\sigma^{2}} \right]$$

Maximum log-likelihood:

$$\arg\max_{I} \mathcal{L}(I|d) = \arg\max_{I} \sum_{N_{k}} \left[\left(\log \frac{1}{\sqrt{2\pi\sigma^{2}}} \right) - \frac{|S - \mathcal{T}\{I\}|^{2}}{2\sigma^{2}} \right]$$

$$= \arg\min_{I} \sum_{N_{k}} |S - \mathcal{T}\{I\}|^{2} = \arg\min_{I} ||S - \mathcal{T}\{I\}||^{2}$$

Discrete domain image reconstruction $\bigcirc \bigcirc \bigcirc$

Discrete-to-discrete inverse problem

If we accept the resolution limit, we can re-frame the goal of image reconstruction:

• Recover discretized version of $\hat{I} = I * \text{sinc}$ (instead of continuous I)

- \hat{I} is feasible, so **E** still generates exact measured data \bullet
- E^{-1} may now exist, as it is not trying to undo resolution change ullet

Matrix-vector inverse problem

When encoding is a linear operation (like Fourier encoding), it can be <u>described</u> by matrix multiplication... ...it does not have

...it does not have to be <u>implemented</u> by matrix multiplication (e.g. FFT implementation of DFT matrix operation)

When does E^{-1} exist?

When **E** is square (as many data in \mathbf{d} as unknowns in \mathbf{m}):

 E^{-1} exists! Unique solution: $m = E^{-1}d$

(Assuming linearly independent rows/columns)

When does E^{-1} exist?

When E is "tall" (more data than unknowns): Problem is overdetermined

No E^{-1} exists. Unique least-squares solution: $\arg \min_{\mathbf{m}} ||\mathbf{d} - \mathbf{Em}||^2$

(Assuming linearly independent columns)

Least-squares solution

 $\widetilde{\mathbf{m}} = \arg\min_{\mathbf{m}} \|\mathbf{d} - \mathbf{E}\mathbf{m}\|^2$

 $\mathbf{Em} = \mathbf{d}$

 $\mathbf{E}^{H}\mathbf{E}\widetilde{\mathbf{m}} = \mathbf{E}^{H}\mathbf{d} \quad (\mathbf{E}^{H} \text{ is Hermitian/conjugate transpose})$ $(\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}\mathbf{E}\widetilde{\mathbf{m}} = (\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}\mathbf{d}$

 $\widetilde{\mathbf{m}} = (\mathbf{E}^H \mathbf{E})^{-1} \mathbf{E}^H \mathbf{d}$

 $\widetilde{\mathbf{m}}$ will have least possible squared error $\|\mathbf{d} - \mathbf{E}\widetilde{\mathbf{m}}\|^2$ $\widetilde{\mathbf{m}}$ is unique (when E has linearly independent columns) If there is a feasible solution, it is also the least-squares solution: $\|\mathbf{d} - \mathbf{E}\widetilde{\mathbf{m}}\|^2 = 0$

When does E^{-1} exist?

When **E** is "wide" (fewer data than unknowns): Problem is underdetermined (ill-posed)

No E^{-1} exists. Infinite solutions: m s.t. Em = d

(Assuming linearly independent rows)

Underdetermined problem

Some approaches

 $\widehat{\mathbf{m}} = \arg\min_{\mathbf{m}} R(\mathbf{m})$ s.t. $\mathbf{Em} = \mathbf{d}$ (force solution to be feasible)

$$\widehat{\mathbf{m}} = \arg\min_{\mathbf{m}} \|\mathbf{d} - \mathbf{Em}\|^2 + R(\mathbf{m})$$
 (allow deviation from data)

 $R(\mathbf{m})$ "regularizes"/constrains the problem Can <u>enforce other image properties</u> or <u>encourage a probable solution</u> \mathbf{m}

Example: $R(\mathbf{m}) = \|\mathbf{m}\|^2$: prioritize minimum-norm solution

Foundation of regularized image reconstruction (e.g., compressed sensing)

When does E^{-1} exist?

			exists	is unique
d = E Tall	Overdetermined	No E ⁻¹	Feasibility not guaranteed	Least-squares solution is unique
d = E Wide	Underdetermined	No E ⁻¹	Feasible solutions exist	Solution is not unique (infinite sols.)

Linear least-squares reconstruction of noisy data

 $\mathbf{d} = \mathbf{E}\mathbf{m} + \mathbf{n}$

 $\widetilde{\mathbf{m}} = (\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}\mathbf{d}$ $\widetilde{\mathbf{m}} = (\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}(\mathbf{E}\mathbf{m} + \mathbf{n})$ $\widetilde{\mathbf{m}} = (\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}\mathbf{E}\mathbf{m} + (\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}\mathbf{n}$

 $\widetilde{\mathbf{m}} = \mathbf{m} + (\mathbf{E}^H \mathbf{E})^{-1} \mathbf{E}^H \mathbf{n}$

Reconstructed image = desired image + reconstruction of noise E and n determine noise characteristics; m does not

Special case examples $\bullet \bullet \bullet$

DFT as a matrix operation

Discrete Fourier transform:

 $S[k] = \sum I[n]e^{-j2\pi kn/N}$

DFT as a matrix operation

Discrete Fourier transform:

N/2-1 $\sum^{-1} I[n]e^{-j2\pi kn/N}$ S[k] =n = -N/2

 π

0

 $-\pi$

DFT matrix-vector inverse problem

DFT matrix is square and has linearly independent rows/columns, so an inverse exists

DFT matrix-vector inverse problem

DFT matrix is square and has linearly independent rows/columns, so an inverse exists

FFTs (Fast Fourier Transforms) used in implementation, not matrix multiplication

IDFT reconstruction of two averages

 $\mathbf{d} = \mathbf{F}\mathbf{m} + \mathbf{n}$

 $\widetilde{\mathbf{m}} = \mathbf{F}^{-1}\mathbf{d}$ $\widetilde{\mathbf{m}} = \mathbf{F}^{-1}(\mathbf{F}\mathbf{m} + \mathbf{n})$ $\widetilde{\mathbf{m}} = \mathbf{F}^{-1}\mathbf{F}\mathbf{m} + \mathbf{F}^{-1}\mathbf{n}$

 $\widetilde{\mathbf{m}} = \mathbf{m} + \mathbf{F}^{-1}\mathbf{n}$

Reconstructed image = desired image + IDFT of noise

Effect of IDFT on additive white Gaussian noise (AWGN)

AWGN properties in k-space

- Gaussian-distributed
- Zero-mean
- Variance σ_k^2 is constant throughout k-space
- Noise at different samples are independent

AWGN properties in image space after IDFT

- Gaussian-distributed
- Zero-mean
- Variance σ^2 is constant throughout k-space
- Noise at different voxels are independent

 \mathbf{F}^{-1} preserves the basic properties of our noise Equally valid to consider AWGN in k-space or as AWGN in image space

IDFT reconstruction of multiple averages (rescans)

 $\mathbf{d} = \mathbf{E}\mathbf{m} + \mathbf{n} \qquad \qquad \widetilde{\mathbf{m}} = \mathbf{m} + (\mathbf{E}^H \mathbf{E})^{-1} \mathbf{E}^H \mathbf{n}$

$$\begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \end{bmatrix} \mathbf{m} + \begin{bmatrix} \mathbf{n}_1 \\ \mathbf{n}_2 \end{bmatrix}$$

$$\widetilde{\mathbf{m}} = \mathbf{m} + \mathbf{F}^{-1} \left(\frac{\mathbf{n}_1 + \mathbf{n}_2}{2} \right)$$

reduces noise std. dev. by $\sqrt{2}$

$$\widetilde{\mathbf{m}} = \mathbf{m} + \mathbf{F}^{-1} \frac{\sum_t \mathbf{n}_t}{T}$$

reduces noise std. dev. by
$$\sqrt{T}$$

$$\begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \\ \vdots \\ \mathbf{d}_T \end{bmatrix} = \begin{bmatrix} \mathbf{F} \\ \mathbf{F} \\ \vdots \\ \mathbf{F} \end{bmatrix} \mathbf{m} + \begin{bmatrix} \mathbf{n}_1 \\ \mathbf{n}_2 \\ \vdots \\ \mathbf{n}_T \end{bmatrix}$$

Complex coil combination (SENSE, R=1)

 $\mathbf{d} = \mathbf{E}\mathbf{m} + \mathbf{n} \qquad \qquad \widetilde{\mathbf{m}} = \mathbf{m} + (\mathbf{E}^{H}\mathbf{E})^{-1}\mathbf{E}^{H}\mathbf{n}$ $\begin{bmatrix} \mathbf{d}_{1} \\ \mathbf{d}_{2} \\ \vdots \\ \mathbf{d}_{C} \end{bmatrix} = \mathbf{F} \begin{bmatrix} \mathbf{C}_{1} \\ \mathbf{C}_{2} \\ \vdots \\ \mathbf{C}_{L} \end{bmatrix} \mathbf{m} + \mathbf{n} \qquad \qquad \widetilde{\mathbf{m}} = \mathbf{m} + (\mathbf{C}^{H}\mathbf{C})^{-1}\mathbf{C}^{H}\mathbf{F}^{-1}\mathbf{n}$

 $(\mathbf{C}^{H}\mathbf{C})^{-1}\mathbf{C}^{H}\mathbf{x}$ is voxelwise phase correction & scaling $\frac{1}{\sum_{\ell}|C_{\ell}(\vec{r})|^{2}}\sum_{\ell}C_{\ell}^{*}(\vec{r})x_{\ell}(\vec{r}) \rightarrow \text{Noise std. dev} \propto \frac{1}{\sqrt{\sum_{\ell}|C_{\ell}(\vec{r})|^{2}}}$ Noise still Gaussian and still independent from voxel to voxel, but noise amplification \propto^{-1} collective coil sensitivity $\sqrt{\sum_{\ell}|C_{\ell}(\vec{r})|^{2}}$

Parallel imaging (SENSE, R>1)

$$\mathbf{d} = \mathbf{E}\mathbf{m} + \mathbf{n} \qquad \qquad \qquad \widetilde{\mathbf{m}} = \mathbf{m} + (\mathbf{E}^H \mathbf{E})^{-1} \mathbf{E}^H \mathbf{n}$$

$$\begin{bmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \\ \vdots \\ \mathbf{d}_C \end{bmatrix} = \mathbf{\Omega} \mathbf{F} \begin{bmatrix} \mathbf{C}_1 \\ \mathbf{C}_2 \\ \vdots \\ \mathbf{C}_L \end{bmatrix} \mathbf{m} + \mathbf{n} \qquad \widetilde{\mathbf{m}} = \mathbf{m} + (\mathbf{C}^H \mathbf{F}^H \mathbf{\Omega}^H \mathbf{\Omega} \mathbf{F} \mathbf{C})^{-1} \mathbf{C}^H (\mathbf{\Omega} \mathbf{F})^H \mathbf{n}$$

 $\mathbf{F}^H \mathbf{\Omega}^H \mathbf{n}$ is aliased noise "image" \rightarrow noise pattern repeats in space!

Noise still Gaussian, but no longer independent Noise amplification depends on Ω and C together (g-factor)

Takeaways from specific examples

• For linear reconstructions,

noise properties depend on the reconstruction operator, not on the image $\widetilde{\mathbf{m}} = \mathbf{m} + (\mathbf{E}^H \mathbf{E})^{-1} \mathbf{E}^H \mathbf{n}$

- Fourier reconstruction preserves i.i.d. properties of AWGN
 F⁻¹n is still i.i.d. AWGN
- For other reconstruction operators, image-space noise may not be i.i.d. Be careful during post-processing!

Constrained image reconstruction $\bigcirc \bigcirc \bigcirc$

Recall: Underdetermined problem

Some approaches

 $\widehat{\mathbf{m}} = \arg\min_{\mathbf{m}} R(\mathbf{m})$ s.t. $\mathbf{Em} = \mathbf{d}$ (force solution to be feasible)

 $\widehat{\mathbf{m}} = \arg\min_{\mathbf{m}} \|\mathbf{d} - \mathbf{Em}\|^2 + R(\mathbf{m}) \qquad \text{(allow deviation from data)}$

Regularizer $R(\mathbf{m})$ provides a <u>second objective</u> beyond the data term

- Can "break the tie" between infinite feasible solutions
- Can denoise (when feasibility is not the goal)
- Constrains solution to leverage <u>other knowledge</u> about images

Probabilistic interpretation

Least-squares minimization gave *maximum likelihood* (ML) solution:

$$\hat{V}_{\text{ML}} = \arg\max_{I} p(S|I) = \arg\max_{I} \log p(S|I) = \arg\min_{I} ||S - \mathcal{T}\{I\}||^2$$

What if we want the most probable image given the data (maximum a posteriori [MAP] estimate)

Can define regularization term R(I) to express the prior probability of an image, e.g., $R(I) = -\log p(I)$

If p(I) is constant (uniform distribution; all images equally likely), then MAP solution reduces to ML solution

What makes an image "more probable"?

When it conforms to certain properties:

- Phase properties \rightarrow partial Fourier imaging
- Sparsity properties \rightarrow compressed sensing \bullet
- Rank properties \rightarrow low-rank imaging \bullet
- Learned properties \rightarrow artificial intelligence/machine learning
- Et cetera

 $R(\cdot)$ expresses our <u>prior knowledge</u> about what images can/should look like Squared-norm data term expresses posterior knowledge (observed data)

Regularized least squares is not the only way to constrain image reconstruction, but it is still a useful framework for understanding other image reconstruction algorithms too

How to solve a regularized least-squares problem?

Best algorithm for solving $\widehat{\mathbf{m}} = \arg \min_{\mathbf{m}} ||\mathbf{d} - \mathbf{Em}||^2 + R(\mathbf{m})$ depends on both \mathbf{E} and $R(\cdot)$

Many algorithms use variations of alternating minimization

Two forms of knowledge

- 1. Observations from data (small $\|\mathbf{d} \mathbf{Em}\|^2$)
- 2. Known image properties (small $R(\mathbf{m})$)

Iterate over two steps enforcing each objective:

- 1. Enforce data consistency ($\mathbf{Em} \approx \mathbf{d}$)
- 2. Impose desired image properties (reduce $R(\mathbf{m})$)

These reconstruction operators are not necessarily linear!

- Image noise may not be i.i.d Gaussian
- Image noise may depend on the image itself

Exception: when $R(\mathbf{m})$ is a squared 2-norm, reconstruction operator is linear and produces Gaussian noise (but not necessarily i.i.d.)

Partial-Fourier imaging: Phase properties

Fourier conjugate symmetry

Real images are conjugate symmetric ($S[\vec{k}] = S^*[-\vec{k}]$), so only ½ k-space would need sampling

Full k-space

Conjugate synthesis from $\frac{1}{2}$ k-space $S[-\vec{k}] = S^*[\vec{k}]$

Phase smoothness

MR images are not typically real-valued, but we can exploit smooth or known phase

Magnitude

Phase

Partial-Fourier imaging: Sampling

Asymmetric coverage

with enough of central **k**-space to estimate smooth phase

Partial-Fourier imaging: Reconstruction

1. Estimate phase from symmetric portion of acquired **k**-space

- 2. Use phase estimate to synthesize missing data
- Margosian/Homodyne (Margosian et al. *SMRM* 1985; Noll et al. *IEEE-TMI* 1991)
 - Filter and divide image by estimated phase (make it real), then perform conjugate synthesis

Partial-Fourier imaging: Reconstruction

- POCS: Projection onto convex sets (Lindskog et al. SMRM 1989)
 - Iteratively solve for an image which:
 - Matches acquired k-space samples
 - Matches estimated phase in image space
 - A simple form of alternating minimization

Compressed sensing: Transform sparsity

Images are sparse in these domains (many small/zero values)

<u>Figures adapted from</u> Lustig M et al., *IEEE Signal Process Mag* 2008

Compressed sensing: L1 regularization

Find smallest $\|\Psi m\|_1$ that produces feasible solution

 $> m_1$

Compressed sensing: Sampling

<u>Figures adapted from</u> Lustig M et al., *IEEE Signal Process Mag* 2008

Compressed sensing: Sampling

<u>Figures adapted from</u> Lustig M et al., *IEEE Signal Process Mag* 2008

Compressed sensing: Example transforms

- No transformation
 - Suitable when image itself is sparse
 - e.g., angiograms (no background contrast)
- Finite difference transformation (total variation)
 - Suitable when edge map is sparse
 - e.g., brain images (discrete tissue compartments)
- Wavelet transformation (~multiscale edge information)
 - Suitable for wide range of medical and natural images
 - e.g., MR images in general

m is sparse

 ∇m is sparse

 Ψm is sparse

Two goals:

- 1. Impose sparsity
- 2. Maintain data consistency

Find the image with sparsest representation that also fits the data

k-space domain

image domain

wavelet domain

Two goals:

- Impose sparsity 1.
- 2. Maintain data consistency

Find the image with sparsest representation that also fits the data

Impose sparsity (e.g., threshold)

Two goals:

- 1. Impose sparsity
- 2. Maintain data consistency

Find the image with sparsest representation that also fits the data

Two goals:

- Impose sparsity 1.
- 2. Maintain data consistency

Find the image with sparsest representation that also fits the data

Impose sparsity (e.g., threshold)

Two goals:

- Impose sparsity 1.
- 2. Maintain data consistency

Find the image with sparsest representation that also fits the data

After several iterations, a balance between both goals is achieved

Please fill out the evaluation form! (see QR code)

