MRI Systems III: Gradients

M219 - Principles and Applications of MRI Kyung Sung, Ph.D.

1/27/2025

Course Overview

- 2025 course schedule
 - https://mrrl.ucla.edu/pages/m219_2025
- Assignments
 - Homework #1 due on 1/29

- TA office hours, Mon 4-6pm
- Office hours, Fri 10-11am

Bloch Equations - Lab Frame

$$\frac{d\vec{\mathbf{M}}}{dt} = \vec{\mathbf{M}} \times \gamma \vec{\mathbf{B}} - \frac{M_x \hat{\mathbf{i}} + M_y \hat{\mathbf{j}}}{T_2} - \frac{(M_z - M_0) \, \hat{\mathbf{k}}}{T_1}$$
 Precession Transverse Relaxation Relaxation

- Precession
 - Magnitude of M unchanged
 - Phase (rotation) of M changes due to B
- Relaxation
 - T₁ changes are slow O(100ms)
 - T₂ changes are fast O(10ms)
 - Magnitude of M can be ZERO

Free Precession in the Rotating Frame

$$\frac{\partial \vec{M}_{rot}}{\partial t} = -\frac{M_{x'}\vec{i}' + M_{y'}\vec{j}'}{T_2} - \underbrace{\frac{(M_{z'} - M_0)\vec{k}'}{T_1}}_{\text{Longitudinal Relaxation}}$$

- No precession
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, separable ODEs!

Forced Precession in the Rot. Frame with Relaxation

$$\frac{\partial \vec{M}_{rot}}{\partial t} = \gamma \vec{M}_{rot} \times \vec{B}_{eff} - \frac{M_{x'}\vec{i'} + M_{y'}\vec{j'}}{T_2} - \frac{(M_{z'} - M_0)\vec{k'}}{T_1}$$
$$\vec{B}_{eff} = B_1^e(t)\hat{i'}$$

- B1 induced nutation
- T₁ and T₂ Relaxation
- Drop the diffusion term
- System or first order, linear, coupled PDEs!
- When does this equation apply?

Free? Forced? Relaxation?

- We've considered all combinations of:
 - Free and forced precession
 - With and without relaxation
 - Laboratory and rotating frames
- Which one's concern M219 the most?
 - Free precession in the rotating frame with relaxation
 - Forced precession in the rotating frame without relaxation.
- We can, in fact, simulate all of them...


```
% now we need to apply the Bloch equation to solve the forced precession f
M=zeros(3,length(time_ticks)+1,4000);
M will store the initial M vector and the M vector after each of the 1000
for j=1:4000 %% we are considering each of the off-resonance frequencies i
    fq=freq(j);%frequency in Hz
    B_eff=[B1; zeros(1,length(B1)); fq*ones(1,length(B1))/gamma];
    M(:,1,j)=[0;0;1];%%initialization of the magnetizations. Every spin, re
    for k=1:length(B1)
        rot_axis=squeeze(B_eff(:,k));
        axis_len=sqrt(rot_axis(1)^2+rot_axis(3)^2);
        angle=atan(rot_axis(3)/rot_axis(1))*180/pi;
        if rot_axis(1)<0</pre>
            angle=angle+180;
        end
        temp=Ry(-angle, squeeze(M(:,k,j)));
        temp=Rx(axis_len*gamma*360/1e6,temp); % Theta is in degrees
        M(:,k+1,j)=Ry(angle,temp);
    end
```

end

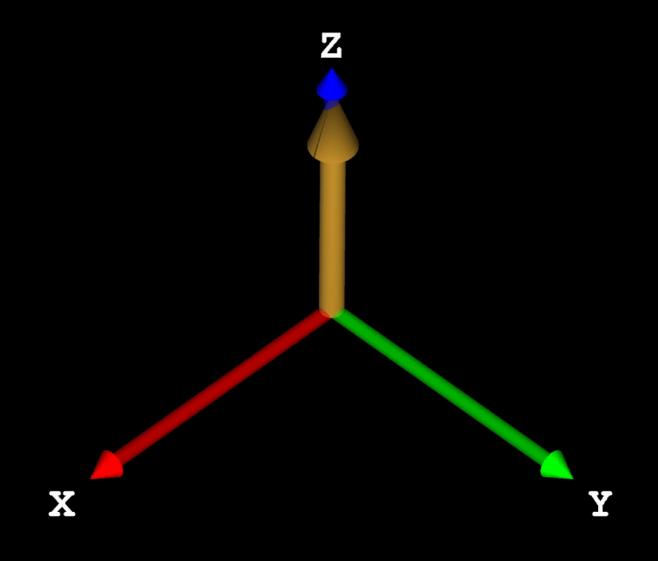
Types of RF Pulses

- Excitation Pulses
- Inversion Pulses
- Refocusing Pulses
- Saturation Pulses
- Spectrally Selective Pulses
- Spectral-spatial Pulses
- Adiabatic Pulses

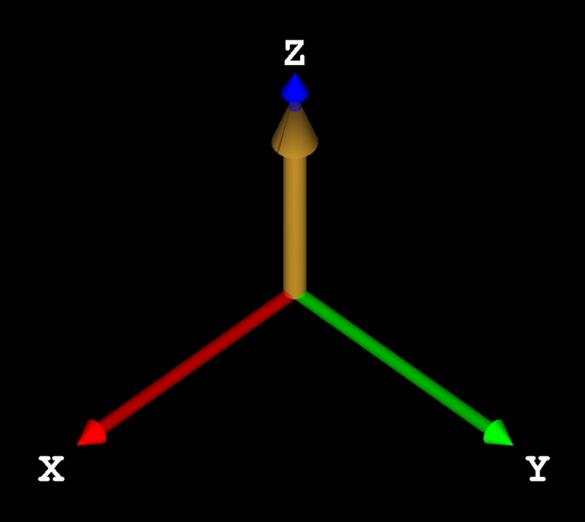
Excitation Pulses

- Tip M_z into the transverse plane
- Typically 200µs to 5ms
- Non-uniform across slice thickness
 - Imperfect slice profile
- Non-uniform within slice
 - Termed B₁ inhomogeneity
 - Non-uniform signal intensity across FOV

90° Excitation Pulse



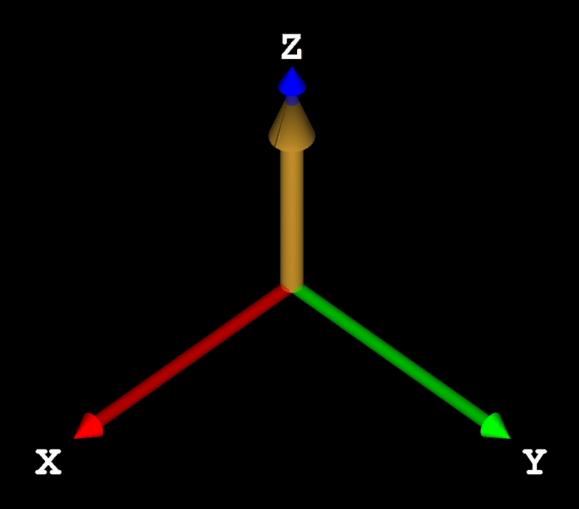
Small Flip Angle Excitation



Inversion Pulses

- Typically, 180° RF Pulse
 - non-180° that still results in -Mz
- Invert Mz to -Mz
 - Ideally produces no M_{XY}
- Hard Pulse
 - Constant RF amplitude
 - Typically non-selective
- Soft (Amplitude Modulated) Pulse
 - Frequency selective
 - Spatially Selective

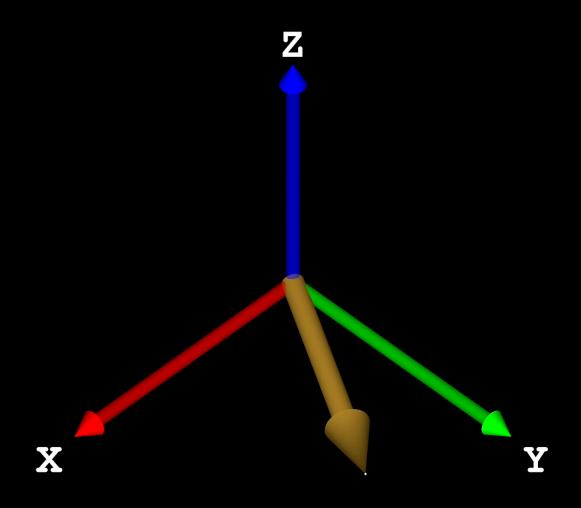
Inversion Pulses



Refocusing Pulses

- Typically, 180° RF Pulse
 - Provides optimally refocused M_{XY}
 - Largest spin echo signal
- non-180°
 - Partial refocusing
 - Lower SAR
 - Multiple non-180° produce stimulated echoes
- Refocus spin dephasing due to
 - imaging gradients
 - local magnetic field inhomogeneity
 - magnetic susceptibility variation
 - chemical shift

Refocusing Pulses



Gradient Fields & Spins

Gradients

Gradients are a special kind of inhomogeneous field whose z-component varies linearly along a specific direction called the gradient direction.

$$(\overrightarrow{G} \cdot \overrightarrow{r}) \ \hat{k} = (G_x \cdot x + G_y \cdot y + G_z \cdot z) \ \hat{k}$$

$$\overrightarrow{B}(\overrightarrow{r}, t) = (B_0 + \overrightarrow{G}(t) \cdot \overrightarrow{r}) \ \hat{k}$$

$$B_G(\overrightarrow{r}, t)$$

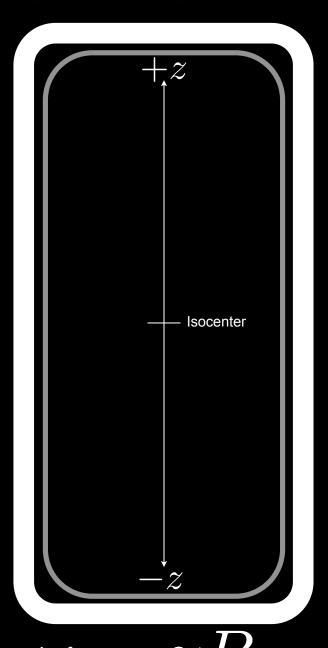
Each gradient coil can be activated independently and simultaneously

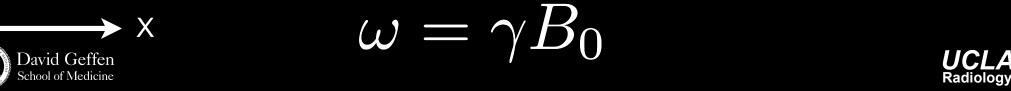
Gradient Induced B-Fields

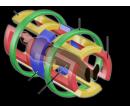
$$B_G(x) = G_x x$$
 x-gradient $B_G(y) = G_y y$ y-gradient $B_G(z) = G_z z$ z-gradient $G_{x(t)}$

The magnetic field at a position depends on the magnitude of the applied gradient.

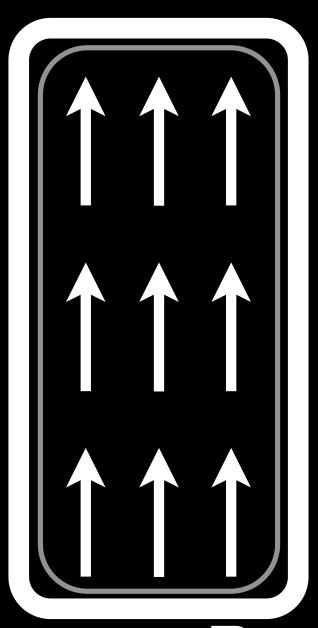
No Gradients Turned On







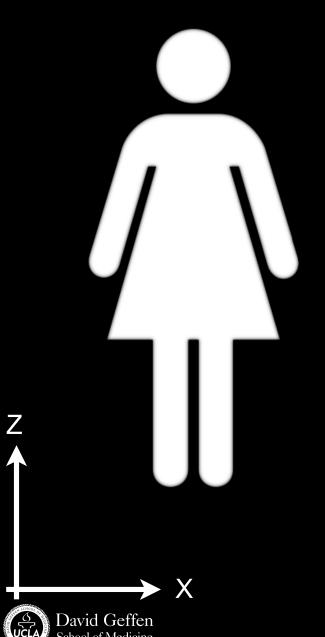
No Gradients Turned On

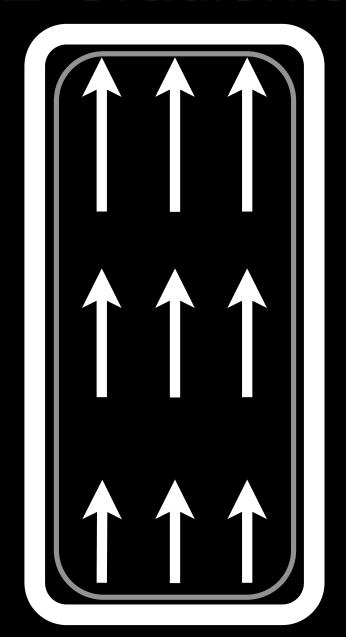


$$B_0$$

Length of arrow indicates strength of local field.

Z-Gradients



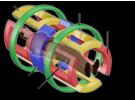


$$B_0 + \delta B_0$$

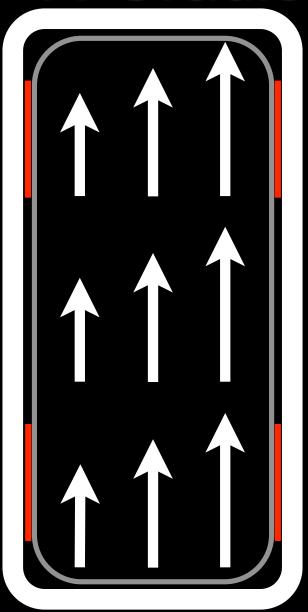
$$B_0$$

$$B_0 - \delta B_0$$

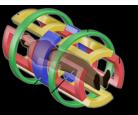
$$\omega(x,z) = \gamma(B_0 + G_z \cdot z)$$



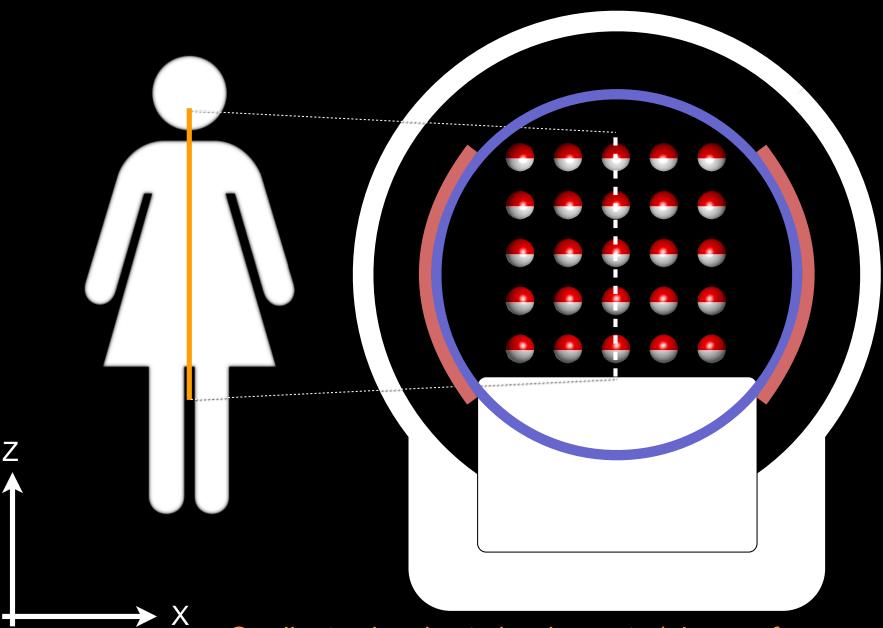
X-Gradients



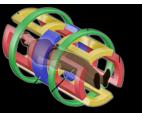
$$\star_{\mathsf{X}} \omega(x,z) = \gamma (B_0 + G_x \cdot x + G_z \cdot z)$$



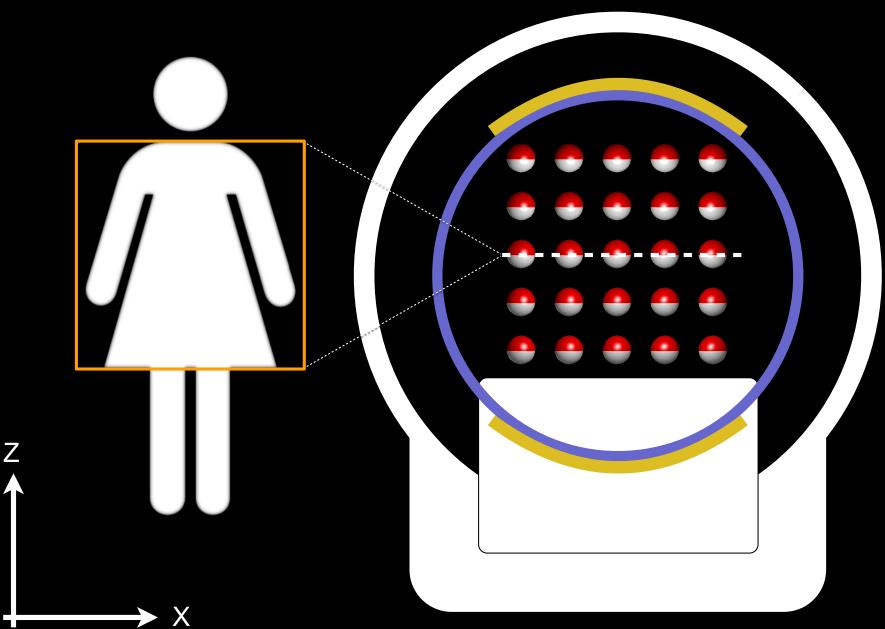
Spins and X-Gradients

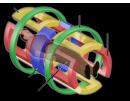


Gradients give rise to isochromats (planes of common frequency).

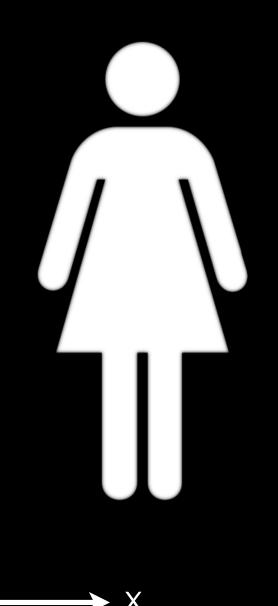


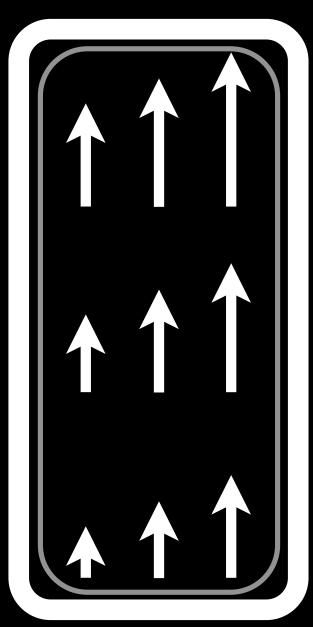
Spins and Y-Gradients

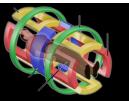




How do we do this?

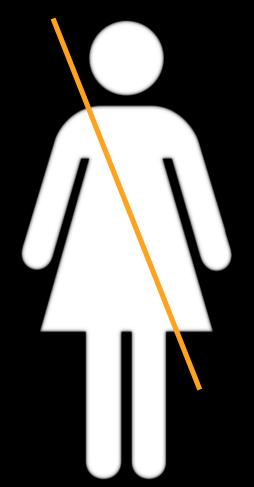


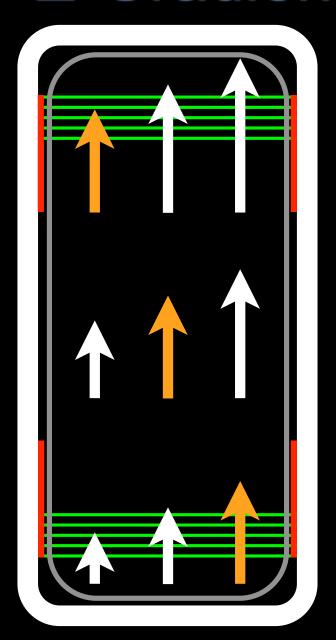




X+Z-Gradients

Possible Slice



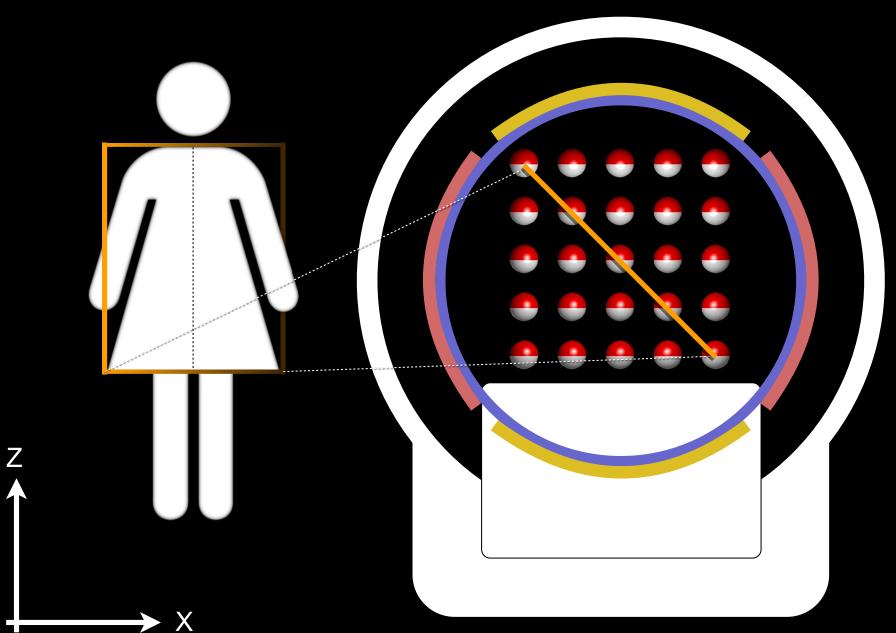


Spin Isochromat

$$\omega(x,z) = \gamma(B_0 + G_x \cdot x + G_z \cdot z)$$

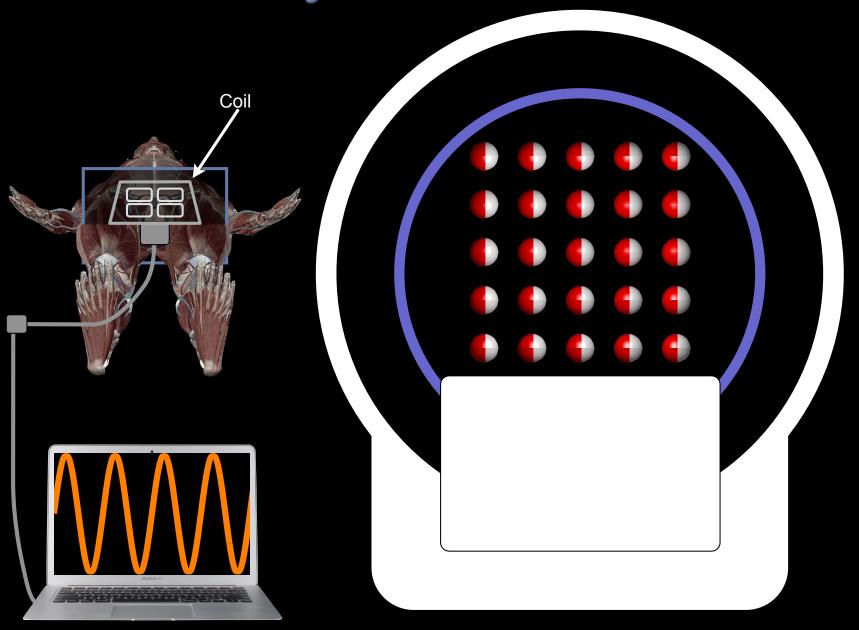


Spins and X- & Y-Gradients

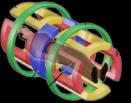


How do we measure M_{xy}?

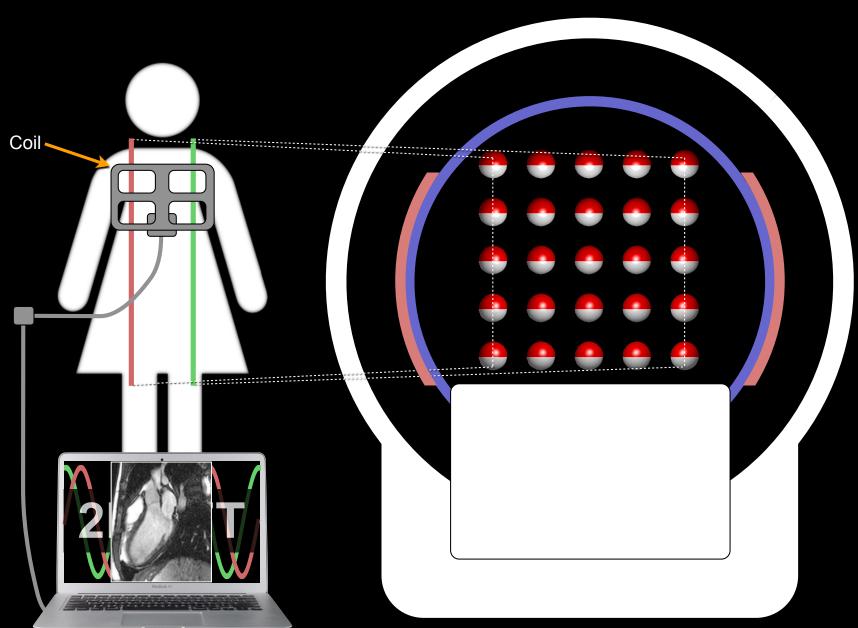
Faraday's Law of Induction



Precessing spins induce a current in a nearby coil.



Faraday's Law of Induction



The trick is to encode spatial information and image contrast in the echo.

Basic Detection Principles

Magnetic Flux Through The Coil – Reciprocity

$$\Phi\left(t\right) = \int_{object} \vec{B_r}\left(\vec{r}\right) \cdot \vec{M}\left(\vec{r},t\right) d\vec{r}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
 Eqn. 5.38 Magnetic Flux Sensitivity Magnetization

What happens if the coil has poor sensitivity?

What happens if the coil's sensitivity is perpendicular to the bulk magnetization? How would that happen?

Basic Detection Principles

We get here

$$S(t) = \int_{\text{object}} M_{xy}(r,0)e^{-i\gamma\Delta B(r)t}dr$$

From Here

$$V\left(t\right) = -\frac{\partial\Phi\left(t\right)}{\partial t} = -\frac{\partial}{\partial t}\int_{object}\vec{B}\left(\vec{r}\right)\cdot\vec{M}\left(\vec{r},t\right)d\vec{r}$$

with 25 pages of Math!

Basic Detection Principles

$$S(t) = \int_{\text{object}} M_{xy}(r,0)e^{-i\gamma\Delta B(r)t}dr$$

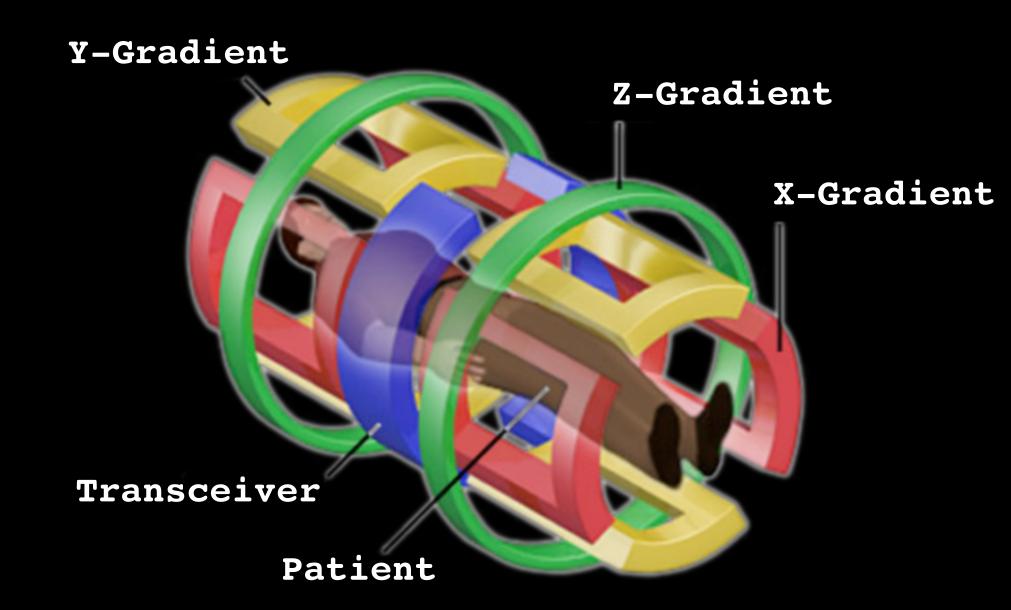
Observations

Detected signal is the vector sum of all transverse magnetizations in the "rotating frame" within the imaging volume.

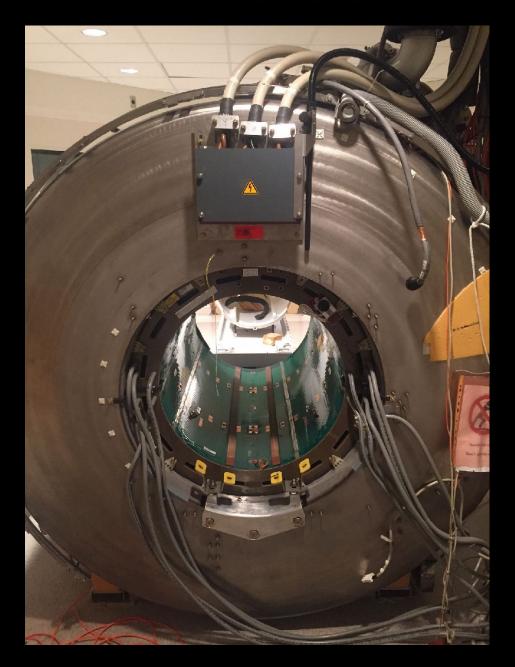
The Larmor frequency precession (Lab frame rotation) is necessary for detection, although only the baseband signal matters for imaging

To the Board

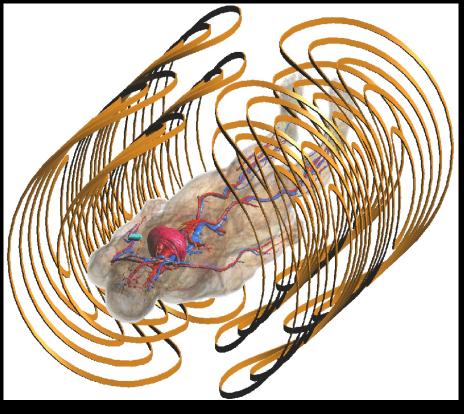
Gradient Hardware

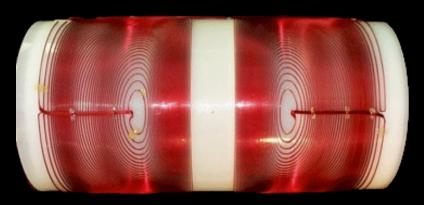


Gradient Hardware

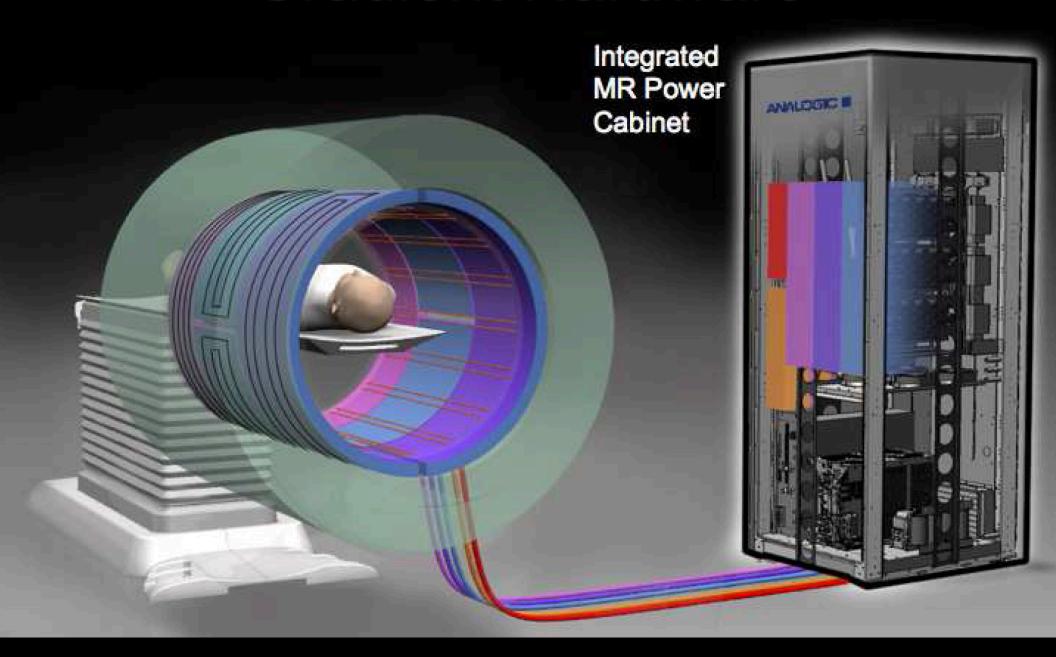


Gradient Hardware





Gradient Hardware



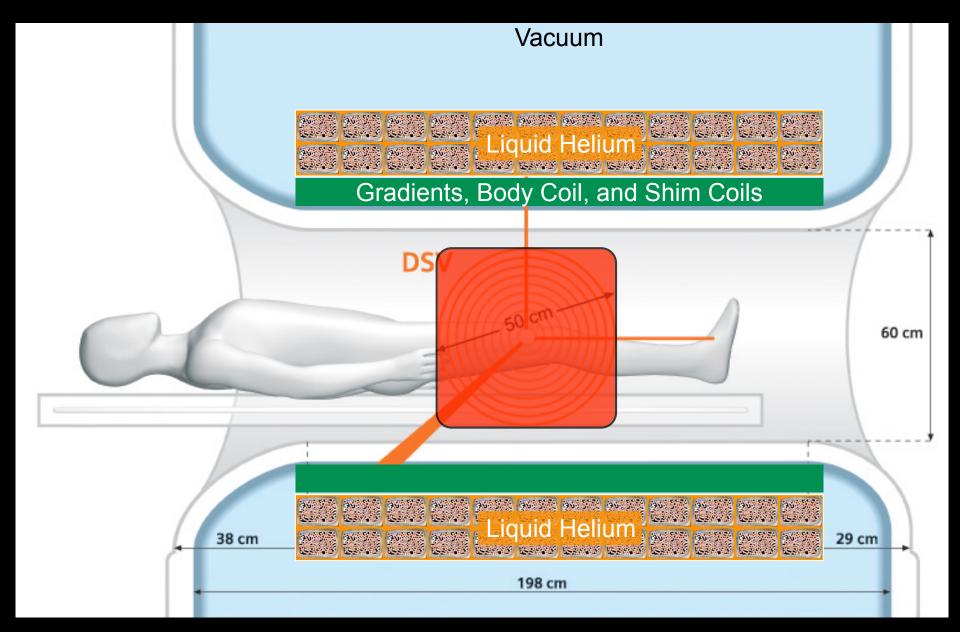
Gradients

- Primary function
 - Encode spatial information
 - Slice selection
 - Phase encoding
 - Frequency encoding
- Secondary functions
 - Sensitize/de-sensitize images to motion
 - Minimize artifacts (crushers & spoilers)
 - Magnetization re-phasing in slice selection
 - Magnetization de-phasing during readout

Gradients

- Gradients are a:
 - Small
 - <5G/cm (<0.0075T @ edge of 30cm FOV)
 - Spatially varying
 - Linear gradients
 - Adds to B₀ only in Z-direction
 - Time varying
 - Slewrate Max. ~150-200mT/m/ms
 - Magnetic field
 - Adds/Subtracts to the B₀ field
 - Parallel to B₀
- Gradients are NOT:
 - Fields perpendicular to B₀

Gradients



Gradients are "linear" over ~40-50cm on each axis.

B-Field Assumptions in MRI

B₀-field is:

- Perfectly uniform over space.
 - "B₀ homogeneity"
- Perfectly stable with time.

B₁-field is:

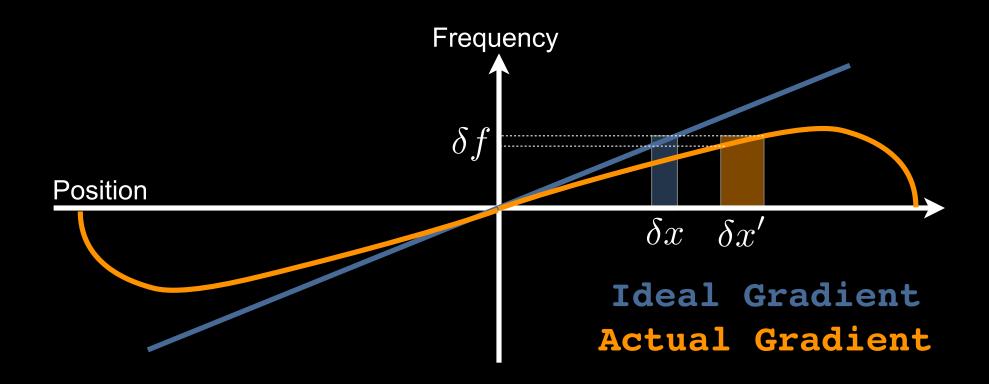
- Perfectly uniform over space.
 - "B₁ homogeneity"
- Temporally modulated exactly as specified.

Gradient Fields are:

- Perfectly linear over space.
 - "Gradient linearity"
- Temporally modulated exactly as specified

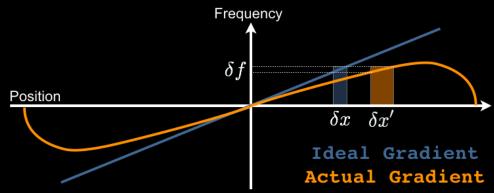
Imperfections of Gradient Fields

- Gradient coils aren't perfect
 - Non-linearity
 - Eddy Currents
 - Maxwell terms (Concomitant fields)
 - But they are small
 - Much smaller than B₀
 - We will ignore them...but they exist...



Ideally spatial position is linearly related to frequency.

- Basic <u>assumption</u> in MRI is that the z-component of the B-field created by the gradient coils varies <u>linearly</u> with x, y, or z over the FOV.
- Higher gradient amplitudes and slewrates can be achieved by compromising on spatial linearity.
- Gradient non-linearity causes geometric and intensity distortions.



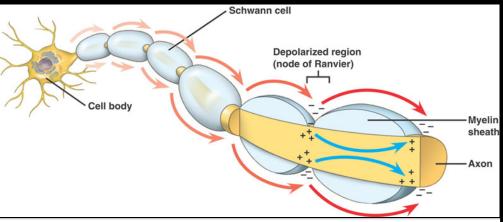
Solution

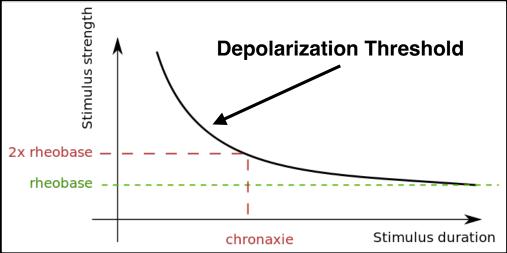
- Improve hardware and linearity!
- Pay attention to FOV!
- Image warping parameters that are system specific and applied to all images.
 - Works well qualitatively.
 - Can be problematic quantitatively.

Gradient Safety

Gradient Safety

- Noise
- Peripheral nerve stimulation (PNS)





Solution: De-rate gradient slew rates, but this increases scan time.

Time-varying gradients induce mechanical vibrations and PNS.

Solution:

MRI Gradient Noise

Gradient Noise

- Jet take-off @ 25m
- Car horn @ 1m
- Live rock band
- MRI gradients full load
- Garbage disposal
- MRI gradients basic load
- Radio or TV Audio

~150 dB (eardrum rupture)

~110 dB (borderline painful)

~100 dB

≤99 dB

~80 dB

≤75 dB

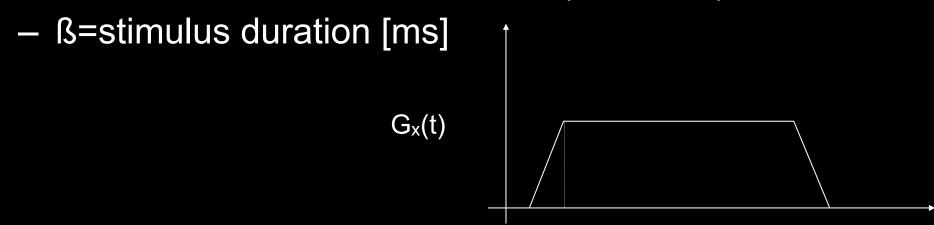
~70dB

Gradient Safety - G_{Max}

- G_{max} limitations:
 - Concern: None known.
 - B₀ is already pretty big.
 - Conventional Gradients
 - $G_{Max} = 4 \text{ to } 5G/cm (=50mT/m)$
 - Cutting Edge Gradients
 - $G_{Max} = 8G/cm (=80mT/m)$
 - Connectome Gradients
 - $G_{Max} = 30G/cm (=300mT/m)$
 - Consider the ∆B contributed by a gradient...

Gradient Slewrate

- Gradient slew rate
 - T/m/s (or G/cm/s)
 - dG/dt Rate of change of gradient amplitude
- Slew rate limited by dB/dt:
 - Concern: Peripheral Nerve Stimulation
 - Regulated by FDA
 - Normal Mode: dB/dt=16 T/s•(1+0.36/ß)
 - First Level Mode: dB/dt=20 T/s•(1+0.36/ß)



 Δt

UCLA Radiology

Questions?

- Related reading materials
 - Nishimura Chap 5

Kyung Sung, Ph.D.

KSung@mednet.ucla.edu

http://mrrl.ucla.edu/sunglab