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Class Business

• Final project abstract due on 6/8 Friday 

• Final project presentation on 6/7 
(9-12pm) and 6/8 (3-6pm) 

• Guest Lecturers:  
- Machine Learning in Neurovascular 

Imaging by Dr. Fabien Scalzo (5/31)  
- Peng Hu (6/5)



Today’s Topics

• Motivation 

• Background  
- Reconstruction Domain 

- Compressibility or Sparsity 

- Incoherent Measurement 

- Reconstruction 

• CS-MRI Examples 

• Current Research
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2D Image Reconstruction

kx

ky

Frequency-space 
(k-space)

Time for one line = 10ms
# lines = 256

Total imaging time?
~2.5 sec
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Spatial Resolution

1 mm 2 mm 4 mm

ky

kx

ky

kx

ky

kx

Image resolution increases as higher spatial 
frequencies are acquired

3D Imaging
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k-space Sampling
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Time for one line (or one dot) = 10ms
# lines = 256 x 256

Total imaging time? ~20 min
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MRI Scanner MR Image

Pulse Sequence 
TR, TE, Flip angle, 
Voxel size, k-space 
trajectory, ...

Object Information 
ρ, T1, T2, v, D, ...

Physiologic Change 
Tissue Perfusion 
Blood Oxygenation 
Many more...

k-space

Image  
Reconstruction



Rapid MR Imaging

• Improving speed of MRI is great for many 
MRI applications because it can: 
- increase overall throughputs 
- reduce imaging costs per patient 
- reduce motion artifacts 
- improve temporal resolution for dynamic imaging 
- many more... 

• Reducing acquired k-space data is one 
common way but creates aliasing artifacts

k-space Sampling
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k-space Sampling

Fourier
Transform

k-space Image

k-space Sampling

Fourier
Transform

k-space Image

Can we estimate missing k-space data?
YES, we can!



Fast MRI Techniques

• Many reconstruction methods minimize 
aliasing artifacts by exploiting information 
redundancy (or prior knowledge) 
- Parallel imaging 

- Compressed sensing

Donoho, IEEE TIT, 2006
Candes et al., Inverse Problems, 2007

What is Compressed 
Sensing?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis
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What is Compressed 
Sensing?

• CS is about acquiring a sparse signal in a most 
efficient way (subsampling) with the help of an 
incoherent projecting basis

x

=

Φy

4 Equations 
8 Unknowns

Sparse or 
Compressible

Incoherent
Measurement

We still can find 8 unknowns!

Math Background
L0-norm (|x|0): a number of non-zero coefficients

L1-norm (|x|1): a sum of absolute values of  
                        coefficients

0
1
2
3

x
0
1
0
0

x
1
1
-2
3

x

L2-norm (|x|2): a sum of squared values of  
                        coefficients
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Simple Example
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1) This should be “sparse”

2) This should be “smart”

3) Reconstruction 
should be “feasible”

Compressed Sensing MRI

Inverse Fourier  
Transform Φ-1

k-space Image

x = Φ-1y 



Compressed Sensing MRI
k-space Image

x = Φ-1y 

Inverse Fourier  
Transform Φ-1

Compressed Sensing MRI

x = Φ-1y 

Inverse Fourier  
Transform Φ-1

k-space Image

Choose the most compressible
image matching data 
(systematic optimization)



Systematic Optimization

• Assuming sparsity and incoherence are provided, an 
image can be recovered with highly undersampled 
data by:

minimize |Ψx|1, subject to  y = Φx 
Randomly Undersampled 
Fourier Transform

Sparse Transform 
(e.g., Wavelet Transform)

Systematic Optimization

• Assuming sparsity and incoherence are provided, an 
image can be recovered with highly undersampled 
data by:

minimize |Ψx|1, subject to  y = Φx 

• We can relax the minimization by using 
regularization,

minimize F(x): |y - Φx|2  +  λ|Ψx|1
Regularization Parameter

2

Randomly Undersampled 
Fourier Transform

Sparse Transform 
(e.g., Wavelet Transform)



• Three key elements of Compressed Sensing:

Compressibility

Incoherence

Nonlinear Reconstruction

Three Tenets of CS

Data  
Consistency

Compressibility 
Constraint

minimize F(x): |y - Φx|2  +  R(x)2

Defining Reconstruction Domain
2D (x-y)

x

y



2D (x-y) Dynamic (x-y-f)
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Single Coil vs. Coil Combined

Defining Reconstruction Domain



Compressibility Constraint
minimize F(x): |y - Φx|2  +  R(x)

Compressibility 
Constraint

2

• R(x) = λ|x|1                (Identity Transform) 

• R(x) = λ|Ψx|1                      (Wavelet Transform)

• R(x) = λH(x)               (Total Variation) 

• R(x) = λ|x|*                 (Rank or Nuclear Norm) 

• Many more…

Wavelet Transform

• Natural images are compressible using 
wavelet transforms

Image Compression Standard: JPEG2000 

Images from Wikipedia



Wavelet Transform

10% Largest 
Coefficients

Wavelet 
Transform

Inverse 
Wavelet 

Transform

MR images are mostly compressible using wavelet 
transforms

MR images are mostly compressible using wavelet 
transforms

Wavelet Transform

10% Largest 
Coefficients

Wavelet 
Transform



Total Variation
H(x) =

X
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Limitations / Considerations

• Define reconstruction domain and exploit information 
redundancy (or prior knowledge) 
- More apparent when MRI is repeated on a same 

object (e.g., repeating with different time points, flip 
angles, TEs, etc) 

• Be aware of underlying assumptions of each 
constraint 
- Wavelet / TV denoising 

• Consistent compressibility is desirable to easily 
anticipate reconstruction quality

Limitations / Considerations

• High vs. low computational complexities 
- Wavelet transform 

- Total Variation 

- Nuclear norm 

• Multiple compressibility constraints vs. single 
constraint 
- Reconstruction quality 

- Reconstruction stability



Incoherent Measurements

• Incoherent measurement provides “perfect” reconstruction  
- Random projection bases are incoherent when the 

number of measurement is greater than 3S (sparsity)

minimize F(x): |y - Φx|2  +  R(x)
Incoherent  
Measurement

2

Complete Fourier Matrix

Incomplete Fourier Matrix 

Random 
Frequency Selection

Incoherent Measurements - 
Random Frequency Selection

• How do we randomly select frequencies? 
- Uniform / variable density random 

undersampling 

- Golden angle radial undersampling 

- Variable density spiral undersampling 

- Many more… 



CS Reconstruction
• Assuming sparsity and incoherence are provided, an 

image can be recovered with highly undersampled 
data by:

minimize |Ψx|1, subject to  y = Φx 

• We can relax the minimization by using regularization,

    minimize F(x): |y - Φx|2  +  λ|Ψx|1  

• When λ carefully chosen, unconstrained minimization 
becomes identical to original minimization

Regularization Parameter
2

Randomly Undersampled 
Fourier Transform

Sparse Transform 
(e.g., Wavelet Transform)

• How can we solve this? 

    Minimize{ f(x) = |y - Φx|2  +  λ|Ψx|1 } 

• Review of convex optimization: 

– A choice for search direction (Δx) can be different (e.g. gradient decent 
method, Newton's method, etc)

2

Solving L1 Minimization



CS-MRI Reconstruction
minimize F(x): |y - Φx|2  +  R(x)

• Minimizing F(x)  is non-trivial since R(x) is not differentiable 
- Linear programming is challenging due to high 

computational complexity 

• Simple gradient-based algorithms have been developed: 
- Re-weighted L1 / FOCUSS 

- IST / IHT / AMP / FISTA 

- Split Bregman / ADMM

I.F. Gorodnitsky, et al., J. Electroencephalog. Clinical Neurophysiol. 1995 Daubechies I, 
et al. Commun. Pure Appl. Math. 2004

Elad M, et al. in Proc. SPIE 2007
T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2009

2

To the board ...



CS-MRI Reconstruction

x: Imagey: k-space

w = Ψx

w: Wavelet

|y - Φx|2 < Ɛ

L1-norm
minimize |Ψx|1

CS-MRI Reconstruction

x: Imagey: k-space w: Wavelet

x = Ψ-1wy’ = FT(x)

minimize F(x): |y - Φx|2  +  R(x)



Summary So Far…

Data  
Consistency

Compressibility 
Constraint

minimize F(x): |y - Φx|2  +  R(x)
2

Reconstruction Domain 
Compressibility Constraint 
Incoherent Measurement 

Reconstruction

Cardiac Function

• Reconstruction Domain:  
x (dynamic 2D MRI in x-f space) 

• Compressibility Constraint: 
|x|1: sparsity in x-f

• Incoherent Measurement: variable density random 
undersampling 

minimize F(x): |y - Φx|2 + λ|x|1 

• Reconstruction: non-linear CG L1 / FOCUSS
2

M. Lustig, et al., ISMRM 2006 
H. Jung, et al., Physics in Medicine and Biology 2007 

H. Jung, et al., MRM 2009



Cardiac Function (k-t FOCUSS)

H. Jung, et al., MRM 2009

k-t BLAST

k-t FOCUSS

k-t FOCUSS 
with ME/MC

Cardiac Function (k-t SLR)

• Compressibility Constraint:

S.G. Lingala, et al., IEEE TMI 2011

x-y x-t x-f x-KLT

|x|⇤ =
X

i

(⌃i,i) x = U⌃V ⇤



Cardiac Function (k-t ISD)
• Compressibility Constraint: 

W: Diagonal weighting matrix (known support in x-f)

• Incoherent Measurement: variable density random 
undersampling 

minimize F(x): |y - Φx|2 + λ|Wx|1 

• Reconstruction: FOCUSS
2

D. Liang, et al., MRM 2012

Phase Contrast
• Reconstruction Domain:  

x1 (flow-compensated) 
x2 (flow-encoded)

• Compressibility Constraint: 
H(xi) : Total Variation 
|x1 - x2|1 : Complex Difference

• Incoherent Measurement: uniform random undersampling 

minimize F(x1): |y - Φx1|2 + λ1H(x1)  + λ2|x1 - x2|1 

   minimize F(x2): |y - Φx2|2 + λ1H(x2)  + λ2|x1 - x2|1 

• Reconstruction: Split Bregman

2

2

Y Kwak. et al., MRM 2012



Phase Contrast (Complex Difference)

Y Kwak. et al., MRM 2012

High-Frequency Subband CS

Original Parallel Imaging (R=5.8)

L1 SPIRiT (R=10.7) 
Variable Density PD

HiSub CS  
(R=10.7)

Matrix size = 360 X 360 X 240 
Spatial resolution = 0.9 X 0.9 X 0.6 mm



High-Frequency Subband CS
Original Parallel Imaging (R=5.8)

L1 SPIRiT (R=10.7)  
Variable Density PD

HiSub CS (R=10.7)

7 min 30 sec

42 sec

K. Sung, et al. MRM 2013

Liver DCE Imaging - LCAMP: Location 
Constrained Approximate Message Passing

Matrix size = 260 X 202 X 60 
Temporal res = 4 sec and # temporal phases = 8

32 channel torso coil
12x acceleration K. Sung, et al. MRM 2013



YS. Han, et al. MRM 2018

Deep Learning with Domain Adaptation

Deep Learning with Domain Adaptation

YS. Han, et al. MRM 2018



Deep Generative Adversarial Neural Networks for 
Compressive Sensing (GANCS) MRI

M. Mardani, et al. IEEE TMI 2018

Fully
Sampled GAN-CS CS

5x acceleration

State-of-the-Art CS/DL-MRI

• Reducing possible reconstruction failure 
- Improve sparse transformations  

- Develop k-space undersampling schemes 

- Develop and evaluate CS/DL reconstruction 
algorithms 

• Integrating CS/DL with parallel imaging 
- Develop compatible undersampling patterns 

- Develop reconstruction methods



State-of-the-Art CS/DL-MRI

• Methods to evaluate CS/DL reconstructed images 
- RMSE / SSIM / Mutual Information 

• Reducing CS/DL reconstruction time 
- Reduce computational complexity 

- Parallelize reconstruction problems 

• Developing stable reconstruction algorithms 
- Minimize / avoid the number of regularization 

parameters

Summary

• CS-MRI has a lot of potential but is not a magic box! 

• Always remember key components of CS:  

Reconstruction Domain 

Compressibility (or Sparsity) 

Incoherent Measurement 

Reconstruction



Thanks!

Kyung Sung, PhD 

ksung@mednet.ucla.edu 

http://kyungs.bol.ucla.edu


