M229: Advanced Topics in Magnetic Resonance Imaging

Spring 2019: 4 Units
Room: 300 Medical Plaza, B500
Lectures: Tue/Thu 10:00 AM – 11:50 AM
https://mrrl.ucla.edu/pages/m229

Instructors: Holden Wu, PhD (holdenwu@mednet.ucla.edu)
Kyung Sung, PhD (ksung@mednet.ucla.edu)

Office: 300 UCLA Medical Plaza, B119

Course Description: This course will explore recent MRI developments that 1) have had high impact on the field, 2) involve novel pulse sequence design or image reconstruction, and/or 3) enable imaging of anatomy or function in a way that surpasses what is currently possible with any other modality. Simulations and programming exercises in MATLAB will provide hands-on experience for students. Students will propose and carry out a final project along current directions of advanced MRI research.

Prerequisites: This course is a follow-up to M219 (Principles and Applications of MRI) and is meant for students interested in pursuing research related to the development or translation of new MRI techniques.

Course Schedule:

1. **April 2,** Tue
 Introduction – Advanced MRI Techniques and Applications
2. **April 4,** Thu
 RF Pulse Design – Adiabatic Pulses
3. **April 5,** Fri
 RF Pulse Design – Excitation k-space / MATLAB Demo

 [Homework 1]
4. **April 11,** Thu
 Pulse Sequences – SSFP / GRE / SPGR
5. **April 16,** Tue
 Pulse Sequences – RARE & Bloch Simulation (MATLAB demo)
6. **April 18,** Thu
 Pulse Sequences – Extended Phase Graphs and Simulation

 [Homework 2]
7. **April 23,** Tue
 Project Discussion
8. **April 25,** Thu
 Fast Imaging – EPI, PROPELLER
9. **April 30,** Tue
 Fast Imaging – Non-Cartesian Sampling I
10. **May 2,** Thu
 Fast Imaging – Non-Cartesian Sampling II
11. **May 7,** Tue
 Managing Motion in MRI
12. **May 9,** Thu
 MR Temperature Mapping

 [ISMRM 5/11 – 5/17]
13. **May 21,** Tue
 Image Reconstruction – Partial k-space
14. **May 23,** Thu
 Image Reconstruction – Parallel Imaging I
15. **May 28,** Tue
 Image Reconstruction – Parallel Imaging II / k-t Reconstruction
16. **May 30,** Thu
 Image Reconstruction – Compressed Sensing
17. **June 4,** Tue
 Advanced Application Topic – Guest Lecturer: TBD
18. **June 6,** Thu
 Advanced Application Topic – Guest Lecturer: TBD

 [Final Project Presentation]
Course Assignments:

- Reading book chapters and research papers
- Programming assignments x2 (MATLAB)
- Final project presentation (1 page abstract and 10+10 min oral presentation)

Grading Structure:

- Participation (10%), Homework (30%), Final Project (60%), Extra Points.

Reading List:

- Research papers as assigned