Compressed Sensing & Artificial Intelligence

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2019.05.30

Class Business

- Final project abstract due on 6/7 Friday
- Final project presentation on 6/13 (9-3pm)
- Guest Lecturers:
 - Dr. Debiao Li (6/4)
 - Dr. Xiaodong Zhong (6/6)

Today's Topics

- Compressed Sensing
 - Compressibility or Sparsity
 - Incoherent Measurement
 - Reconstruction
- CS-MRI Examples

Fast MRI Techniques

- Many reconstruction methods minimize aliasing artifacts by exploiting <u>information</u> <u>redundancy</u> (or <u>prior knowledge</u>)
 - Parallel imaging

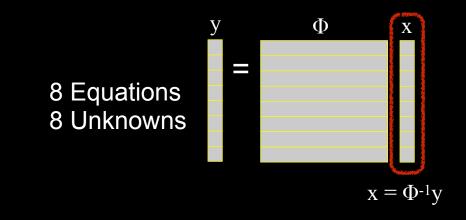
Donoho, IEEE TIT, 2006 Candes et al., Inverse Problems, 2007

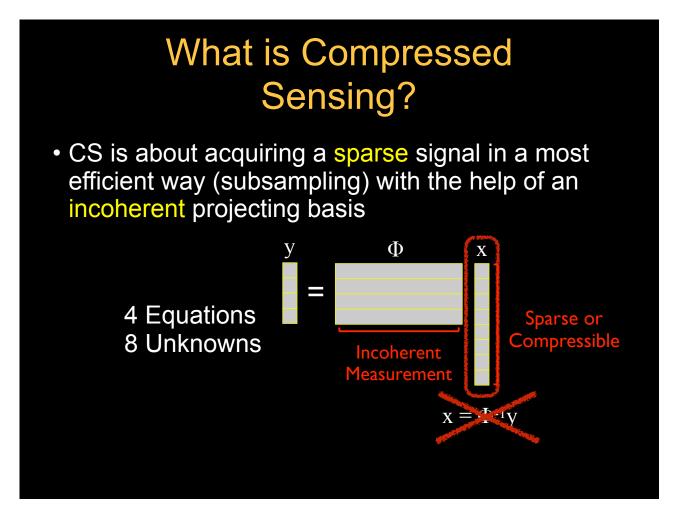
What is Compressed Sensing?

• CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis

What is Compressed Sensing?

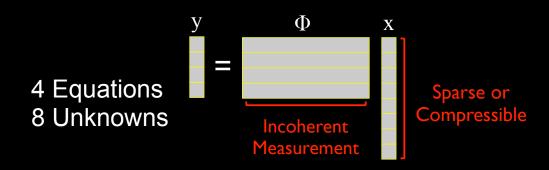
 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis





What is Compressed Sensing?

 CS is about acquiring a sparse signal in a most efficient way (subsampling) with the help of an incoherent projecting basis



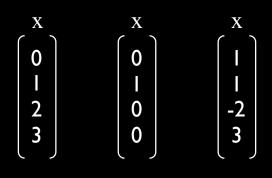
We still can find 8 unknowns!

Math Background

L0-norm $(|x|_0)$: a number of non-zero coefficients

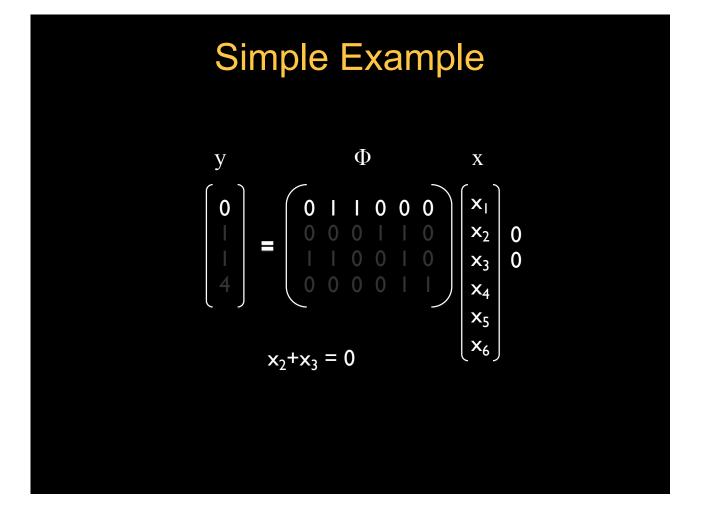
L1-norm (|x|₁): a sum of absolute values of coefficients

L2-norm (|x|₂): a sum of squared values of coefficients

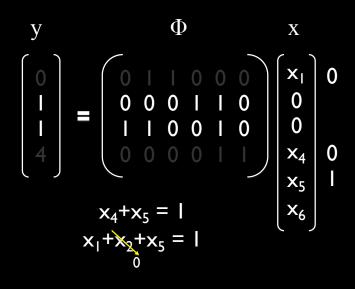


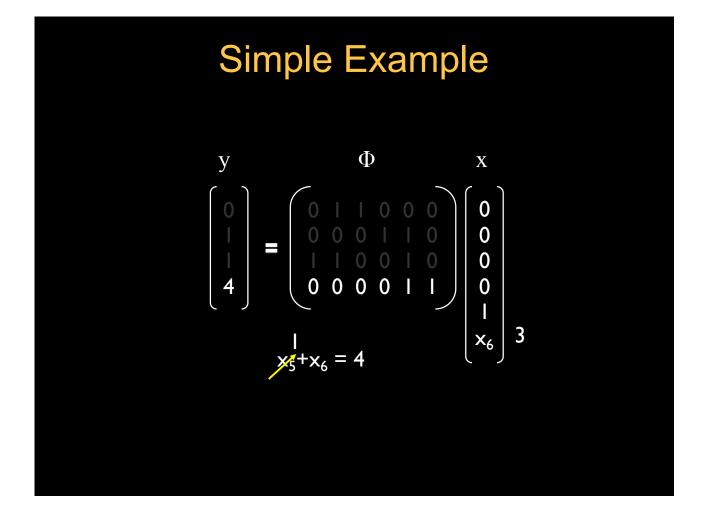
Simple Example

y
$$\Phi$$
 x
 $\begin{bmatrix} 0\\ 1\\ 1\\ 4\\ \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 0\\ 1 & 1 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 & 1\\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{bmatrix}$

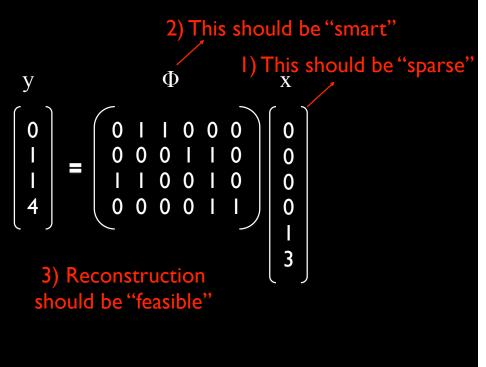


Simple Example



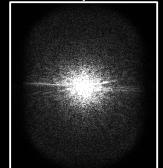


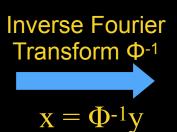
Simple Example

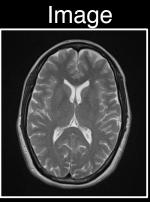


Compressed Sensing MRI

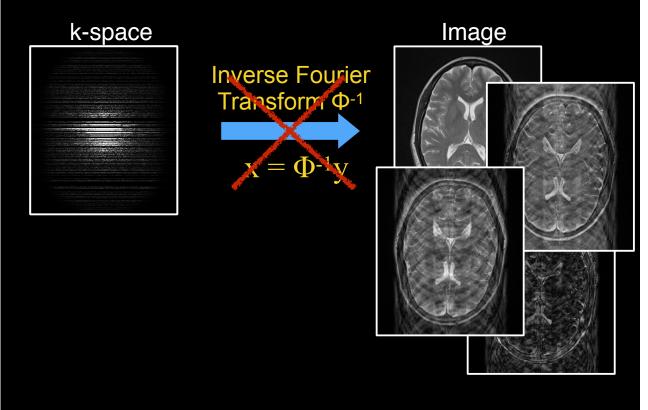
k-space

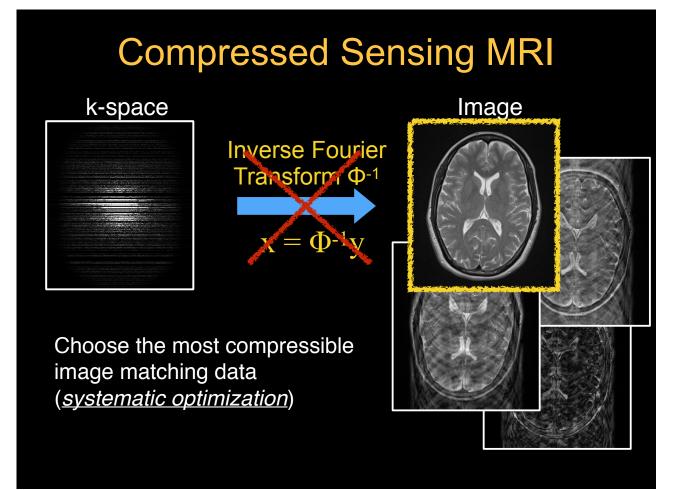






Compressed Sensing MRI





Systematic Optimization

Assuming <u>sparsity</u> and <u>incoherence</u> are provided, an igodolimage can be recovered with highly undersampled data by:

minimize $\Psi x I_1$, subject to $y = \Phi x$ Sparse Transform Randomly Undersampled (e.g., Wavelet Transform)

Fourier Transform

Systematic Optimization Assuming <u>sparsity</u> and <u>incoherence</u> are provided, an image can be recovered with highly undersampled data by:

minimize $\Psi x I_1$, subject to $y = \Phi x$ Sparse TransformRandomly Undersampled(e.g., Wavelet Transform)Fourier Transform

• We can relax the minimization by using regularization,

minimize F(x): $|y - \Phi x|_2^2 + \lambda \Psi x|_1$ Regularization Parameter

Three Tenets of CS

• Three key elements of Compressed Sensing:

Compressibility

Incoherence

Nonlinear Reconstruction

Compressibility Constraint

minimize F(x): $|y - \Phi x|^2 + R(x)$ Compressibility Constraint

- Many more...

• $R(x) = \lambda |x|_1$ (*Identity Transform*)

• $R(x) = \lambda |\Psi x|_1$ (*Wavelet Transform*)

• $R(x) = \lambda H(x)$ (*Total Variation*)

• $R(x) = \lambda |x|_{*}$ (*Rank or Nuclear Norm*)

Wavelet Transform

 Natural images are compressible using wavelet transforms

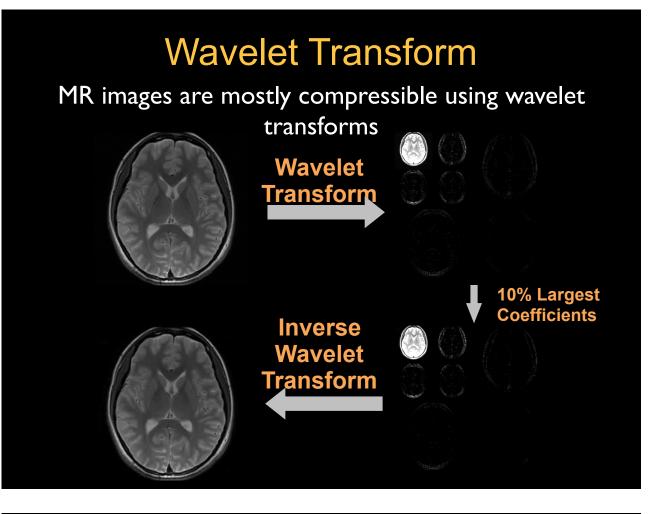
Image Compression Standard: JPEG2000

Uncompressed 378 KiB 1:1

JPEG JFIF 11.2 KiB 1:33.65 IJG q 30

JPEG 2000 11.2 KiB 1:33.65

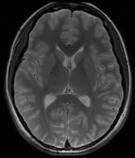
Images from Wikipedia

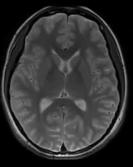


Wavelet Transform

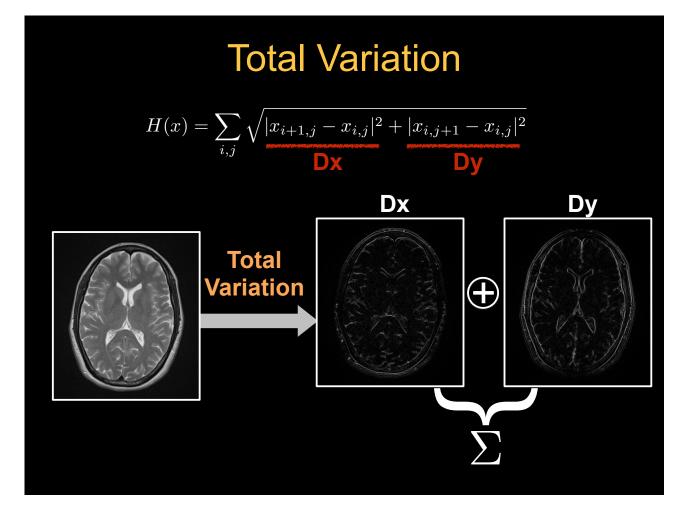
MR images are mostly compressible using wavelet transforms

 c_{0}





10% Largest Coefficients



Total Variation

Original

Noisy

Limitations / Considerations

- Define reconstruction domain and exploit information redundancy (or prior knowledge)
 - More apparent when MRI is repeated on a same object (e.g., repeating with different time points, flip angles, TEs, etc)
- Be aware of underlying assumptions of each constraint
 - Wavelet / TV denoising
- Consistent compressibility is desirable to easily anticipate reconstruction quality

Limitations / Considerations

- High vs. low computational complexities
 - Wavelet transform
 - Total Variation
 - Nuclear norm
- Multiple compressibility constraints vs. single constraint
 - Reconstruction quality
 - Reconstruction stability

CS Reconstruction

 Assuming <u>sparsity</u> and <u>incoherence</u> are provided, an image can be recovered with highly undersampled data by:

minimize $(\Psi x I_1, \text{ subject to } y = \Phi x$

Sparse Transform (e.g., Wavelet Transform)

Randomly Undersampled Fourier Transform

• We can relax the minimization by using regularization,

minimize F(x): $|y - \Phi x|_2^2 + \lambda \Psi x|_1$

Regularization Parameter

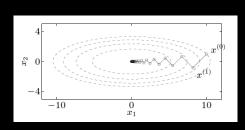
• When λ carefully chosen, unconstrained minimization becomes identical to original minimization

Solving L1 Minimization

• How can we solve this?

$$Minimize\{ f(x) = |y - \Phi x|_2^2 + \lambda |\Psi x|_1 \}$$

• Review of convex optimization:



General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.
- until stopping criterion is satisfied.

– A choice for search direction (Δx) can be different (e.g. gradient decent method, Newton's method, etc)

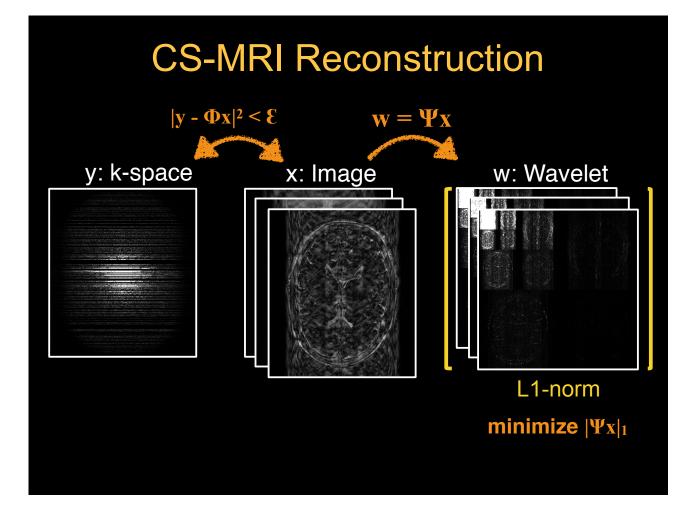
CS-MRI Reconstruction

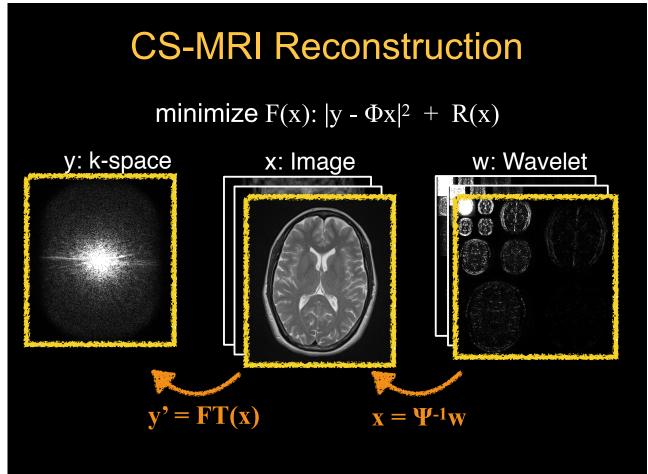
minimize F(x): $|y - \Phi x|_2^2 + R(x)$

- Minimizing F(x) is non-trivial since R(x) is not differentiable
 - Linear programming is challenging due to high computational complexity
- Simple gradient-based algorithms have been developed:
 - Re-weighted L1 / FOCUSS
 - IST / IHT / AMP / FISTA
 - Split Bregman / ADMM

I.F. Gorodnitsky, et al., J. Electroencephalog. Clinical Neurophysiol. 1995 Daubechies I, et al. Commun. Pure Appl. Math. 2004 Elad M, et al. in Proc. SPIE 2007 T. Goldstein, S. Osher, SIAM J. Imaging Sci. 2009

To the board ...





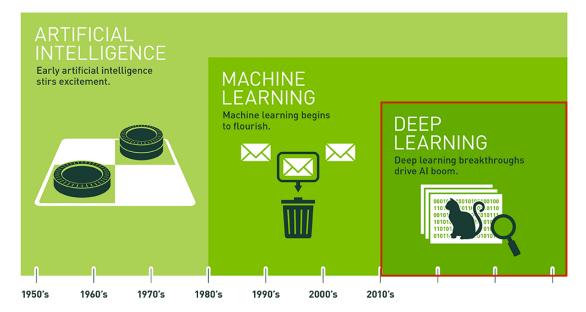
Summary for the second secon

State-of-the-Art CS-MRI

- Reducing possible reconstruction failure
 - Improve sparse transformations
 - Develop k-space undersampling schemes
- Integrating CS with DL/parallel imaging
 - Develop compatible undersampling patterns
 - Develop reconstruction methods

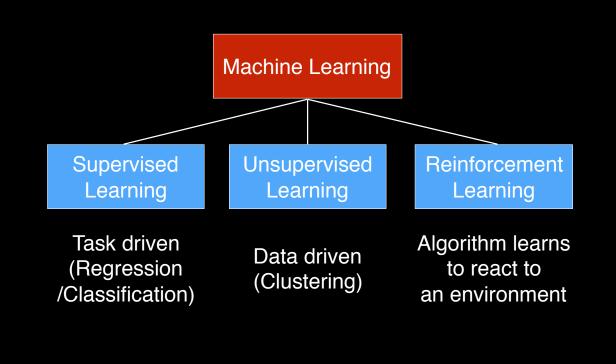
State-of-the-Art CS-MRI

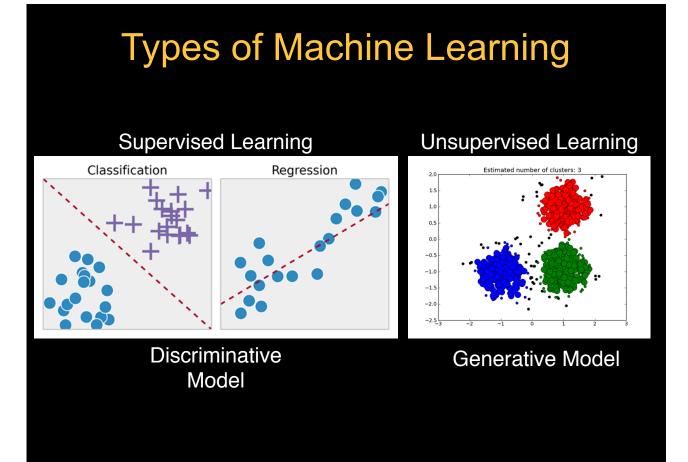
- Methods to evaluate CS reconstructed images
 - RMSE / SSIM / Mutual Information
- Reducing reconstruction time
 - Reduce computational complexity
 - Parallelize reconstruction problems
- Developing stable reconstruction algorithms
 - Minimize / avoid the number of regularization parameters

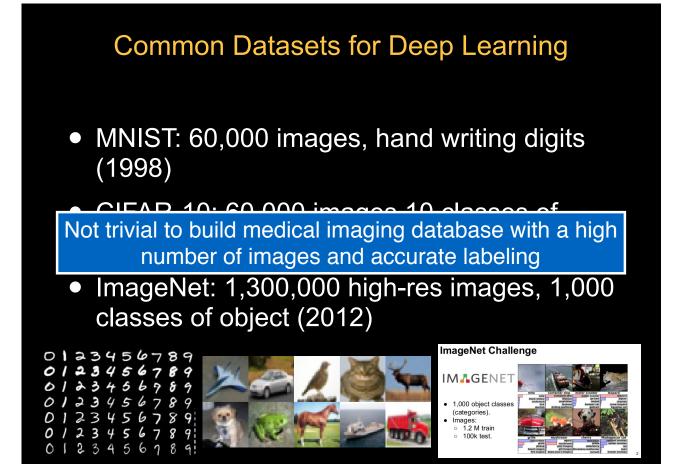


Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Types of Machine Learning







Key Design Considerations

- 1. Define clear clinical questions
- 2. Design deep learning models
 Supervised vs. unsupervised learning
 Descriptive vs. generative modeling
- 3. Consider potential limitations
 - Limited amount of training and testing data
 - -Uncertainties in labeling

MRI Applications

- Regression
 - Prediction of a continuous variable from input
- Segmentation
- Classification
- Reconstruction
- Generative (create new images based on current)

Summary

- CS-MRI has a lot of potential but is not a magic box!
- Always remember key components of CS:

<u>Reconstruction Domain</u> <u>Compressibility (or Sparsity)</u> <u>Incoherent Measurement</u> <u>Reconstruction</u>

Thanks!

Kyung Sung, PhD ksung@mednet.ucla.edu http://kyungs.bol.ucla.edu