Image Reconstruction Partial k-space Reconstruction

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2020.05.14

Class Business

- Homework 2 grading is done
 - 15 ±1.0
- Project proposal comments were out
- Office hours
 - Instructors: Fri 10-12pm
 email beforehand would be helpful

Today's Topics

- Fourier transform symmetries
 - Odd and Even functions
- Motivation for partial k-space recon
- Partial k-space recon methods
 - Direct method (Homodyne)
 - Iterative method (POCS)
- MATLAB code demo

Even and Odd Functions

function f is even (or symmetric) when

$$f(x) = f(-x)$$

function f is odd (or antisymmetric) when

$$f(x) = -f(-x)$$

Even and Odd Functions

 Any function can be written as a sum of even and odd functions

$$f(x) = \frac{1}{2} [f(x) + f(-x) - f(-x) + f(x)]$$

$$= \frac{1}{2} [f(x) + f(-x)] + \frac{1}{2} [f(x) - f(-x)]$$

$$f_e(x)$$

$$f_o(x)$$

Even and Odd Functions

 The integral of the product of odd and even functions is zero

$$\int_{-\infty}^{\infty} f_e(x) f_o(x) dx$$

$$= \int_{-\infty}^{0} f_e(x)f_o(x)dx + \int_{0}^{\infty} f_e(x)f_o(x)dx$$

$$= \int_{0}^{\infty} [f_e(-x)f_o(-x)dx + f_e(x)f_o(x)]dx$$

$$F(f) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi xf} dx$$

$$F(f) = \int_{-\infty}^{\infty} f(x)\cos(2\pi x f)dx - j\int_{-\infty}^{\infty} f(x)\sin(2\pi x f)dx$$

$$F(f) = \int_{-\infty}^{\infty} f_e(x) \cos(2\pi x f) dx + \int_{-\infty}^{\infty} f_o(x) \cos(2\pi x f) dx$$

$$-j\int_{-\infty}^{\infty} f_c(x)\sin(2\pi x f)dx - j\int_{-\infty}^{\infty} f_o(x)\sin(2\pi x f)dx$$

$$F(f) = \int_{-\infty}^{\infty} f_e(x) \cos(2\pi x f) dx - j \int_{-\infty}^{\infty} f_o(x) \sin(2\pi x f) dx$$

$$F(f) = F_e(f) + F_o(f)$$

real & even function?

real & odd function?

even function?

odd function?

 Fourier transform of even part (of a real function) is real

$$FT\{f_e(x)\} = Re\{F_e(f)\}\$$

Fourier transform of even part is even

$$FT\{f_e(x)\} = F_e(f) = F_e(-f)$$

 Fourier transform of odd part (of a real function) is imaginary

$$FT\{f_o(x)\} = Im\{F_o(f)\}\$$

Fourier transform of odd part is odd

$$FT\{f_o(x)\} = F_o(f) = -F_o(-f)$$

Hermitian Symmetry

 We can summarize all four symmetries possessed by Fourier transform of a real function

To the board ...

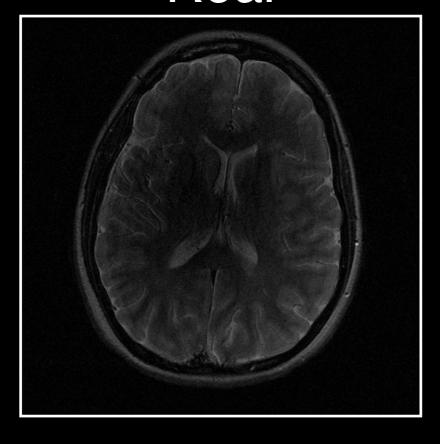
Motivation

- MR images depict the spin density as a function of position
 - If this is true, only half of k-space data will need to be collected
 - Uncollected data could be synthesized by conjugate symmetry
- However, MR images are not real-valued!
 - Partial k-space reconstruction requires some type of phase correction

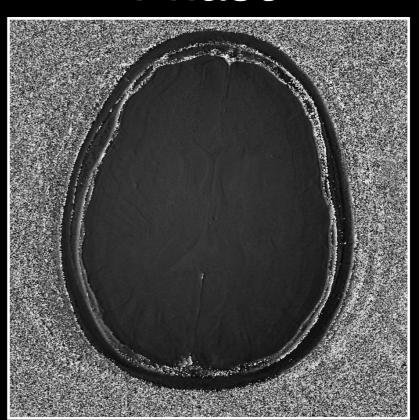
Magnitude



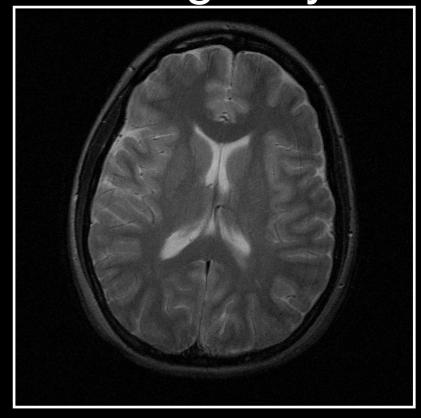
Real



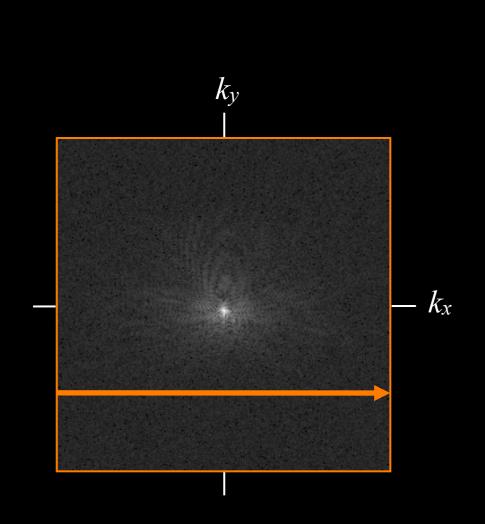
Phase

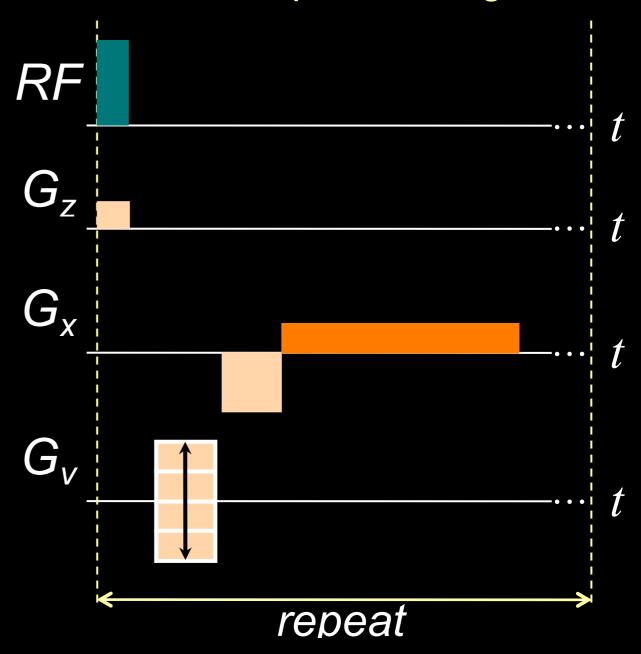


Imaginary

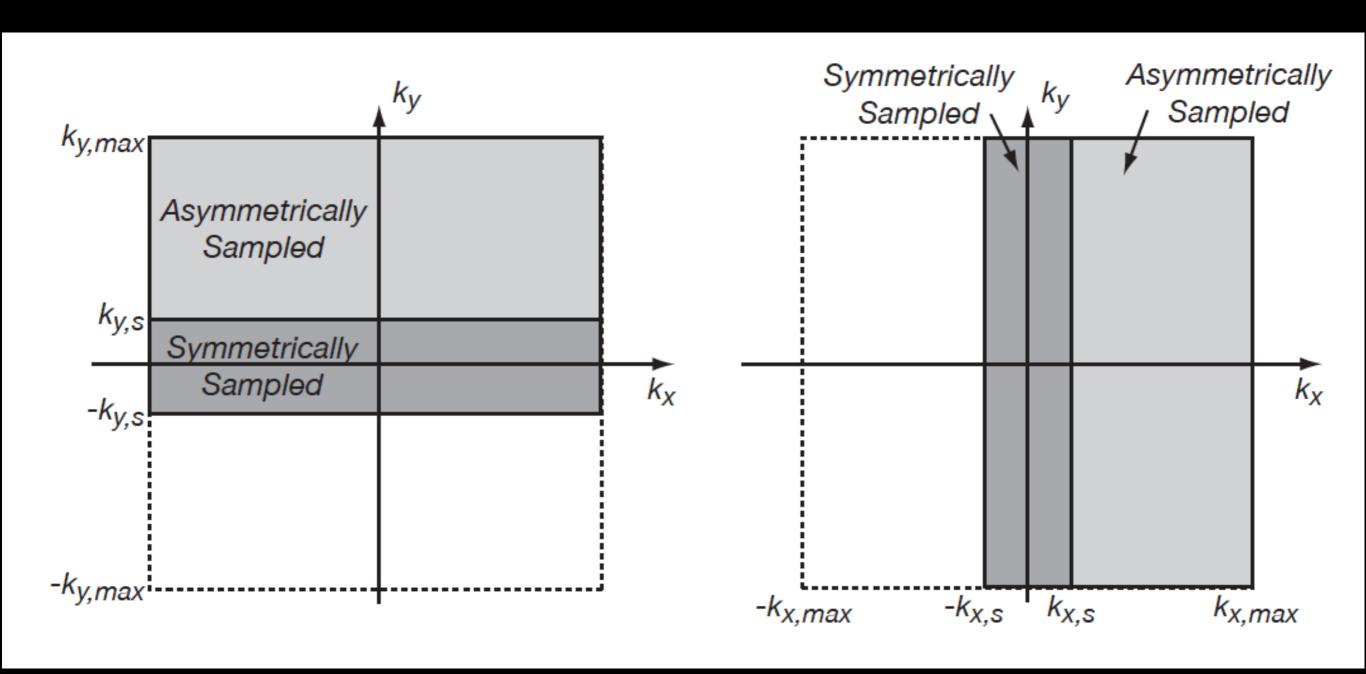


Cartesian 2D Imaging

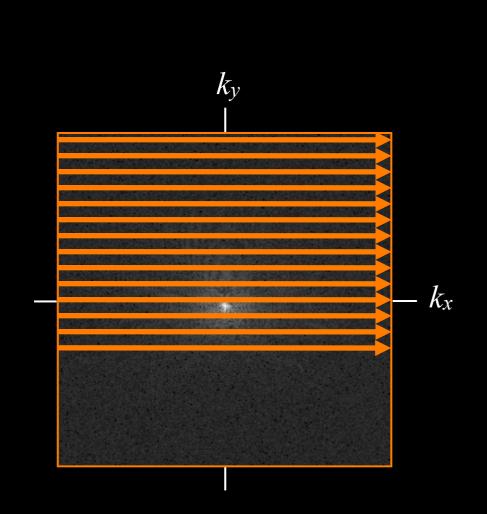


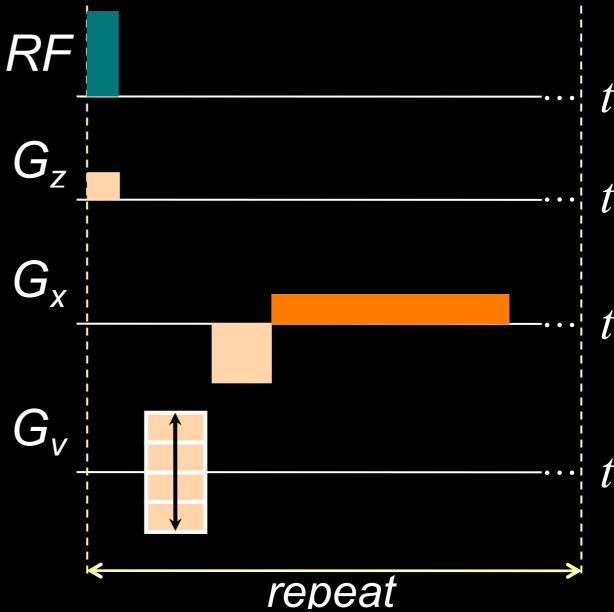


Cartesian Sampling Application

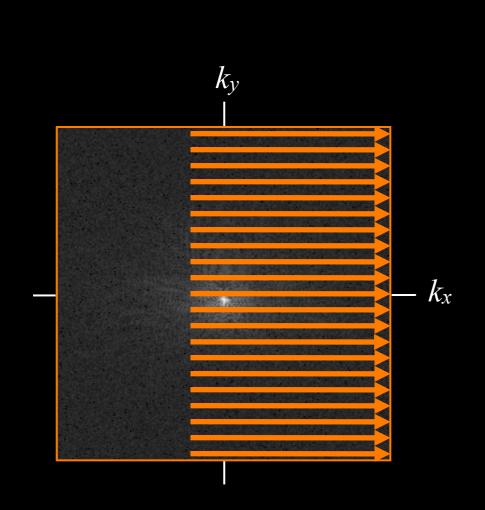


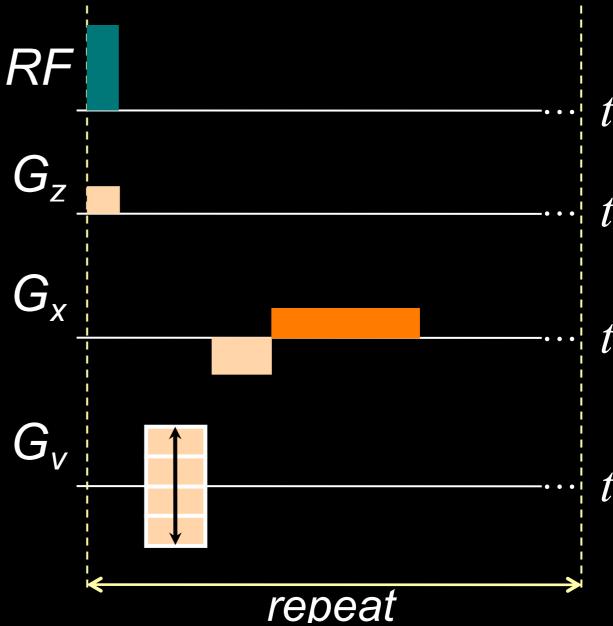
Cartesian 2D Imaging





Cartesian 2D Imaging





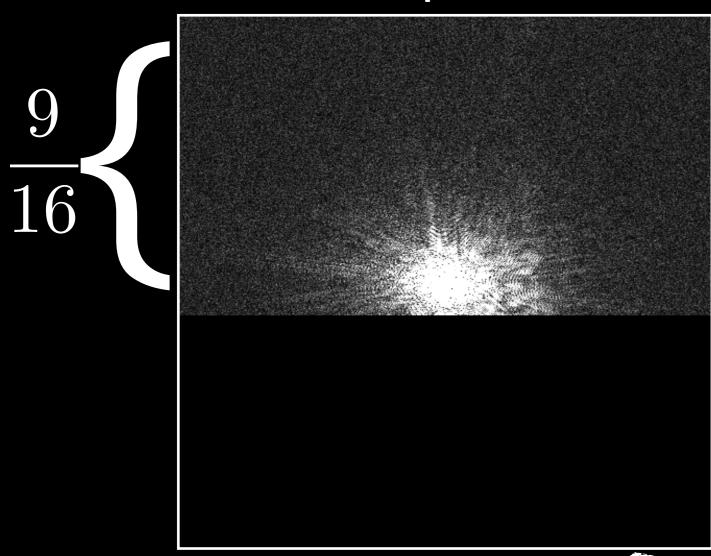
Direct Reconstruction

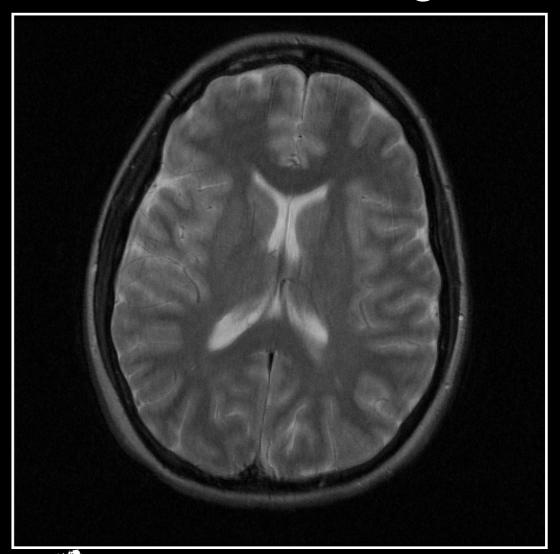
- Zero padding
- Phase correction and conjugate synthesis
- Homodyne reconstruction

Trivial Recon by Zero-Padding

k-space

Zero Padding

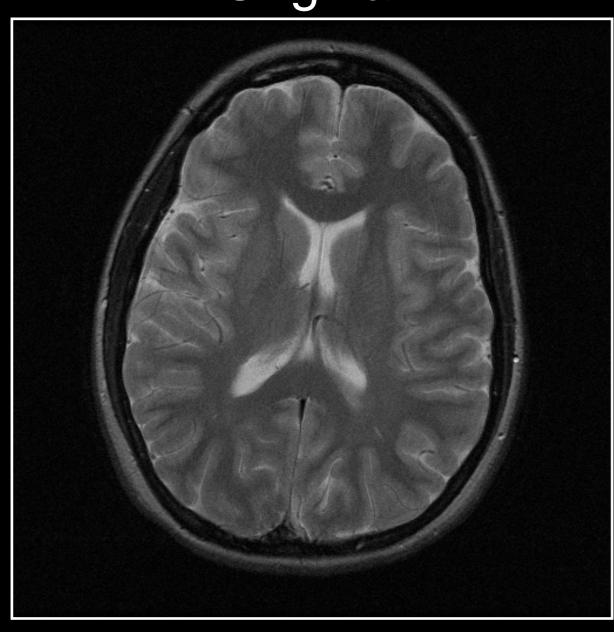




Fourier Transform

Zero Padding

Original



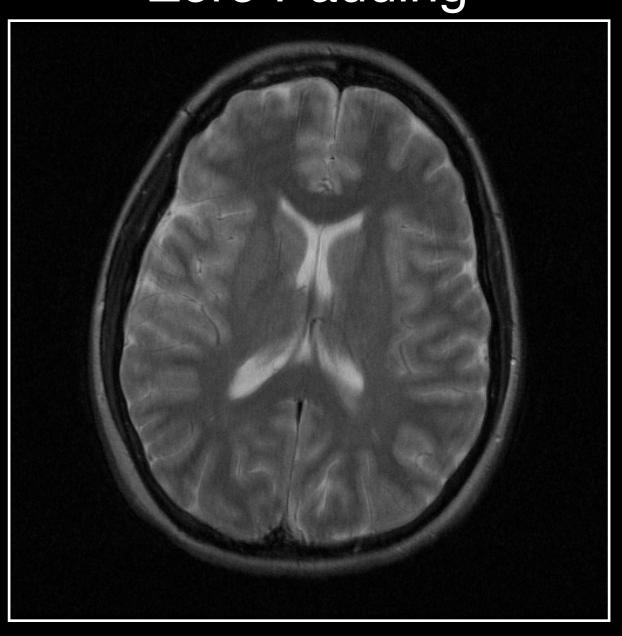
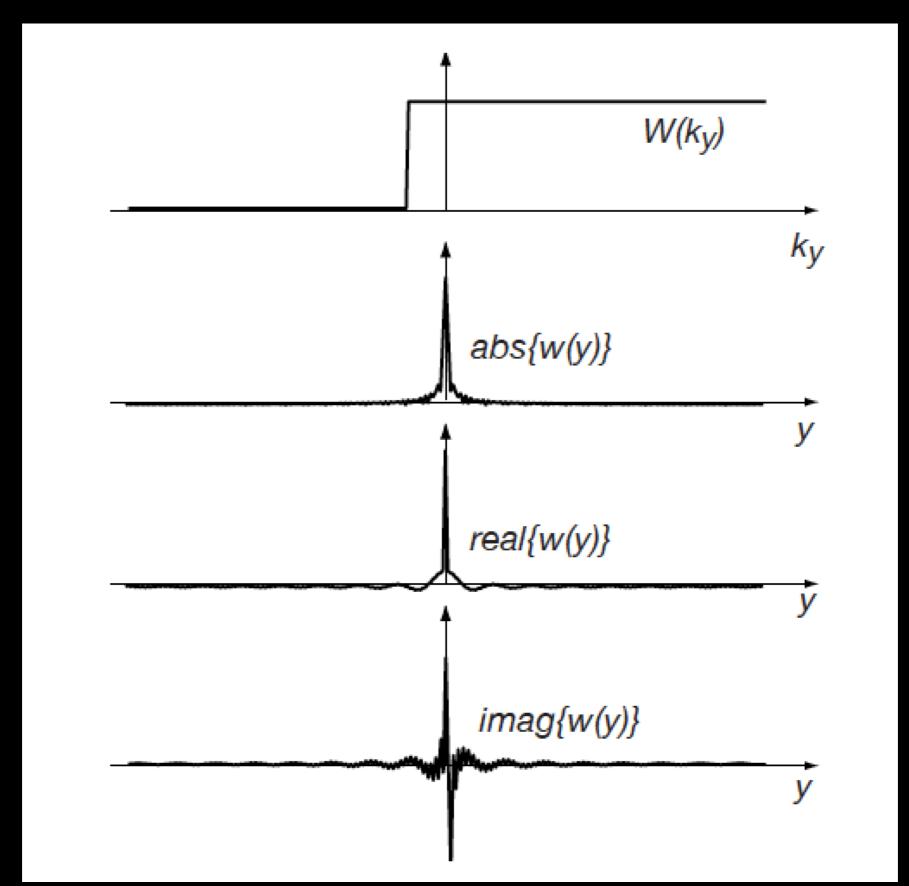


Image Artifacts by Zero Padding

- Blurring can be identified by the product of a full k-space data set multiplied by a weighting function
- The inverse Fourier transform of this weighting function is the impulse response that produces the blurring

Image Artifacts by Zero Padding



Phase Correction and Conjugate Synthesis

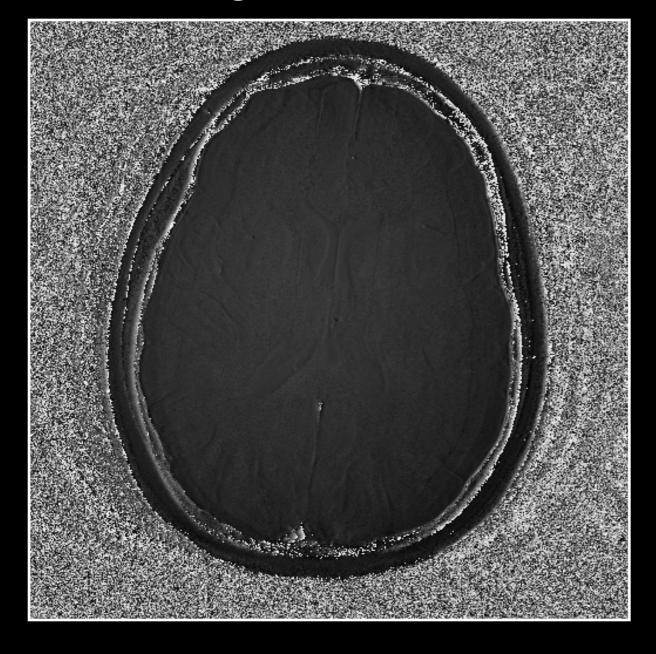
- Phase correction must be applied
 - Use the narrow strip of data for which we have symmetric coverage

k-space

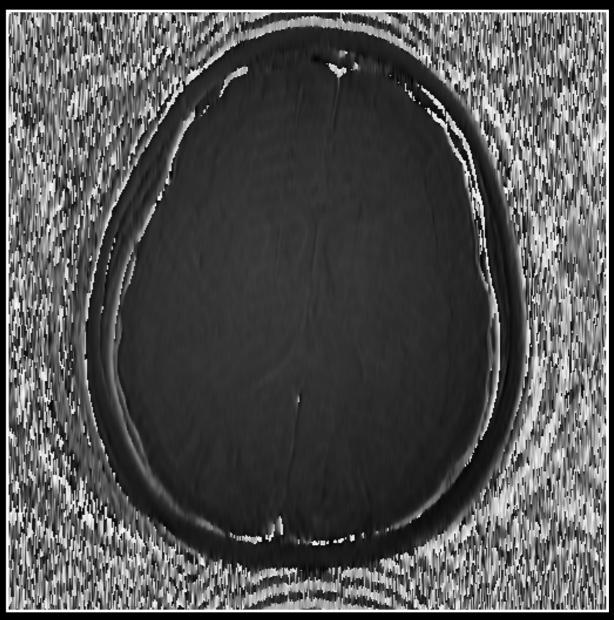
Phase
Estimation
p(x,y)

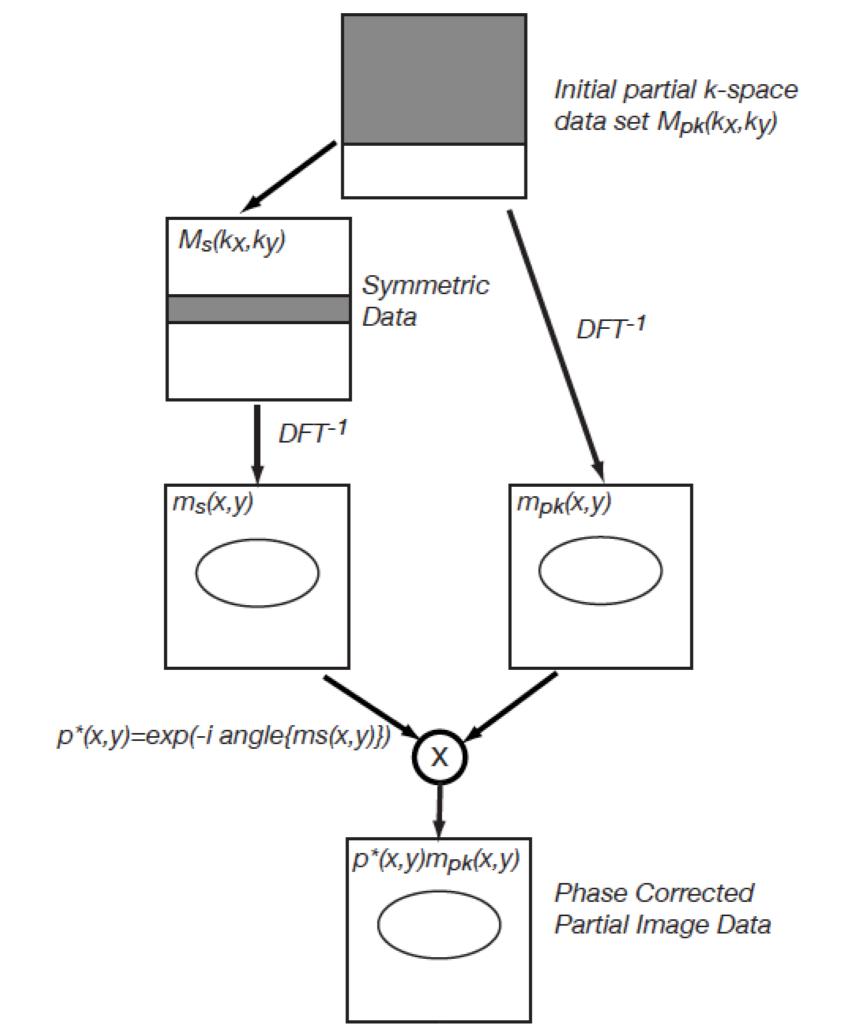
Phase Estimation

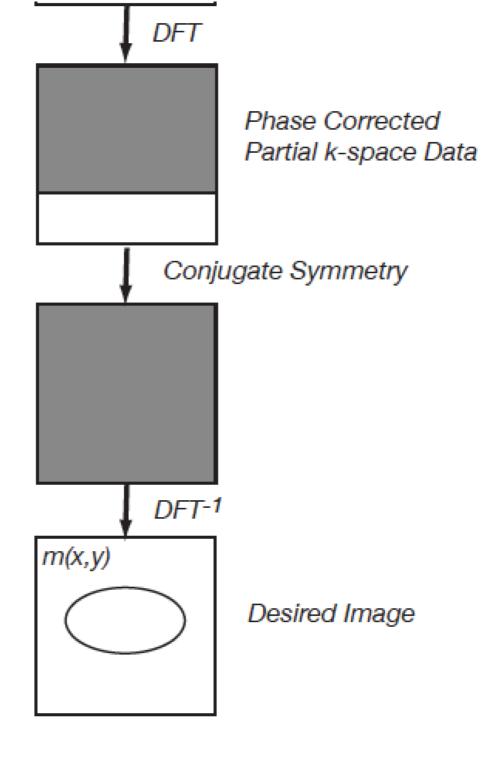
Original Phase



Estimated Phase





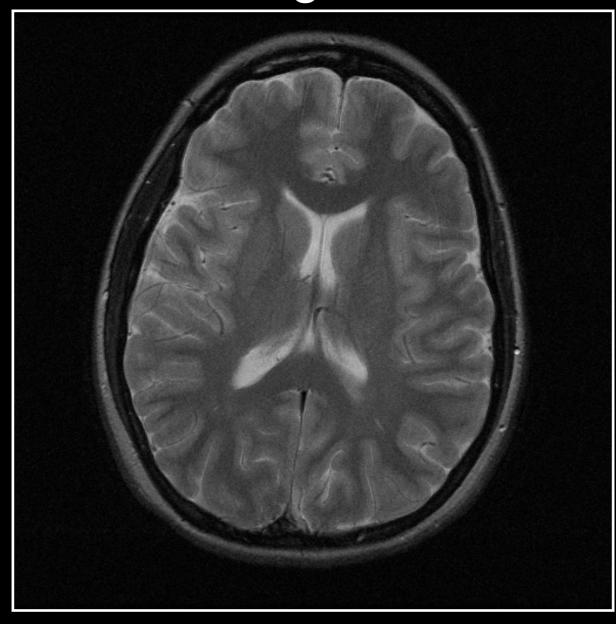


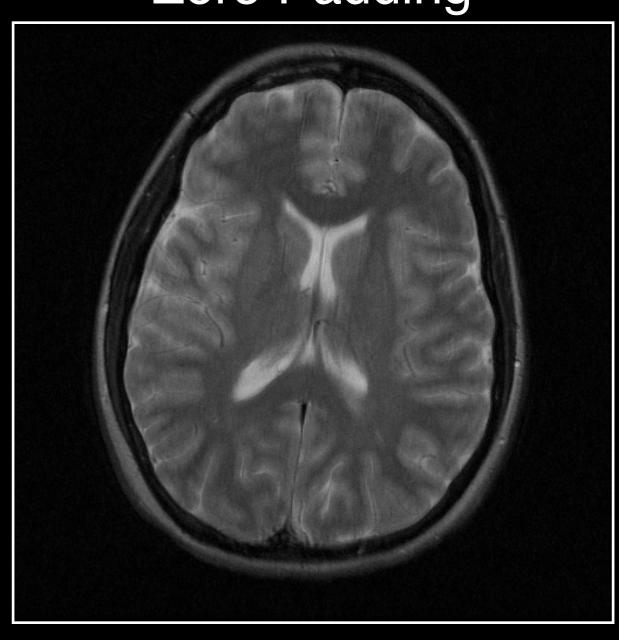
MATLAB Code

```
hnover = 224; % 7/16 sets to be zeros
data pk = data;
data pk(1+nx-hnover:end,:) = 0;
im_zp = fftshift(ifftn(fftshift(data_pk)));
data center = data pk;
data center(1:hnover,:) = 0;
im ph = fftshift(ifftn(fftshift(data center)));
im_pc = im_zp.*exp(-li*angle(im_ph));
data pc = fftshift(fftn(fftshift(im pc)));
data pc(1+nx-hnover:end,:) = 0;
data pc(1+nx-hnover:end,:) = rot90(data pc(1:hnover,:),2);
im pc = fftshift(ifftn(fftshift(data_pc)));
```

Phase Correction and Conjugate Synthesis

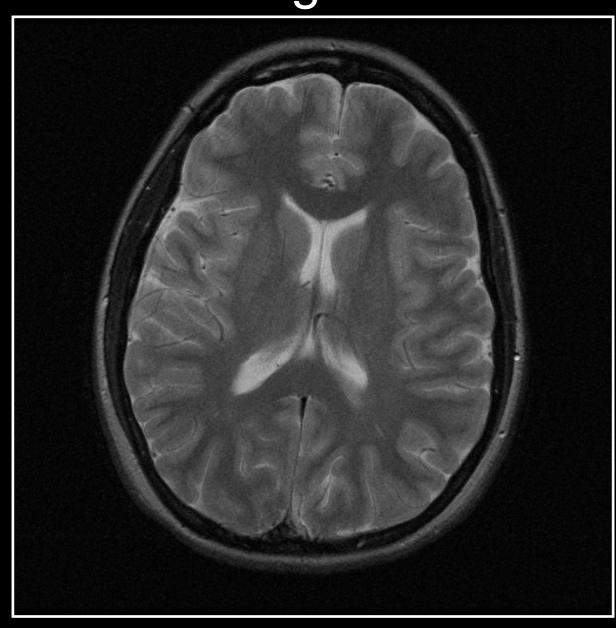
Original

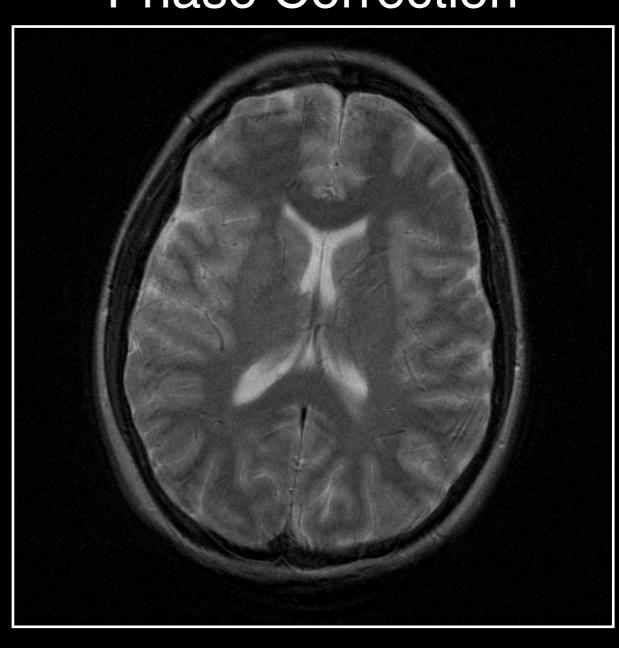




Phase Correction and Conjugate Synthesis

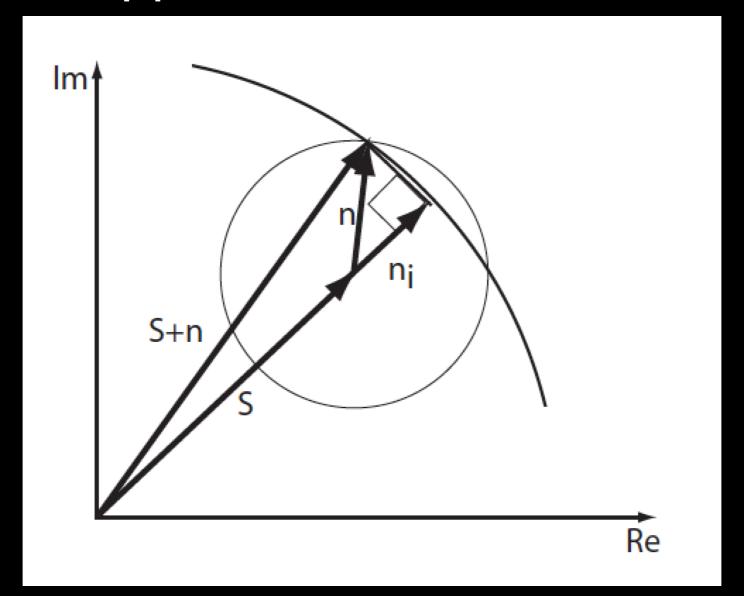
Original





Noise Consideration

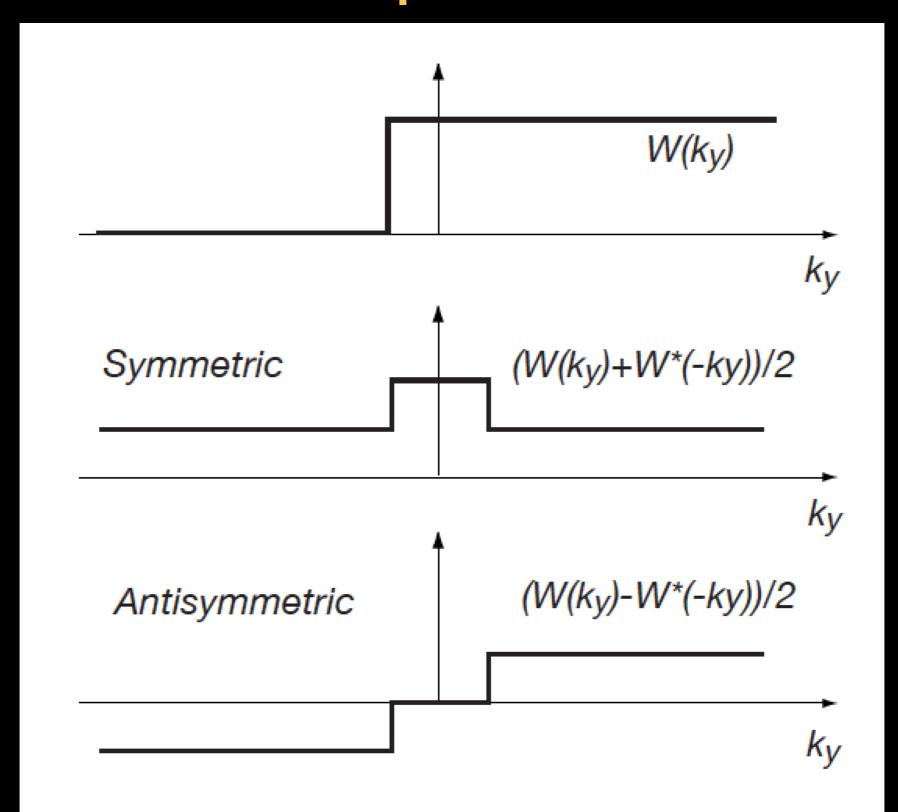
 Background in the phase corrected image has lower noise because one component of the complex noise has been suppressed



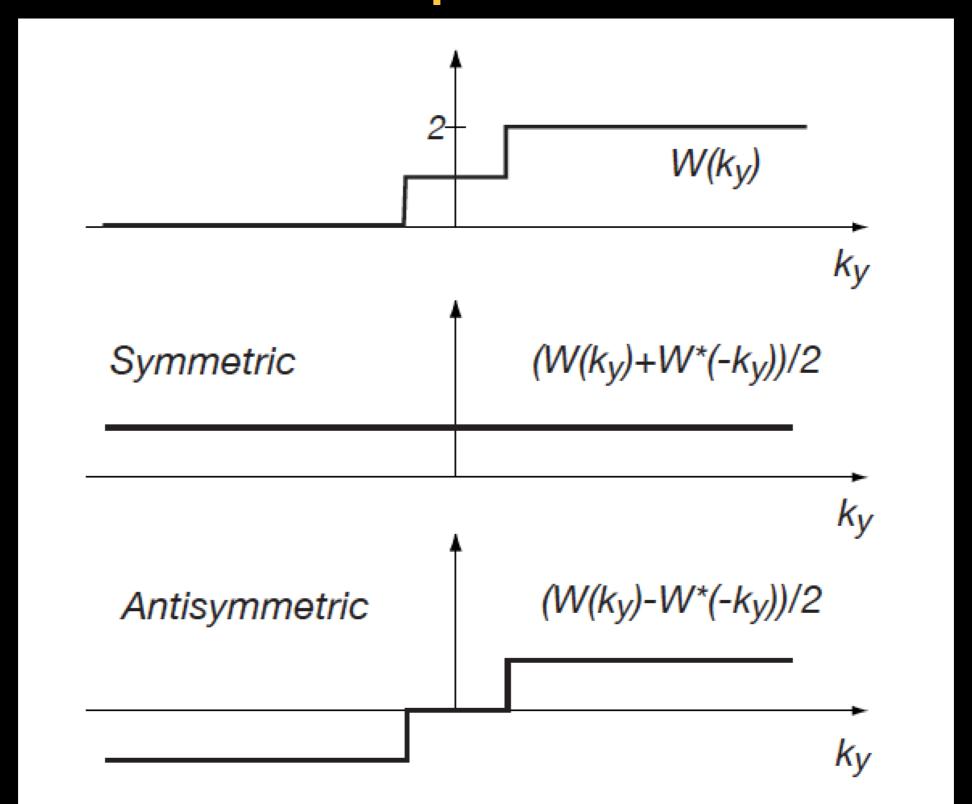
Homodyne Reconstruction

- Real part of an image corresponds to the conjugate symmetric component of the transform
- Imaginary part of an image corresponds to the conjugate anti-symmetric component of the transform

Symmetric and Antisymmetric Components



Symmetric and Antisymmetric Components

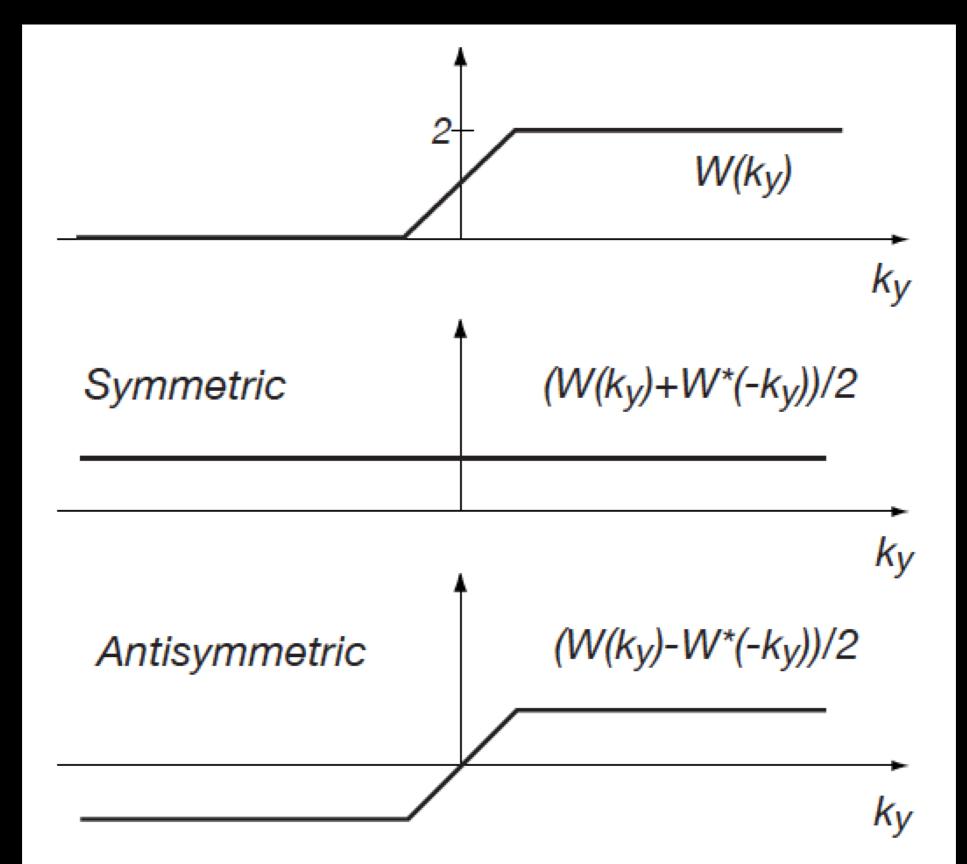


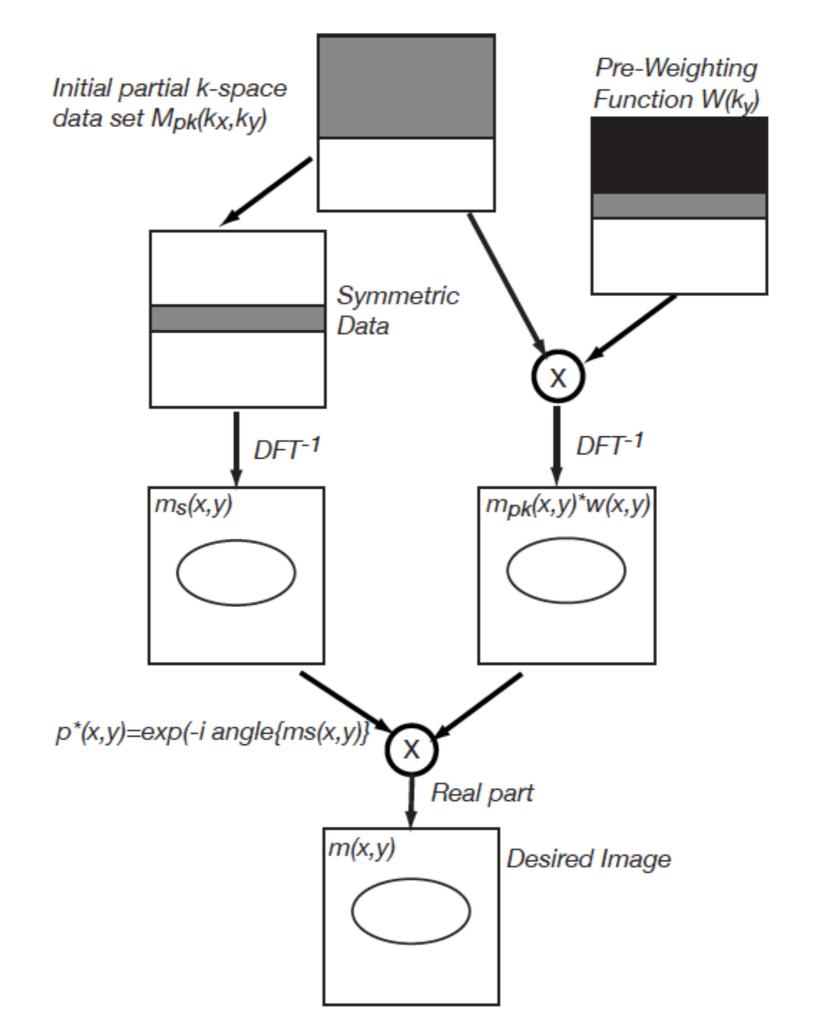
Weighting Function

$$m(x,y) = Re\{p^*(x,y)(m(x,y) * w(x,y))\}$$

- The phase correction in image space corresponds to a convolution in k-space
- The weighting sharp discontinuities of the weighting function can produce image artifacts

Preferred Weighting Function



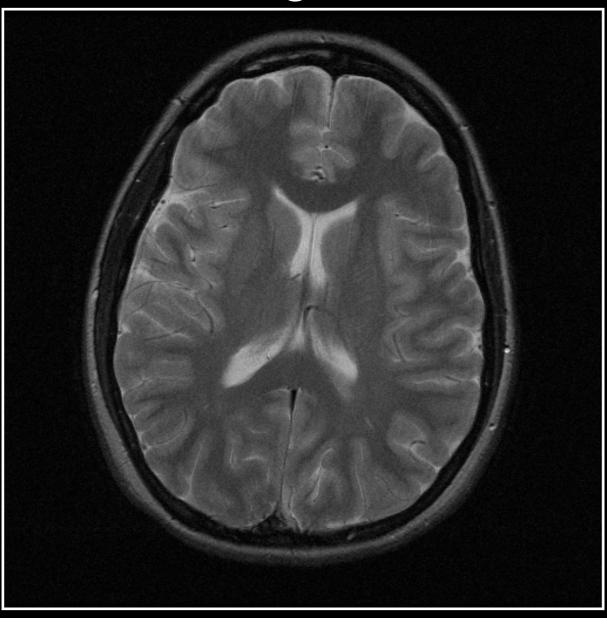


MATLAB Code

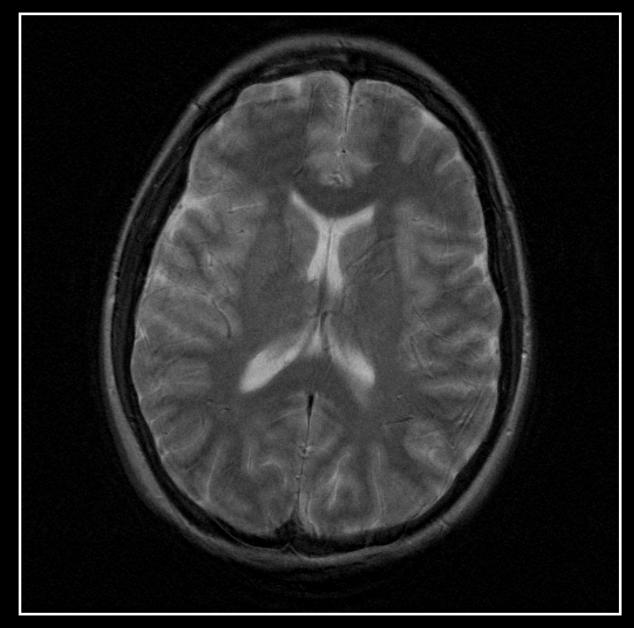
```
% Generate pre-weighting function W(ky)
Wld = zeros(nx,1);
Wld(1:hnover) = 2;
Wld(hnover+1:nx-hnover) = 2*(nx-2*hnover-1:-1:0)/(nx-2*hnover);
Wky = repmat(Wld,[1 nx]);
data_pw = data_pk.*Wky;
im_pw = fftshift(ifftn(fftshift(data_pw)));
im_homodyne = im_pw.*exp(-li*angle(im_ph));
```

Homodyne Reconstruction

Original

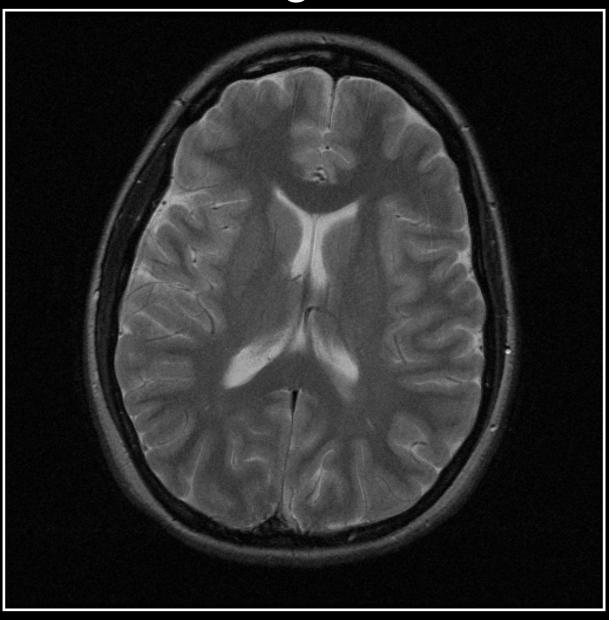


Phase Correction

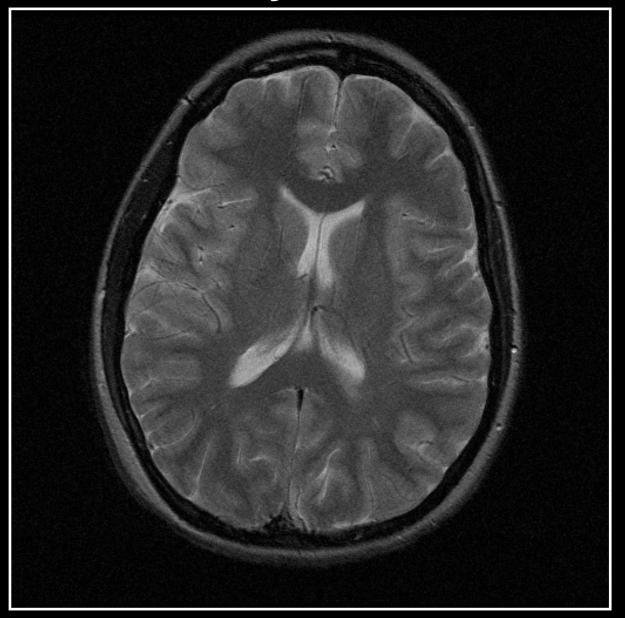


Homodyne Reconstruction

Original



Homodyne Recon



Summary of Direct Methods

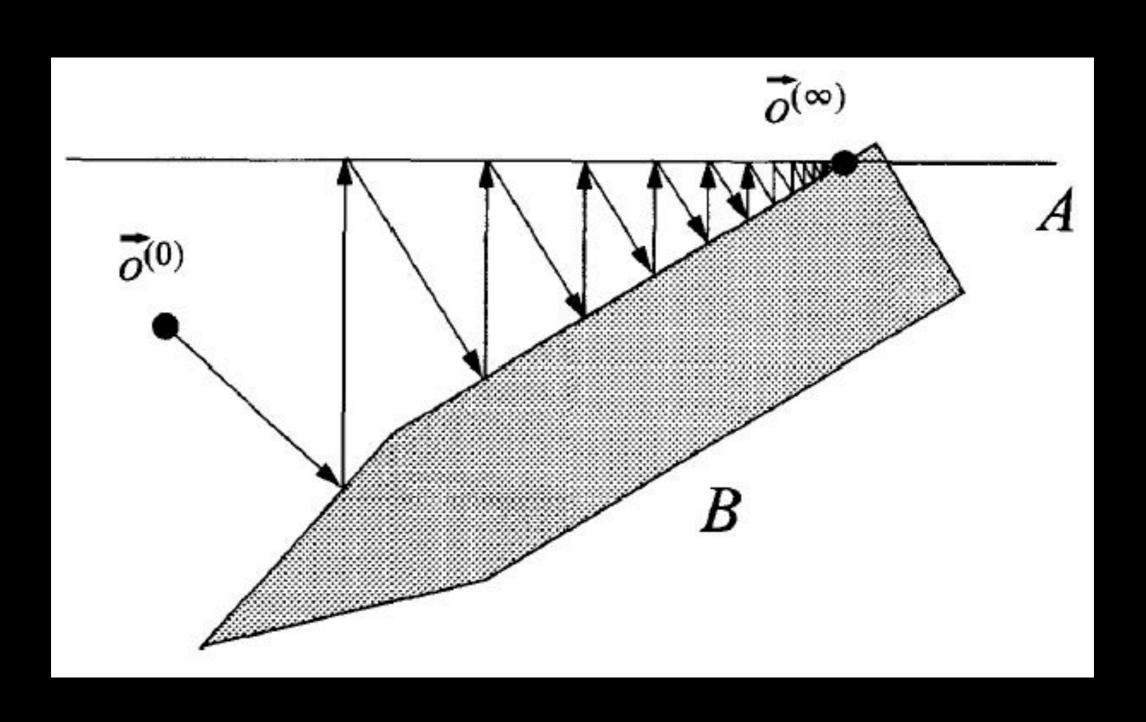
- Both homodyne and phase corrected conjugate synthesis approaches work well if image phase does not vary rapidly
- Problems with homodyne approach are the result of performing phase correction after conjugate synthesis.
- Problems with phase corrected conjugate synthesis approach are due to performing the conjugate synthesis after the phase correction

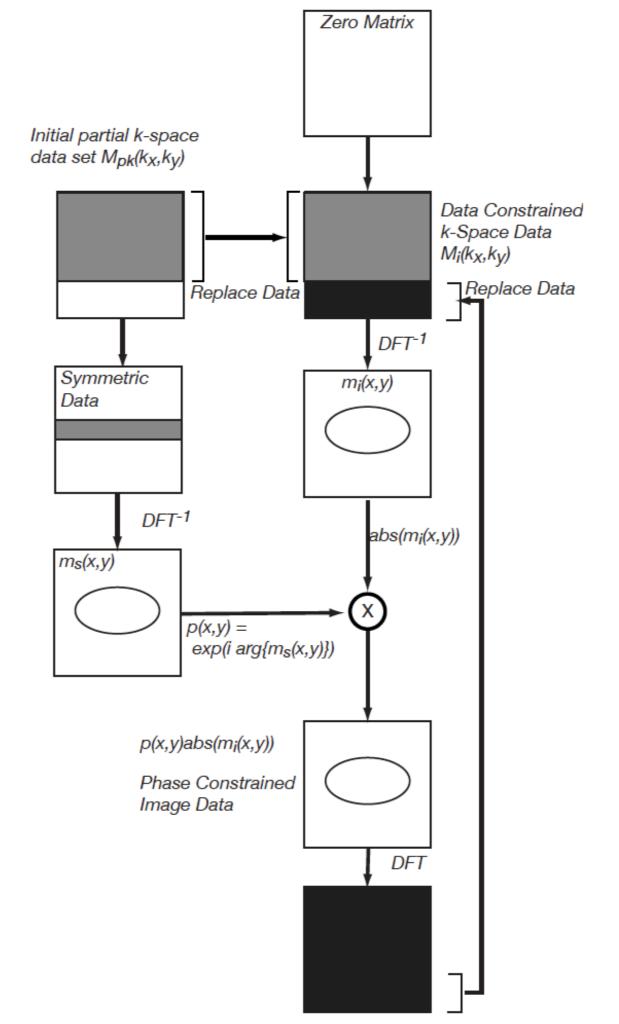
Iterative Reconstruction

$$m_i(x,y) = |m_i(x,y)|p(x,y)$$

- Estimate the missing k-space data by iteratively applying phase correction and conjugate synthesis
- In the image domain, the image phase is constrained to be that of the low resolution estimate
- In the frequency domain, the k-space data is constrained to match the acquired data when available

Projection Onto Convex Set (POCS)



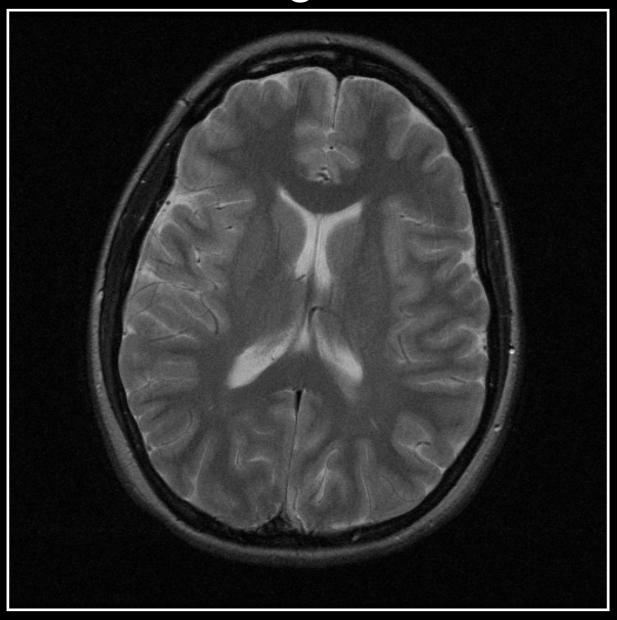


MATLAB Code

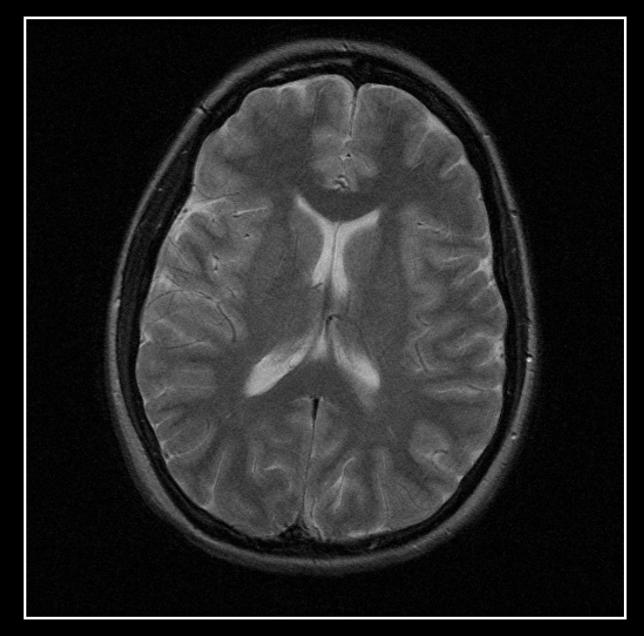
```
threshold pocs = 0.001;
 % Zero padding for initial guess
 im init = fftshift(ifftn(fftshift(data pk)));
                                                 % Inverse DFT
 % Take only magnitude term & Apply phase term
 im_init = abs(im_init).*exp(li*angle(im_ph));
 % FFT
 tmp k = fftshift(fftn(fftshift(im init)));
 diff im = threshold pocs + 1;
while (abs(diff im) > threshold pocs)
     tmp k(1:nx-hnover,:) = data pk(1:nx-hnover,:);
     tmp im = fftshift(ifftn(fftshift(tmp k))); % Inverse DFT
     % Take only magnitude term & Apply phase term
     tmp im = abs(tmp im).*exp(li*angle(im ph));
     tmp k = fftshift(fftn(fftshift(tmp_im)));
     % Compare the reconstructed image
     diff im = abs(tmp im - im init);
     diff im = sum(diff im(:).^2);
     fprintf('Difference is %f\n', diff im);
     im init = tmp im;
 end
 im pocs = tmp im;
```

POCS Reconstruction

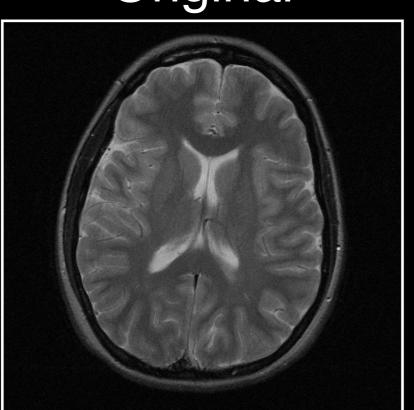
Original



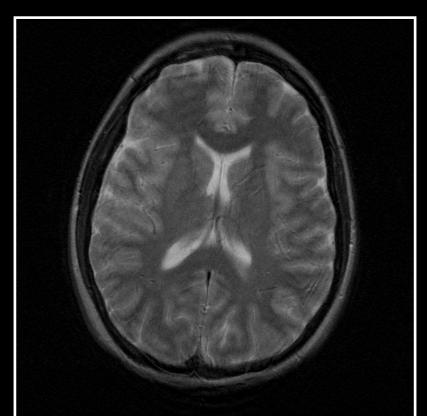
POCS Recon



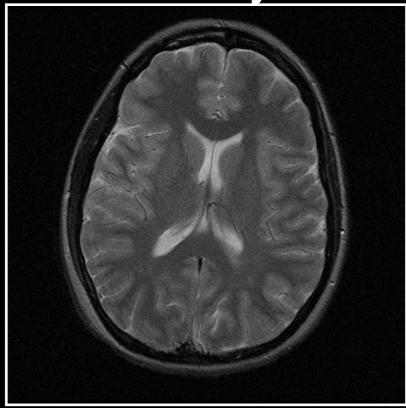
Original



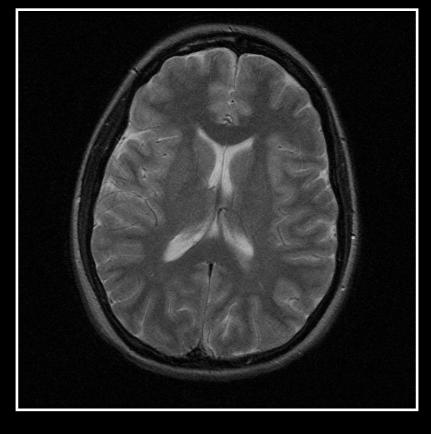
Phase Correction



Homodyne



POCS



Conclusions

- All of these algorithms work well when the image phase variations are smooth
- When the image phase changes rapidly, the homodyne algorithm produces ghosting
- POCS algorithm performs somewhat better as the k-space fraction decreases

Thanks!

- Next time:
 - Parallel Imaging
 - Read "Parallel Imaging Reconstruction" p522-544

Kyung Sung, PhD

ksung@mednet.ucla.edu

http://kyungs.bol.ucla.edu