RF Pulse Design *Multi-dimensional Excitation I*

M229 Advanced Topics in MRI Kyung Sung, Ph.D. 2020.04.16

Today's Topics

- Review of adiabatic pulses
- Applications of adiabatic pulses
- Small tip approximation
- Excitation k-space interpretation

Summary for Adiabatic Pulses

Adiabatic Pulses

• Flip Angle
$$\neq \int_{0}^{t} B_{1}(t)dt$$

- Amplitude and frequency modulation
- Long duration (8-12 ms)
- High B1 amplitude (>12 µT)
- Generally NOT multipurpose (inversion pulses cannot be used for refocusing, etc.)

Non-adiabatic Pulses

• Flip Angle =
$$\int_{0}^{T} B_{1}(t) dt$$

- Amplitude modulation with constant carrier frequency
- Short duration (0.3-1 ms)
- Low B1 amplitude
- Generally multi-purpose (inversion pulses can be used for refocusing, etc.)

Bloch Equation

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}_{eff}$$

Non-selective vs. Selective Excitation

$$\vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega_{RF}}{\gamma} \end{pmatrix} \qquad \vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega_{RF}}{\gamma} + G_z z \end{pmatrix}$$

Adiabatic Pulses

$$\vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega_{RF}(t)}{\gamma} \end{pmatrix}$$

```
%%% User inputs:
mu = 5; % Phase modulation parameter [dimensionless]
beta1 = 672; % Frequency modulation parameter [rad/s]
pulseWidth = 10.24; % RF pulse duration [ms]
A0 = 0.12; % Peak B1 amplitude [Gauss].
```

```
nSamples = 512; % number of samples in the RF pulse
dt = pulseWidth/nSamples/1000; % time step, [seconds]
tim_sech = linspace(-pulseWidth/2,pulseWidth/2,nSamples)./1000';
% time scale to calculate the RF waveforms in seconds.
```

```
% Amplitude modulation function B1(t):
B1 = A0.* sech(beta1.*tim sech);
```

```
% Carrier frequency modulation function w(t):
w = -mu.*beta1.*tanh(beta1.*tim_sech)./(2*pi);
% The 2*PI scaling factor at the end converts the unit from rad/s to Hz
```

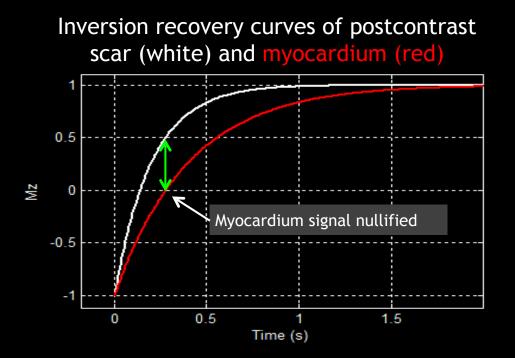
```
% Phase modulation function phi(t):
phi = mu .* log(sech(betal.*tim_sech));
```

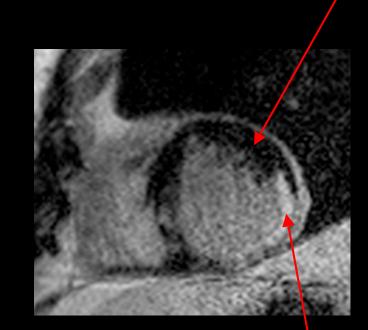
```
% Put together complex RF pulse waveform:
rf_pulse = B1 .* exp(li.*phi);
```

```
% Generate a time scale for the Bloch simulation:
tim_bloch = [0:(nSamples-1)]*dt;
```

Applications of Adiabatic Pulses

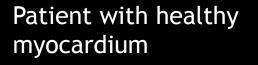
Adiabatic Pulses

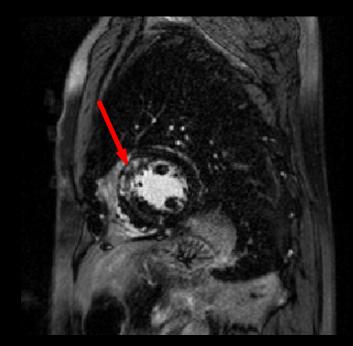

- Fat suppression (STIR)
- CSF suppression (FLAIR)
- Myocardium suppression in cardiac scar imaging (LGE)
- Black blood cardiac imaging (DIR TSE)
- T1 Mapping

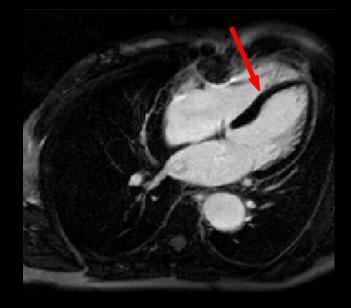

Late Gadolinium Enhancement (LGE)

- Gold standard for detection of scar/myocardial fibrosis
- Spoiled gradient echo (SPGR) sequence with an inversion pulse (inversion recovery SPGR)
 - Inversion pulse is usually hyperbolic secant pulse
 - Healthy myocardium is nulled with the inversion pulse
 - Scar tissue (which has shorter T1 than healthy tissue) appear bright

- The conventional LGE sequence uses an RF-spoiled gradient echo (FLASH) readout with an inversion recovery (IR) pulse as a preparation pulse
- The readout is acquired at a time after inversion at which the healthy myocardium signal reaches zero

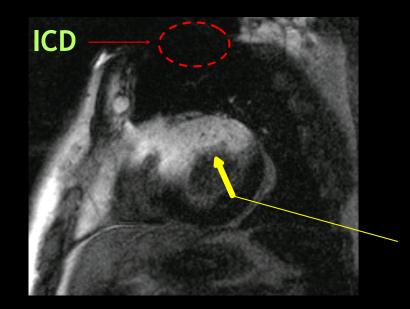

Nullified signal from healthy myocardium



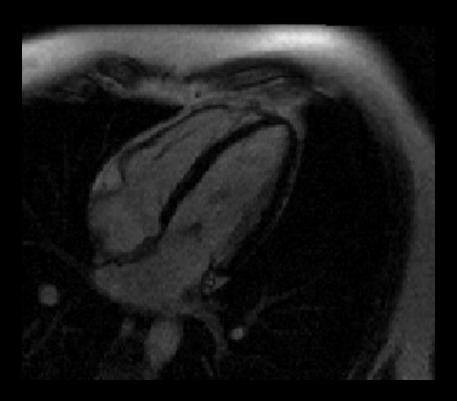


Hyper-enhanced scar region

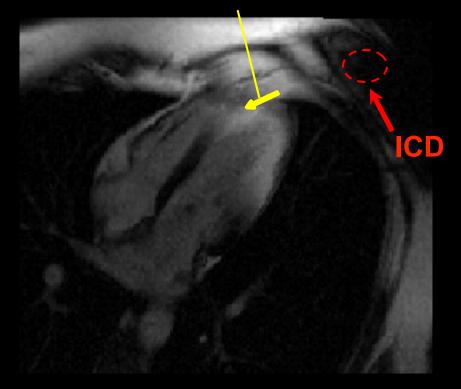
Clinical Example



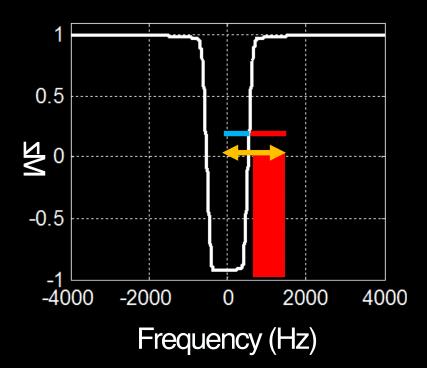
Patient with scar tissue


Clinical Example

Late Gadolinium Enhancement (LGE) in patients with implantable cardiac devices


 Presence of an implantable cardiac device in the patients produces an interesting off-resonance artifact

Hyperintensity Artifacts


Hyper-intensity artifact

Conventional IR LGE Image

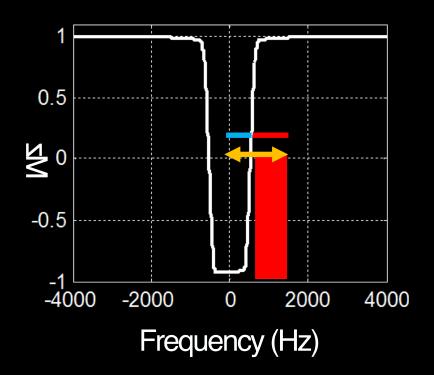
Conventional IR LGE Image

Cause of Artifact

Longitudinal magnetization produced by conventional IR pulse BW = 1.1 kHz

Solution: Increase Bandwidth of Inversion Pulse

0.5


0

-0.5

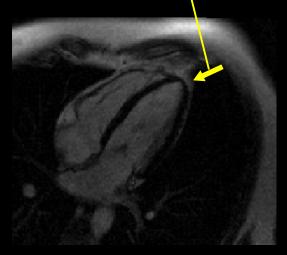
-1 -4000

-2000

MS

Longitudinal magnetization produced by conventional IR pulse BW = 1.1 kHz

Longitudinal magnetization produced by wideband IR pulse BW = 3.8 kHz

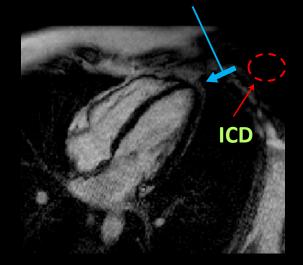

0

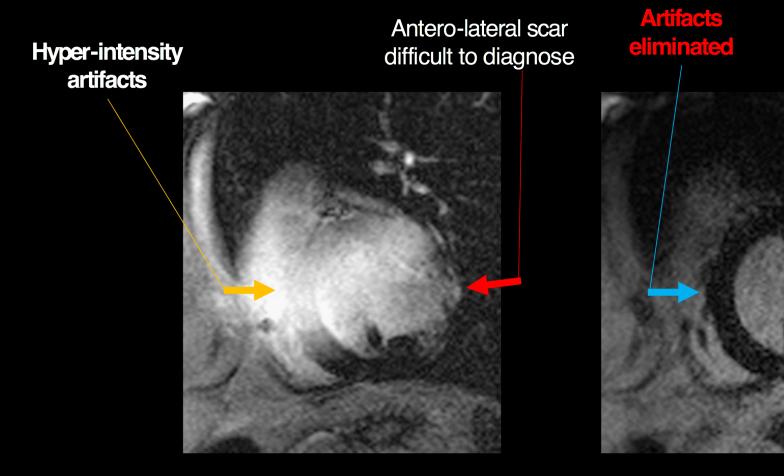
Frequency (Hz)

2000

4000

No artifact (no ICD)




Conventional IR LGE Image

Hyper-intensity artifact

Conventional IR LGE Image Wideband IR LGE Image

Hyper-intensity artifact corrected

Antero-lateral scar clearly visible

Small Tip Approximation

Bloch Equation (at on-resonance)

$$\frac{d\vec{M}_{rot}}{dt} = \vec{M}_{rot} \times \gamma \vec{B}_{eff}$$
where $\vec{B}_{eff} = \begin{pmatrix} B_1(t) \\ 0 \\ B_0 - \frac{\omega}{\gamma} + G_z z \end{pmatrix}$

When we simplify the cross product,

$$\frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega(z) & 0\\ -\omega(z) & 0 & \omega_1(t)\\ 0 & -\omega_1(t) & 0 \end{pmatrix} \vec{M}$$
$$\omega(z) = \gamma G_z z \quad \omega_1(t) = \gamma B_1(t)$$

$$\begin{aligned} & \frac{d\vec{M}}{dt} = \begin{pmatrix} 0 & \omega(z) & 0 \\ -\omega(z) & 0 & \omega_1(t) \\ 0 & -\omega_1(t) & 0 \end{pmatrix} \vec{M} \\ & M_z \approx M_0 \text{ small tip-angle approximation} \\ & \sin \theta \approx \theta \\ & \cos \theta \approx 1 \\ & M_z \approx M_0 \rightarrow \text{constant} \end{aligned} \right\} \quad \frac{dM_z}{dt} = 0 \\ & \frac{M_{xy}}{dt} = -i\gamma G_z z M_{xy} + i\gamma B_1(t) M_0 \qquad M_{xy} = M_x + i M_y \end{aligned}$$

First order linear differential equation. Easily solved.

 $\boldsymbol{\lambda}$

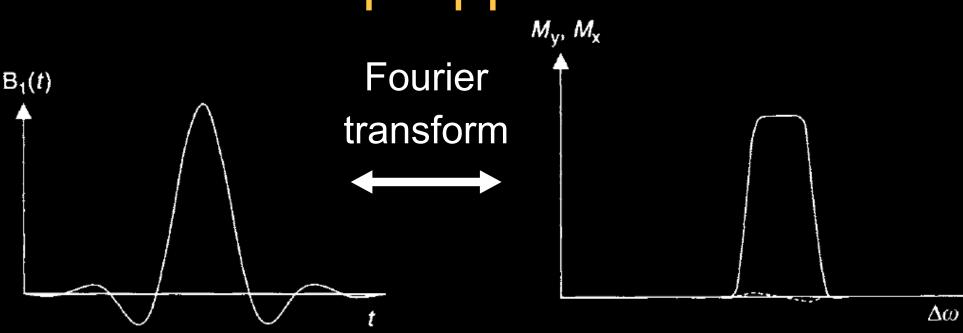
y

dN

dt

$$\frac{dM_{xy}}{dt} = -i\gamma G_z z M_{xy} + i\gamma B_1(t) M_0$$

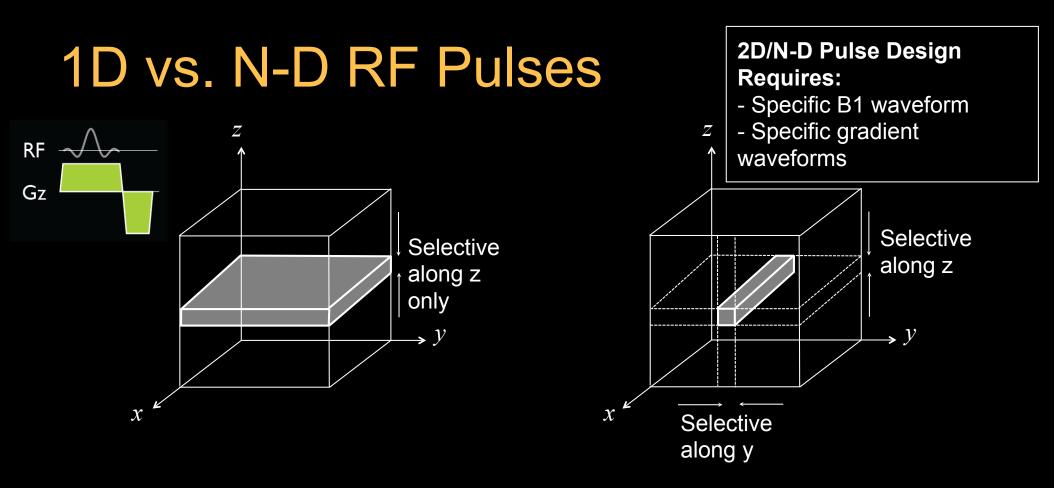
Solving a first order linear differential equation:


$$M_{xy}(t,z) = i\gamma M_0 \int_0^t B_1(s) e^{-i\gamma G_z z \cdot (t-s)} ds$$
$$M_r(\tau,z) = iM_0 e^{-i\omega(z)\tau/2} \cdot \mathcal{FT}_{1D} \{\omega_1(t+\frac{\tau}{2})\} |_{t=-(\gamma/2\pi)G_z}$$

(See the note for complete derivation)

2

To the board ...


Small Tip Approximation

- For small tip angles, "the slice or frequency profile is well approximated by the Fourier transform of B1(t)"
- The approximation works surprisingly well even for flip angles up to 90°

What is Multi-Dimensional Excitation?

Multi-dimensional excitation occurs when using multi-dimensional RF pulses in MRI/NMR, i.e. 2D or 3D RF pulses

- 1D pulses are selective along 1 dimension, typically the slice select dimension
- 2D pulses are selective along 2 dimensions
 - So, a 2D pulse would select a long cylinder instead of a slice
 - The shape of the cross section depends on the 2D RF pulse

Excitation k-space Interpretation

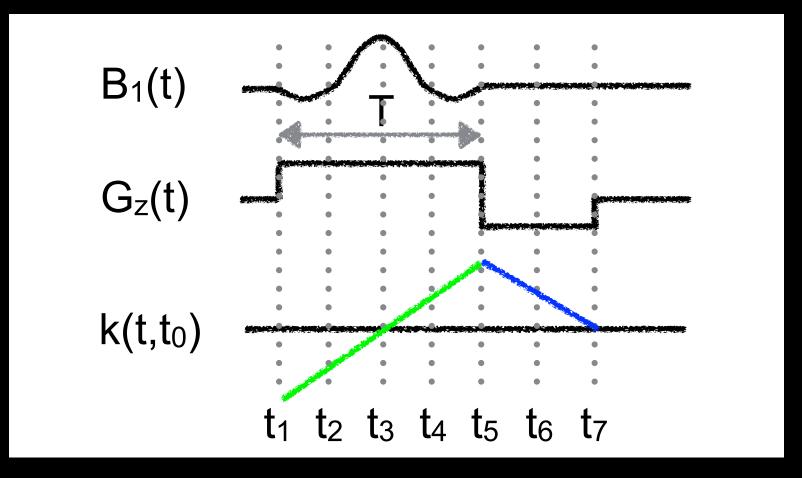
Small Tip Approximation

$$M_{xy}(t,z) = i\gamma M_0 \int_0^t B_1(s) e^{-i\omega(z)(t-s)} ds$$

$$\omega(z) = \gamma G_z z \qquad \qquad \omega(\vec{r},t) = \gamma \vec{G}(t) \vec{r}$$

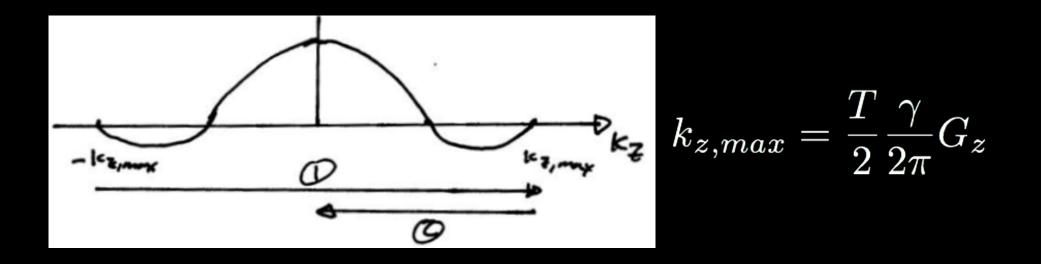
$$M_{xy}(t,\vec{r}) = i\gamma M_0 \int_0^t B_1(s) e^{-i\gamma \int_s^t \vec{G}(\tau) d\tau \cdot \vec{r}} ds$$

Small Tip Approximation


$$M_{xy}(t,\vec{r}) = i\gamma M_0 \int_0^t B_1(s) e^{-i\gamma \int_s^t \vec{G}(\tau) d\tau \cdot \vec{r}} ds$$

Let us define:
$$\vec{k}(s,t) = -rac{\gamma}{2\pi}\int_s^t \vec{G}(\tau)d\tau$$

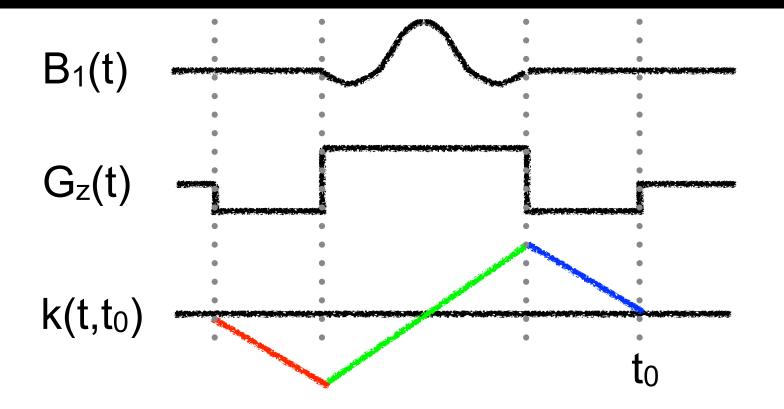
$$M_{xy}(t,\vec{r}) = i\gamma M_0 \int_0^t B_1(s) e^{i2\pi \vec{k}(s,t)\cdot\vec{r}} ds$$


One-Dimensional Example

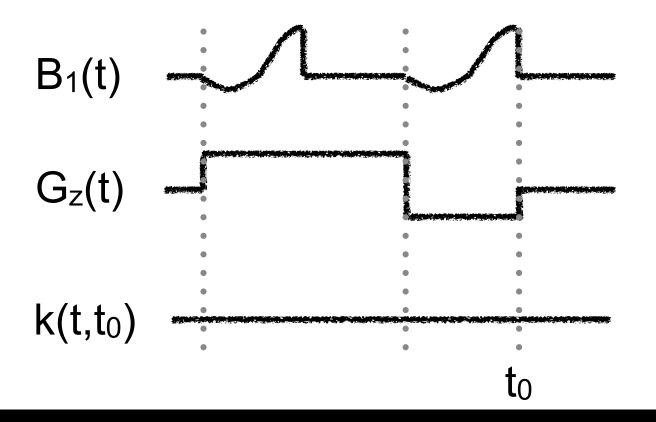
$$\vec{k}(s,t) = -\frac{\gamma}{2\pi} \int_{s}^{t} \vec{G}(\tau) d\tau$$

Consider the value of **k** at $s = t_1, t_2, \dots, t_7$

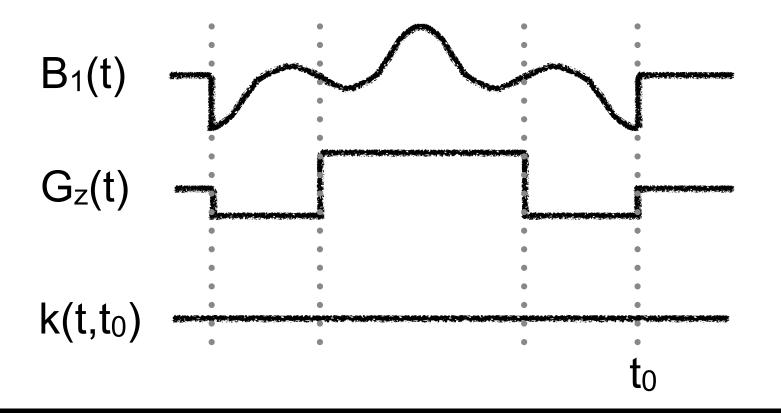
One-Dimensional Example



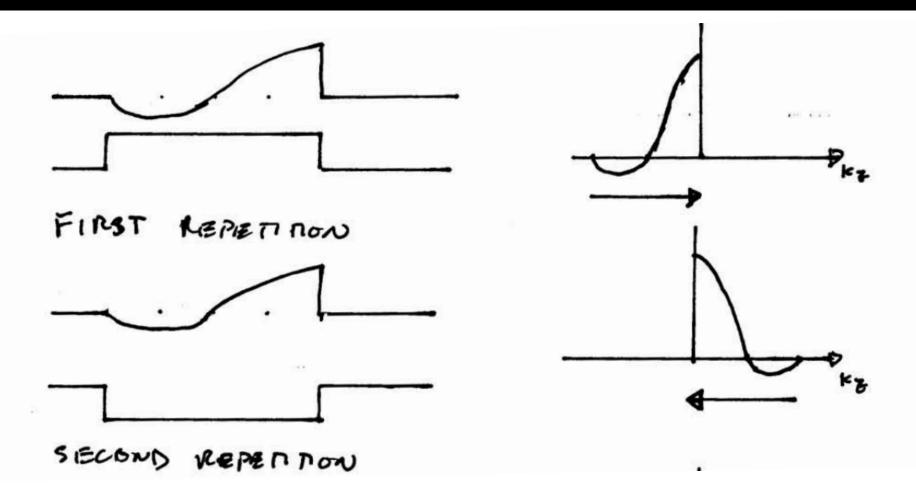
- This gives magnetization at t = t₀, the end of the pulse
- Looks like you scan across k-space, then return to origin


Evolution of Magnetization During Pulse

- RF pulse goes in at DC $(k_z = 0)$
- Gradients move previously applied weighting around
- Think of the RF as "writing" an analog waveform in k-space
- Same idea applies to reception


Other 1D Examples

Other 1D Examples


Other 1D Examples

Multiple Excitations

- Most acquisition methods require several repetitions to make an image
 - e.g., 128 phase encodes
- Data is combined to reconstruct an image
- Same idea works for excitation!

Simple 1D Example

Sum the data from two acquisitions

Same profile as slice selective pulse, but zero echo time

Thank You!

- Further reading
 - Read "Spatial-Spectral Pulses" p.153-163
- Acknowledgments
 - John Pauly's EE469b (RF Pulse Design for MRI)
 - Shams Rashid, Ph.D.

Kyung Sung, PhD ksung@mednet.ucla.edu http://kyungs.bol.ucla.edu