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Today’s Topics

• Review of adiabatic pulses 

• Applications of adiabatic pulses 

• Small tip approximation 

• Excitation k-space interpretation



Summary for Adiabatic Pulses



▪ Amplitude and frequency 
modulation 

▪ Long duration (8-12 ms) 

▪ High B1 amplitude (>12 µT)

▪ Amplitude modulation with 
constant carrier frequency  

▪ Short duration (0.3-1 ms) 

▪ Low B1 amplitude

▪ Flip Angle  ≠ !"#(%)'%
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▪ Flip Angle  = !"#(%)'%
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Adiabatic Pulses Non-adiabatic Pulses

▪ Generally multi-purpose 
(inversion pulses can be 
used for refocusing, etc.)

▪ Generally NOT multi-
purpose (inversion pulses 
cannot be used for 
refocusing, etc.)
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Applications of Adiabatic 
Pulses



Adiabatic Pulses

- Fat suppression (STIR) 

- CSF suppression (FLAIR) 

- Myocardium suppression in cardiac scar imaging 
(LGE) 

- Black blood cardiac imaging (DIR TSE) 

- T1 Mapping



Late Gadolinium Enhancement (LGE)

- Gold standard for detection of scar/myocardial 
fibrosis 

- Spoiled gradient echo (SPGR) sequence with an 
inversion pulse (inversion recovery SPGR) 

• Inversion pulse is usually hyperbolic secant 
pulse 

• Healthy myocardium is nulled with the inversion 
pulse 

• Scar tissue (which has shorter T1 than healthy 
tissue) appear bright



▪ The conventional LGE sequence uses an RF-spoiled 
gradient echo (FLASH) readout with an inversion recovery 
(IR) pulse as a preparation pulse 

▪ The readout is acquired at a time after inversion at which the 
healthy myocardium signal reaches zero

Inversion recovery curves of postcontrast 
scar (white) and myocardium (red)

Myocardium signal nullified

Hyper-enhanced 
scar region

Nullified signal 
from healthy 
myocardium



Clinical Example
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Patient with healthy 
myocardium

Patient with scar 
tissue



Clinical Example
Late Gadolinium Enhancement (LGE) in patients with 
implantable cardiac devices 

▪ Presence of an implantable cardiac device in the 
patients produces an interesting off-resonance 
artifact

ICD

Hyper-
intensity 
Artifacts



SN57 tfl25 t1 Delayed HLA SN47 tfl25 t1 Delayed HLA

ICD

Conventional IR 
LGE Image 

Conventional IR  
LGE Image 

Hyper-intensity artifact



Cause of Artifact

Longitudinal magnetization produced 
by conventional IR pulse 

BW = 1.1 kHz



Solution: Increase Bandwidth of Inversion Pulse

M
z

Frequency (Hz)

Longitudinal magnetization produced by 
conventional IR pulse 

BW = 1.1 kHz

Longitudinal magnetization produced 
by wideband IR pulse 

BW = 3.8 kHz



SN57 tfl25 t1 Delayed HLA SN47 tfl25 t1 Delayed HLA

ICD ICD

Conventional IR
LGE Image

Conventional IR 
LGE Image 

Wideband IR
LGE Image 

Hyper-intensity artifact Hyper-intensity artifact correctedNo artifact (no ICD)





Small Tip Approximation



Bloch Equation (at on-resonance)
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When we simplify the cross product,



Small Tip Approximation
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Mz ⇡ M0 small tip-angle approximation

sin θ ≈ θ 
cos θ ≈ 1 
Mz ≈ M0 → constant

 

 
 

First order linear differential equation. Easily solved.



 

Mr(⌧, z) = iM0e
�i!(z)⌧/2 · FT 1D{!1(t+

⌧

2
)} |f=�(�/2⇡)Gzz

Solving a first order linear differential equation:
 

(See the note for complete derivation)



To the board ...



Small Tip Approximation

- For small tip angles, “the slice or frequency profile is 
well approximated by the Fourier transform of B1(t)” 

- The approximation works surprisingly well even for 
flip angles up to 90°

Fourier 
transform



What is Multi-Dimensional Excitation?

Multi-dimensional excitation occurs when using 
multi-dimensional RF pulses in MRI/NMR, i.e. 
2D or 3D RF pulses



1D vs. N-D RF Pulses

▪ 1D pulses are selective along 1 dimension, typically the 
slice select dimension 

▪ 2D pulses are selective along 2 dimensions 
• So, a 2D pulse would select a long cylinder instead of a slice 
• The shape of the cross section depends on the 2D RF pulse
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only
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Selective 
along y

2D/N-D Pulse Design 
Requires: 
- Specific B1 waveform 
- Specific gradient 
waveforms



Excitation k-space 
Interpretation



Small Tip Approximation



Small Tip Approximation

Let us define:



Gz(t)

B1(t)

k(t,t0)

t7

T

t1 t2 t3 t4 t5 t6

One-Dimensional Example

Consider the value of k at s = t1, t2, … t7



One-Dimensional Example

• This gives magnetization at t = t0, the end of 
the pulse 

• Looks like you scan across k-space, then 
return to origin



Evolution of Magnetization 
During Pulse

• RF pulse goes in at DC (kz = 0) 

• Gradients move previously applied 
weighting around 

• Think of the RF as “writing” an analog 
waveform in k-space 

• Same idea applies to reception



Other 1D Examples
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Other 1D Examples
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Other 1D Examples
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Multiple Excitations

• Most acquisition methods require several 
repetitions to make an image 
- e.g., 128 phase encodes 

• Data is combined to reconstruct an image 

• Same idea works for excitation!



Simple 1D Example

Sum the data from two acquisitions 

Same profile as slice selective pulse, but zero echo time



Thank You!

Kyung Sung, PhD 
ksung@mednet.ucla.edu 
http://kyungs.bol.ucla.edu

- Further reading 
• Read “Spatial-Spectral Pulses” p.153-163 
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